JPS5837969A - Protection circuit element - Google Patents
Protection circuit elementInfo
- Publication number
- JPS5837969A JPS5837969A JP56136663A JP13666381A JPS5837969A JP S5837969 A JPS5837969 A JP S5837969A JP 56136663 A JP56136663 A JP 56136663A JP 13666381 A JP13666381 A JP 13666381A JP S5837969 A JPS5837969 A JP S5837969A
- Authority
- JP
- Japan
- Prior art keywords
- region
- type
- high concentration
- conductivity type
- protection circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Protection Of Static Devices (AREA)
- Amplifiers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体集積回路に形成される保護回路素子、特
に高耐圧をもった保護回路素子の構造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protection circuit element formed in a semiconductor integrated circuit, and particularly to a structure of a protection circuit element having a high breakdown voltage.
従来、半導体集積回路(IC)は大規模化・高密度化が
進むに従って、−例えばMISW素子のゲート絶縁膜が
薄くなシ、そのゲート耐圧は低くなっているために、こ
れらの素子を破壊から保設するために保護回路素子が設
けられている。このようなICは通常では電源電圧5〔
v〕程度で動作する回路が多いから、保護回路素子は耐
圧が低くても充分に役立っている。しかし例えば外部に
螢光表示管のような表示装置などが接続されるICでは
、IC内に40〜50〔v〕で動作する高耐圧素子が設
けられているので、かような高耐圧素子の保護に従来の
保護回路素子をそのまま付加しても用をなさない。しか
も高耐圧素子は低濃度・高抵抗の限られた狭い領域を用
いて形成しなければ高耐圧が得られないために、それよ
シ高電圧が印加されれば、容易に破壊される脆弱な性質
を持った素子である。Conventionally, as semiconductor integrated circuits (ICs) have become larger and more dense, for example, the gate insulating films of MISW elements have become thinner, and their gate withstand voltages have become lower, making it difficult to protect these elements from destruction. A protection circuit element is provided for maintenance. Such ICs usually have a power supply voltage of 5 [
Since there are many circuits that operate at a voltage of about 100 volts, the protection circuit elements are sufficiently useful even if the withstand voltage is low. However, for example, in an IC to which a display device such as a fluorescent display tube is connected to the outside, a high voltage element that operates at 40 to 50 [V] is installed inside the IC. It is useless to simply add conventional protection circuit elements for protection. Moreover, high voltage elements cannot achieve high voltage unless they are formed using a limited narrow area with low concentration and high resistance. It is an element with properties.
本発明はこの様なIC内部に設けられる脆弱な高耐圧素
子を保護するための保護回路素子を提供するものである
。−9
保護回路素子としては 従来よjDP−N逆接合を利用
するなど数多くの構造が提案されているが、ラテラル構
造の保護回路素子を適用した場合は第1図に示す回路図
となり、入出力端子■Ioに保護回路素子T、のドレイ
ンが接続され、ソースとゲートと基板とは接地されてお
)、入出力端子VIOに異常高電圧が印加されると、保
護回路素子T、は2チラルトランジスタ特性を示し、入
出力端子は接地側と短絡して、入力段の半導体素子T1
に高電圧が印加しない様に保護している。The present invention provides a protection circuit element for protecting the fragile high voltage elements provided inside such an IC. -9 Many structures have been proposed for protection circuit elements, such as the use of jDP-N reverse junctions, but when a protection circuit element with a lateral structure is applied, the circuit diagram shown in Figure 1 is obtained, and the input/output The drain of the protection circuit element T is connected to the terminal Io, and the source, gate, and substrate are grounded), and when an abnormally high voltage is applied to the input/output terminal VIO, the protection circuit element T will flash twice. The input and output terminals are shorted to the ground side, and the input stage semiconductor element T1
