JPS5848706A - Rankine cycle device - Google Patents
Rankine cycle deviceInfo
- Publication number
- JPS5848706A JPS5848706A JP14721281A JP14721281A JPS5848706A JP S5848706 A JPS5848706 A JP S5848706A JP 14721281 A JP14721281 A JP 14721281A JP 14721281 A JP14721281 A JP 14721281A JP S5848706 A JPS5848706 A JP S5848706A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- expander
- condenser
- bypass
- immediately before
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C20/00—Control of, monitoring of, or safety arrangements for, machines or engines
- F01C20/10—Control of, monitoring of, or safety arrangements for, machines or engines characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/003—Systems for the equilibration of forces acting on the elements of the machine
- F01C21/006—Equalization of pressure pulses
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、動力城出し構造を改良したランキンサイクル
装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Rankine cycle device with an improved power output structure.
この種ランキンサイクル装置は従来、第1図に示すよう
に構成される。すなわち1は膨張機、2は凝縮器、3は
循環ポン!、4は蒸気発生器であシ、これらは配管Pに
て連通される。上記蒸気発生器4の近傍には、たとえば
ガスバーナのどとき加熱体5が配設される。膨張機1に
導びかれる作動媒体は、蒸気発生器4を通過する際加熱
体5によって加熱され、高圧気化した状態である。そし
て膨張機1において膨張し、図示しない冷凍サイクルの
圧縮機に動力を与え、膨張完了した作動媒体は凝縮器1
に導びかれて凝縮液化する。さらに循ll/ンf3・の
作動により、蒸気発生器4へ送られ、再び加熱されるこ
ととなる。This type of Rankine cycle device has conventionally been constructed as shown in FIG. In other words, 1 is an expander, 2 is a condenser, and 3 is a circulation pump! , 4 are steam generators, and these are communicated through a pipe P. A heating element 5 is disposed near the steam generator 4, for example, at the end of a gas burner. The working medium guided to the expander 1 is heated by the heating element 5 when passing through the steam generator 4, and is in a high-pressure vaporized state. The working medium is then expanded in the expander 1 to provide power to the compressor of the refrigeration cycle (not shown), and the expanded working medium is transferred to the condenser 1.
It condenses and liquefies. Further, by the operation of the circulation l/n f3, the steam is sent to the steam generator 4 and heated again.
上記膨張機1は第2図に示すようになりていて、上記循
l14ンf1から導びかれる作動媒体は吸込口体−を介
してシリンダ室1に吸込まれる。シリンダ室1には複数
材のベーン81ないし14を所定間隔を存し、かつ突設
自在に備え九偏心ロータtが収容される。、このロータ
フは吸込口体6から吐出口体10に向けてシリンダ室1
を偏心回転し、各ベーン1aとttb、abと1・、1
・とaa、aaと8aとの間にそれぞれ導びかれる作動
媒体を膨張させる。その結果、それぞれのベーン11な
いし#4に力を与えてロータ9に回転力を発生させるよ
うKなっている。The expander 1 is constructed as shown in FIG. 2, and the working medium led from the circulation tank f1 is sucked into the cylinder chamber 1 through the suction port body. The cylinder chamber 1 accommodates a nine-eccentric rotor t, which is provided with vanes 81 to 14 made of a plurality of materials at predetermined intervals and capable of protruding. , this rotor is connected to the cylinder chamber 1 from the suction port body 6 to the discharge port body 10.
are rotated eccentrically, and each vane 1a and ttb, ab and 1., 1
- Expand the working medium led between aa and aa, and between aa and 8a, respectively. As a result, force is applied to each of the vanes 11 to #4 to generate rotational force in the rotor 9.
ところで、同図において実線で示すベーン1aとベーン
8bとの間の空間圧力が上記蒸気発生器4の圧力と等し
く、二点鎖線で示すベーンa a’とベーンj b’と
の間の空間圧力が上記凝縮器2の圧力と等しいことが望
ましい、すなわち第3図からも説明できるように、上記
膨張機1での媒体圧力変化をa−C・とすると、たとえ
ば凝縮器2の圧力がP・であれは、ロータ、9の出力は
A−11−Co−Doの線図で囲む面積として表わせる
。By the way, in the figure, the spatial pressure between vane 1a and vane 8b indicated by the solid line is equal to the pressure of the steam generator 4, and the spatial pressure between vane a a' and vane j b' indicated by the two-dot chain line is equal to the pressure of the steam generator 4. It is desirable that the pressure in the condenser 2 is equal to the pressure in the condenser 2. That is, as can be explained from FIG. Then, the output of the rotor 9 can be expressed as the area surrounded by the A-11-Co-Do diagram.