Protected from high voltage being applied to the
第2図はこの様な保護回路素子T、の断面構造を例示し
ておυ、N型半導体基体1上にN”ffiチャネル・カ
ット領域2を介して厚いフィールド酸化膜3を形成し、
両側の活性領域にP+型ドレイン領域4、P+型ンソー
領域5がそれぞれ設けられる。そしてこの様な構造とし
た保護回路素子に入出力端子から異常高電圧が印加され
ると、ドレイン領域4とチャンネル・カット領域2との
間のPN接合がブレークダウンを起し、基体1がチャー
ジアップされる。そこでチャージアップされた基体lと
グランドレベルのソース領域5とが順方向となり、基体
1からソース領域5へ電流が流れると同時に該ラテラル
トランジスタが作動し、ドレイン領域4からソース領域
5へと電流が流れ込み保護素子としての役目をはたすこ
とになる。FIG. 2 exemplifies the cross-sectional structure of such a protection circuit element T, in which a thick field oxide film 3 is formed on an N-type semiconductor substrate 1 via an N''ffi channel cut region 2,
A P+ type drain region 4 and a P+ type drain region 5 are provided in the active regions on both sides, respectively. When an abnormally high voltage is applied from the input/output terminal to the protection circuit element having such a structure, the PN junction between the drain region 4 and the channel cut region 2 breaks down, and the substrate 1 is charged. Will be uploaded. There, the charged-up substrate 1 and the source region 5 at the ground level become in a forward direction, and at the same time a current flows from the substrate 1 to the source region 5, the lateral transistor is activated, and a current flows from the drain region 4 to the source region 5. It will serve as a flow protection element.
このようにラテラル型(横型)構造の保護回路素子はラ
テラル・トランジスタ特性を利用したものであり、入出
力端子VTo側のドレイン領域4がチャンネル・カット
領域2と接触している部分7でのブレークダウン電圧が
、保証できる耐圧を決めている。一方チヤンネル・カッ
ト領域は本来ICC全全体寄生トランジスタ動作を抑止
するととが主目的であるから、余シ低濃度にはできない
。In this way, the protection circuit element with the lateral type (horizontal) structure utilizes the lateral transistor characteristics, and a break occurs at the portion 7 where the drain region 4 on the input/output terminal VTo side contacts the channel cut region 2. The down voltage determines the withstand voltage that can be guaranteed. On the other hand, since the main purpose of the channel cut region is originally to suppress the operation of parasitic transistors in the entire ICC, the concentration cannot be made low.
従ってこの様な構造のままでは保護素子が低電圧(30
1y1以下程度)で作動し、高耐圧素子の保護素子とし
ては適さない。なお図中、6はゲート電極、8はシん珪
酸ガラス(P S G)醇の表面保護膜、9はドレイン
電極、10はソース電極を示している。Therefore, if this structure is left as it is, the protection element will be at a low voltage (30
1y1 or less) and is not suitable as a protection element for high voltage elements. In the figure, reference numeral 6 indicates a gate electrode, 8 a surface protective film made of cinsilicate glass (PSG), 9 a drain electrode, and 10 a source electrode.
本発明はこのようカ従来の保護回路素子に代えて、より
高い絶縁耐圧を有する保護回路素子を提供しようとする
ものである。The present invention aims to provide a protection circuit element having a higher dielectric strength voltage in place of the conventional protection circuit element.
即ち本発明の保護回路素子は、第1導電型を有する半導
体基体、前言1半導体基体表面に選択的に配設された絶
縁膜、前記絶縁膜の一方の側の半導体基体表面部に形成
された周囲に第2導電型低濃度領域を有する第1の第2
導電型高濃度領域、前記絶縁膜の他方の側の半導体基体
表面部に形成された第2の第2導電型高濃度領域、前記
絶縁膜の下部に形成された第1導電がj高濃度領域、前
記絶縁膜上に配設された電極とを偏え、前記第1の第2
導電型高濃度領域が被保護素子に接続され、前記第2の
第2導電型高濃度領域及び前記電極が基準電位に接続さ
れてなることを特徴とする。That is, the protection circuit element of the present invention comprises a semiconductor substrate having a first conductivity type, an insulating film selectively disposed on the surface of the semiconductor substrate 1, and a surface portion of the semiconductor substrate on one side of the insulating film. a first and a second having a second conductivity type low concentration region around the second conductivity type low concentration region;
a conductivity type high concentration region, a second conductivity type high concentration region formed on the surface of the semiconductor substrate on the other side of the insulating film, a first conductivity type high concentration region formed under the insulating film; , the electrodes disposed on the insulating film are biased, and the first and second electrodes are biased.
A conductive type high concentration region is connected to a protected element, and the second conductive type high concentration region and the electrode are connected to a reference potential.
以下本発明を図を用い実施例について詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.
第3図(a)及び(b)は別の一実施例の断面構造図、
嬉4図(&)乃至(e)は一実施例の製造工程断面図で
ある0
本発明によれば、例えば第3図(a)に示すような断面
構造の保護回路素子が提供される。即ち、該保護回路素
子はN型半導体(シリコイ基体(Nウェル、N基板等)
110表面に、その活性化領域面を画定表出するフィル
ド酸化膜12が設けられており、該フィールド酸化膜1
2によってへたてられた一方の活性化領域に、周囲がP
型低濃度Φ−型)、オフセット領穢13で囲まれたP型
高濃度(P+型)ドレイン領域14が、他方の活性領塚
にP型高濃度(P+型)ソース領域工5が形成されてい
る。又前記フィールド酸化膜12下部の基板表層部には
前記オフセット領域13及びソース領域150両方に接
するN型高濃度(N+型)チャネル・カット領域16が
設けられている。更に又該基体上を覆うPSG等の絶縁
膜17上に、該絶縁膜17の電極窓を介してP+温ドレ
イy領域14に接するドレイン電極18、P+型ソース
領域15に接するソース電極19及びドレイン領域−ソ
ース領域間のフィールド酸化N12の上部に位置するゲ
ート電極20が形成され、前記ドレイン電極18が入力
端子21に、ソース電極19及びゲート電極20が基準
電位端子即ち接地端子22に接続されてなっている。そ
して該構造を有する保護回路素子に於ては、入力端子を
介して異常電圧がドレイン領域に加わってもPN 接
合部23に於けるデプレッシーン層が低不純物濃度のP
−型オフセット領域13内に広く拡がるために、ト
該保護素子のブレークタウン電圧をオフセラ等領域とチ
ャンネル・カット領域の比抵抗で決定される値まで高め
ることができる。FIGS. 3(a) and 3(b) are cross-sectional structural diagrams of another embodiment,
Figures 4 (&) to (e) are sectional views of the manufacturing process of one embodiment.According to the present invention, a protection circuit element having a cross-sectional structure as shown in FIG. 3(a), for example, is provided. That is, the protection circuit element is an N-type semiconductor (silico substrate (N-well, N-substrate, etc.)
A field oxide film 12 defining and exposing the active region surface is provided on the surface of the field oxide film 110.
2, the surrounding area is P
A P-type high concentration (P+ type) drain region 14 surrounded by an offset region 13 is formed, and a P-type high concentration (P+ type) source region 5 is formed in the other active region. There is. Further, an N-type high concentration (N+ type) channel cut region 16 is provided in the substrate surface layer below the field oxide film 12 and is in contact with both the offset region 13 and the source region 150. Further, on an insulating film 17 such as PSG covering the substrate, a drain electrode 18 is in contact with the P+ hot drain region 14 through an electrode window of the insulating film 17, a source electrode 19 is in contact with the P+ type source region 15, and a drain electrode is provided. A gate electrode 20 is formed on top of the field oxide N12 between the region and the source region, the drain electrode 18 is connected to an input terminal 21, and the source electrode 19 and gate electrode 20 are connected to a reference potential terminal or ground terminal 22. It has become. In the protection circuit element having the above structure, even if an abnormal voltage is applied to the drain region through the input terminal, the depressine layer in the PN junction 23 remains in the PN state with a low impurity concentration.