しかしながら、たとえば循環IングJの吸込圧力が弱ま
ったシ、凝縮器2の負荷が大となったシして、凝縮器2
の圧力が所定圧力よ)も高くなることがある。換言すれ
ば、膨張過程完了直前であるぺ一78a′とべ一71b
′との間の空間圧力が凝縮圧力よシも低い場合である。However, for example, if the suction pressure of the circulating I ring J becomes weaker or the load on the condenser 2 increases, the condenser 2
The pressure of the specified pressure may also be higher than the specified pressure. In other words, the parts 78a' and 71b immediately before the completion of the expansion process.
This is the case when the space pressure between ′ and ′ is lower than the condensation pressure.
このときの凝縮圧力をyとすると、膨張機1にム−Bで
供給された媒体が供給を閉じてからB−C@まで膨張す
る途中、圧力P′とは点0で交わる。したがって点Oか
らは凝縮圧力P′よpも低くな・シ、先行しているベー
ン(たとえば8b′)はp−タ#に対して逆方向の回転
力を与えることになる。If the condensation pressure at this time is y, it intersects with the pressure P' at point 0 while the medium supplied to the expander 1 at M-B expands to B-C@ after the supply is closed. Therefore, from point O, the condensing pressure P' is also lower than p.The preceding vane (for example, 8b') applies a rotational force in the opposite direction to the point #.
こO出力ao−c’−c・で囲む面積で表され、本来の
出力であるム−B−0−D’で囲む面積から差引い友も
のが出力となるのである−この〇−C’ −Co面積を
例えば過膨張損失と云う、シ゛たがって凝縮圧力がわず
かでも上昇、すると膨張機1の過膨張損失は著しいもの
となるという不都合がある。This O output is expressed as the area surrounded by ao-c'-c, and the output is obtained by subtracting it from the area surrounded by mu-B-0-D', which is the original output. For example, the Co area is called an overexpansion loss, so if the condensation pressure increases even slightly, there is a disadvantage that the overexpansion loss of the expander 1 becomes significant.
本発明は上記事情に着目してなされたものであ夛、その
目的とするところは、凝縮圧力が上った場合に、膨張機
における作動媒体が膨張完了する直前位置と凝縮器の導
入側とを連通するバイパスi路を設けることによ〕、過
膨張損失をなくシ、運転効率の向上化が得られるランキ
ンサイクル装置を提供しようとするものである。The present invention has been made in view of the above-mentioned circumstances, and its purpose is to locate the position immediately before the expansion of the working medium in the expander and the introduction side of the condenser when the condensation pressure increases. By providing a bypass i-way for communicating with the above, the present invention aims to provide a Rankine cycle device that eliminates overexpansion loss and improves operating efficiency.
以下本考案の一実施りを図面に4とづいて説明する・ラ
ンキンサイクルそのものは纂lのに示すごとく構成され
ているので説明を省略する。An embodiment of the present invention will be described below with reference to drawing 4. Since the Rankine cycle itself is constructed as shown in Figure 1 of the collection, the explanation will be omitted.
ただし膨張機1の要部は第4図に示すように構成される
・すなわち16は吸込口体、11はシリンダ室%181
e I J b e 1 l @ e I Jl d
はそれぞれベーンs19はロータ、20は吐出口体であ
る。また図におけるベーンJ a m’とべ一718b
′との間のシリンダ室11に対向する部位、すなわち作
動媒体が膨張過程を完了する直前の位置にはバイパス導
入孔21が設けられる。However, the main parts of the expander 1 are constructed as shown in FIG.
e I J b e 1 l @ e I Jl d
The vane s19 is a rotor, and the vane 20 is a discharge port body. Also, the vane J a m'tobe 718b in the figure
A bypass introduction hole 21 is provided at a position facing the cylinder chamber 11 between the cylinder chamber 11 and the cylinder chamber 11, that is, at a position immediately before the working medium completes its expansion process.