Since it spreads widely within the - type offset region 13, the break-down voltage of the protection element can be increased to a value determined by the resistivity of the offset region and the channel cut region.
第3図(b)は本発明の他の一実施例を示したもので、
各領域は第3図(a)と同記号で表わしである。FIG. 3(b) shows another embodiment of the present invention,
Each region is represented by the same symbol as in FIG. 3(a).
そして該構造と前記実施例との相異は、N+型チャネル
・カット領域16がP−型オフセット領域13に直かに
接していない点である。そしてこのようにするとPN接
合部23に於けるデブレッシlン層はオフセット領域1
3とそれに接する低不純物濃度のN型半導体基体110
両方に広く拡がるために、該保護素子のブレークダウン
電圧をオフセット領域と半導体基体の比抵抗で決定され
る、前記実施例よシも更に高い値まで高めることができ
る。The difference between this structure and the embodiment described above is that the N+ type channel cut region 16 does not directly contact the P− type offset region 13. In this way, the deblessing layer in the PN junction 23 is in the offset region 1.
3 and a low impurity concentration N-type semiconductor substrate 110 in contact with it.
Due to the wide spread in both directions, the breakdown voltage of the protection element can be increased to even higher values as in the previous embodiment, determined by the resistivity of the offset region and the semiconductor body.
次に本発明の保護回路素子の製造手順を、一実施例につ
いて第4図(a)乃至(e)に示す工程断面図を用いて
説明する。該製造工程は上記工程断面図の順に進められ
、先ず第4図(alに示すようにN型シリコン(81)
基体11上に膜厚数100〔λ〕程度の酸化シリコン(
810,)膜24を介して膜厚1000 [A濃度の窒
化シリコン(s t s N4)膜25を選択的に形成
して活性化領域を遮蔽した後、前記S i * N4膜
25をマスクとする例えば砒素イオン(As”)の選択
注入によシN型81基体11面に選択的にAs+B+領
域16′を形成する。次いで前記81aNJN25を耐
酸イトスフとして選択熱酸化を行い、第4図1′b)に
示すようにN型St基体11面に、下部にN+飄チャネ
ル・カット領域16を有するフィールド酸化膜」2及び
12′を選択的に形成する。次いで前記Si、N、膜2
5を除去した後、第4図(e)に示すようにフィールド
酸化膜12及び12′をマスクとしてN型S1基体11
面に低注入量の硼素イオン(B+)を選択的に注入し、
基体面に選択的に低濃度硼素(B)注入領域13’を形
成する。次いで第4図(d)に示すように該基体上にオ
フセット領域形成部位上を覆うレジスト・パターン26
を形成し、該レジスト・パターン26及び前記フィール
ド酸化膜12及び1τをマスクとして基体面に高注入量
の硼素イオン(B+)を選択注入し、NfjISi基体
ll内に選択的に高濃度硼素(B)注入領域14′及び
15′を形成する。次いで前記レジスト・パターン26
を除去した後、所望の高温アニール処理を施して、第4
図(e)に示すようにフィールド酸化膜12′の一方の
側に表出するNff1S l基板11面にP−型オフセ
ット領域13を周囲に有するP生型ドレイン領域14を
、又フィールド酸化膜12’の他方の側に表出するN型
Si基板11面にP+型ソース領域15を形成する。そ
して図示しないが、以下通常の方法に従ってPSG等の
絶縁膜の形成、電極窓開き、電極形成等がなされて第3
図(&)に示すような回路保腰素子が提供されるっ
なおラテラル構造の素子は本来バイポーラ形素子であシ
、従って上記に説明した保護回路素子はPNP型トラン
ジスタであるが、構造はMO8形素子に類似するため、
MO8形素子の名称を用いて説明した。Next, the manufacturing procedure of the protection circuit element of the present invention will be explained for one embodiment using process cross-sectional views shown in FIGS. 4(a) to 4(e). The manufacturing process is proceeded in the order of the process cross-sectional diagrams above, and first, as shown in FIG. 4 (al), N-type silicon (81)
Silicon oxide (with a thickness of about 100 [λ]) is deposited on the base 11.
810,) After selectively forming a silicon nitride (s t s N4) film 25 with a film thickness of 1000 [A] via the film 24 to shield the active region, the Si*N4 film 25 is used as a mask. For example, by selectively implanting arsenic ions (As"), an As+B+ region 16' is selectively formed on the surface of the N-type 81 substrate 11.Next, selective thermal oxidation is performed using the NJN25 81a as an acid-resistant material, as shown in FIG. As shown in b), field oxide films 2 and 12' having an N+ channel cut region 16 at the bottom are selectively formed on the surface of the N-type St substrate 11. Next, the Si, N, film 2
After removing the N-type S1 substrate 11 using the field oxide films 12 and 12' as a mask, as shown in FIG. 4(e),
A low dose of boron ions (B+) is selectively implanted on the surface,
A low concentration boron (B) implantation region 13' is selectively formed on the substrate surface. Next, as shown in FIG. 4(d), a resist pattern 26 is formed on the substrate to cover the offset region formation site.
A high dose of boron ions (B+) is selectively implanted into the substrate surface using the resist pattern 26 and the field oxide films 12 and 1τ as masks, and high concentration boron (B+) is selectively implanted into the NfjISi substrate 11. ) forming implant regions 14' and 15'; Next, the resist pattern 26
After removing, a desired high temperature annealing treatment is performed to form the fourth
As shown in Figure (e), a P-type drain region 14 having a P-type offset region 13 around it is formed on the surface of the Nff1S l substrate 11 exposed on one side of the field oxide film 12'. A P + -type source region 15 is formed on the surface of the N-type Si substrate 11 exposed on the other side. Although not shown, the formation of an insulating film such as PSG, opening of electrode windows, electrode formation, etc. are then carried out according to the usual method.
The lateral structure element for which the circuit protection element shown in FIG. Because it is similar to a shaped element,
The explanation has been made using the name of MO8 type element.
なお又本発明の保護回路素子は上記実施例と逆導電型セ
形成することもできる。Furthermore, the protection circuit element of the present invention can also be formed with a conductivity type opposite to that of the above embodiment.
以上説明したように、本発明は耐圧を向上させた保護回
路素子であり、特に本発明に於ては高覧上を図りている
ので、不純物濃度の高い半導体基板やウェル内に保護回
路素子を形成する際に特に顕著な効果を示すものである
0As explained above, the present invention is a protection circuit element with improved withstand voltage, and in particular, the present invention aims at high visibility, so the protection circuit element is formed in a semiconductor substrate or well with a high impurity concentration. 0, which shows a particularly remarkable effect when
第1図は保護回路素子の回路図、第2図は従来の保護回
路素子の断面構造図、第3図(a)及び(b)は本発明
の第1及び第2の実施例の断面構造図で、第4図(a)
乃至(e)は製造手順の一実施例に於ける工程断面図で
ある。
図に於て、11はN型半導体(シリコン)基体、12は
フィールド酸化膜、13はP型低濃度OP−型)オフセ
ット領域、14はP型高濃度(P中型)ドレイン領域、
15はP型高濃度(P”ff1)ソース領域、16はN
型高濃度(N+型)チャネル・カット領域16.17は
絶縁膜、18はドレイン電極、19はソース電極、20
はゲート電極、21は入力端子、22は基準電位(接地
)端子を示す0第 3 図
フイ
%4[!1
rFIG. 1 is a circuit diagram of a protection circuit element, FIG. 2 is a cross-sectional structure diagram of a conventional protection circuit element, and FIGS. 3(a) and (b) are cross-sectional structures of the first and second embodiments of the present invention. In the figure, Fig. 4(a)
7(e) are process cross-sectional views in one embodiment of the manufacturing procedure. In the figure, 11 is an N-type semiconductor (silicon) base, 12 is a field oxide film, 13 is a P-type low concentration (OP-type) offset region, 14 is a P-type high concentration (P medium) drain region,
15 is a P-type high concentration (P"ff1) source region, 16 is an N
High concentration type (N+ type) channel cut region 16. 17 is an insulating film, 18 is a drain electrode, 19 is a source electrode, 20
is the gate electrode, 21 is the input terminal, and 22 is the reference potential (ground) terminal. 1 r
Claims (1)
表面に選択的に配設された絶縁膜、前記絶縁膜の一方の
側の半導体基体表面部に形成された周囲に第2導電型低
濃度領域を有する第1の第2導電型高濃度領域、前記絶
縁膜の他方の側の半導体基体表面部に形成された第2の
第2導電型高濃度領域、前記絶縁膜の下部に形成された
第1導電型高濃度領域、前記絶縁膜上に配設された電極
とを備え、前記第1の第2導電型高濃度領域が被保護素
子に接続され、前記第2の第2導電型高濃度領域及び前
記電極が基準電位に接続されてなることを特徴とする保
護回路素子。 2、上記絶縁膜下部の第1導電型高濃度領域が、上記第
2導電型低濃度領域及び第2の第2導電型高濃度領斌に
共に接してなることを特徴とする特許請求の範囲第1項
記載の保護回路素子03、上記絶縁膜下部の第1導電型
高濃阜領域が、上記第2の第2導電型高濃度領域のみに
接してなることを特徴とする特許請求の範囲第1項記載
の保護回路素子。[Claims] 1. A semiconductor substrate having a first conductivity type, an insulating film selectively disposed on the surface of the semiconductor substrate, and a periphery formed on the surface of the semiconductor substrate on one side of the insulating film. a first high concentration region of the second conductivity type having a low concentration region of the second conductivity type; a second high concentration region of the second conductivity type formed on the surface portion of the semiconductor substrate on the other side of the insulating film; a first conductivity type high concentration region formed at the bottom of the film; and an electrode disposed on the insulating film; the first second conductivity type high concentration region is connected to the protected element; 2. A protection circuit element, characterized in that the second conductivity type high concentration region and the electrode are connected to a reference potential. 2. Claims characterized in that the first conductivity type high concentration region under the insulating film is in contact with both the second conductivity type low concentration region and the second second conductivity type high concentration region. The protection circuit element 03 according to claim 1, wherein the first conductivity type high concentration region under the insulating film is in contact only with the second second conductivity type high concentration region. The protection circuit element according to item 1.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56136663A JPS5837969A (en) | 1981-08-31 | 1981-08-31 | Protection circuit element |
| US06/346,224 US4602267A (en) | 1981-02-17 | 1982-02-05 | Protection element for semiconductor device |
| EP82300764A EP0058557B1 (en) | 1981-02-17 | 1982-02-16 | Protection element for a semiconductor device |
| DE8282300764T DE3270937D1 (en) | 1981-02-17 | 1982-02-16 | Protection element for a semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56136663A JPS5837969A (en) | 1981-08-31 | 1981-08-31 | Protection circuit element |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5837969A true JPS5837969A (en) | 1983-03-05 |
| JPH0430194B2 JPH0430194B2 (en) | 1992-05-21 |
Family
ID=15180581
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP56136663A Granted JPS5837969A (en) | 1981-02-17 | 1981-08-31 | Protection circuit element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5837969A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59151469A (en) * | 1983-02-18 | 1984-08-29 | Fujitsu Ltd | protection circuit element |
| JPS60117651A (en) * | 1983-11-29 | 1985-06-25 | Fujitsu Ltd | High withstand voltage protective circuit device |
| JPS6269662A (en) * | 1985-09-24 | 1987-03-30 | Toshiba Corp | Protection circuit for semiconductor integrated circuits |
| JPS6269661A (en) * | 1985-09-24 | 1987-03-30 | Toshiba Corp | Protection circuit for semiconductor integrated circuits |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5164876A (en) * | 1974-12-03 | 1976-06-04 | Nippon Electric Co | ZETSUENGEETOGATADENKAIKOKAHANDOTAISOCHINOSEIZOHOHO |
| JPS526470U (en) * | 1975-06-30 | 1977-01-18 |
-
1981
- 1981-08-31 JP JP56136663A patent/JPS5837969A/en active Granted
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5164876A (en) * | 1974-12-03 | 1976-06-04 | Nippon Electric Co | ZETSUENGEETOGATADENKAIKOKAHANDOTAISOCHINOSEIZOHOHO |
| JPS526470U (en) * | 1975-06-30 | 1977-01-18 |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59151469A (en) * | 1983-02-18 | 1984-08-29 | Fujitsu Ltd | protection circuit element |
| JPS60117651A (en) * | 1983-11-29 | 1985-06-25 | Fujitsu Ltd | High withstand voltage protective circuit device |
| JPS6269662A (en) * | 1985-09-24 | 1987-03-30 | Toshiba Corp | Protection circuit for semiconductor integrated circuits |
| JPS6269661A (en) * | 1985-09-24 | 1987-03-30 | Toshiba Corp | Protection circuit for semiconductor integrated circuits |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0430194B2 (en) | 1992-05-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4941028A (en) | Structure for protecting thin dielectrics during processing | |
| US6004838A (en) | ESD protection using selective siliciding techniques | |
| US6365941B1 (en) | Electro-static discharge circuit of semiconductor device, structure thereof and method for fabricating the structure | |
| US5783850A (en) | Undoped polysilicon gate process for NMOS ESD protection circuits | |
| US20070210387A1 (en) | ESD protection device and method | |
| KR900003257B1 (en) | Semiconductor device with protection circuit | |
| JPH09115999A (en) | Semiconductor integrated circuit device | |
| JPH02273971A (en) | Semiconductor device having protective circuit | |
| US11508806B1 (en) | Low leakage ESD MOSFET | |
| US6835624B2 (en) | Semiconductor device for protecting electrostatic discharge and method of fabricating the same | |
| JP2839375B2 (en) | Semiconductor integrated circuit device | |
| US5221635A (en) | Method of making a field-effect transistor | |
| JPS5837969A (en) | Protection circuit element | |
| JP3119902B2 (en) | Semiconductor device and manufacturing method thereof | |
| TW503558B (en) | Low-noise silicon controlled rectifier for electrostatic discharge protection | |
| US6281080B1 (en) | Fabrication method in improving ESD ability and vertical BJT gain | |
| US5880501A (en) | Semiconductor integrated circuit and manufacturing method of the same | |
| JPS63137478A (en) | Manufacture of semiconductor device having protective circuit | |
| JP3425574B2 (en) | Input/output protection device for semiconductor integrated circuits | |
| JP3123489B2 (en) | Electrostatic protection circuit in semiconductor integrated circuit and method of manufacturing the same | |
| JP3350170B2 (en) | Power MOS type semiconductor device and method of manufacturing the same | |
| US7075156B1 (en) | Collector structure for electrostatic discharge protection circuits | |
| JP3398077B2 (en) | Semiconductor device and manufacturing method thereof | |
| JP3114613B2 (en) | Semiconductor device and manufacturing method thereof | |
| JP2743814B2 (en) | Semiconductor device |