吐出口体20の一部にはパイ/#ス導出孔22が設けら
れていて、上記バイパス導入孔21と連通路21を介し
て連通する。この連通路z1の中途部に拡逆止弁24が
設けられ、これらでバイパス回路2jを構成する。A pi/#x outlet hole 22 is provided in a part of the discharge port body 20, and communicates with the bypass introduction hole 21 via a communication path 21. An expansion check valve 24 is provided in the middle of this communication path z1, and these constitute a bypass circuit 2j.
しかして、各ベーン181ないしladの相互間に導び
かれる作動媒体は順次膨強してロータ1#に回動力を与
え、吐出口体20から吐出される。いま第3図に示すよ
うに凝縮器1の圧力がPoからP′へ上昇すると、ベー
ンJ a 1に’とべ一71#b′との間の圧力が凝縮
圧力P′より一低くなりてしまう、しかしこの圧力差の
影響を受けて逆止弁24は開放状態となる0作動媒体は
図中一点鎖線矢印に示すように、吐出口体20からバイ
パス回路2Jを介してベーン18a/とベーン18b′
との間である、作動媒体が膨張過程を完了する直前の部
位へ導びかれる。し九が゛りて第3図で示す0− Co
間の膨張過程が省略され、ロータ19の出力はA −1
−0−D’で囲む面積で表わされることになシ、過膨張
損失はない・凝゛縮圧力がP′からさらに上昇すれば、
交点0の位置も上昇するので回転力は減少し、逆に凝縮
圧力がP′から低下すれば回転力は大となる。As a result, the working medium guided between the vanes 181 to lad is sequentially expanded, applies rotational force to the rotor 1#, and is discharged from the discharge port body 20. Now, as shown in Fig. 3, when the pressure in the condenser 1 rises from Po to P', the pressure between the vane J a 1 and the vane 71#b becomes one lower than the condensing pressure P'. However, under the influence of this pressure difference, the check valve 24 becomes open. The working medium flows from the discharge port body 20 through the bypass circuit 2J to the vanes 18a and 18b, as shown by the dashed-dotted line arrow in the figure. ′
The working medium is directed to the site just before completing the expansion process. 0-Co as shown in Figure 3
The expansion process between is omitted, and the output of the rotor 19 is A −1
There is no overexpansion loss, as expressed by the area surrounded by -0-D'.If the condensation pressure rises further from P',
Since the position of intersection 0 also rises, the rotational force decreases, and conversely, if the condensing pressure decreases from P', the rotational force increases.
いずれにしても圧力差に応じて逆止弁24の開放量が変
動し、作動媒体が膨張過程を完了する直前の部位に導び
かれ、凝縮圧力と同一となるので過膨張損失はない。In any case, the amount of opening of the check valve 24 varies depending on the pressure difference, and the working medium is guided to a portion immediately before completing the expansion process, and the pressure becomes equal to the condensation pressure, so there is no overexpansion loss.
なお上記実施例においては膨張機1内にパイ/譬ス回路
2Jを設は九が、これに限定されるものではなく、たと
えば第5図に示すように、膨張機1&と凝縮−2とを連
通する配管Pの中途部と、膨張機11の所定部位とを連
通するパイ/4ス管2Rhおよびこのパイ/4ス管2j
aの中途部に設けた開閉弁j4mとからパイ・々ス回路
25aを構成しても良い、なおパイ・ヤス管jjaの一
端部は第4図で示すパイ/4ス導入孔21の位置と同じ
である。開閉弁JJmは凝縮圧力が所定圧力以上となり
九ときだけ開放する。この結果上記実施例と同一の作用
効果を得る。In the above embodiment, the pi/paraspice circuit 2J is provided in the expander 1, but the invention is not limited to this. For example, as shown in FIG. Pi/4 space pipe 2Rh and this pipe/4 space pipe 2j that communicate the midway part of the communicating pipe P with a predetermined portion of the expander 11
The pi/rath pipe jja may be configured with the open/close valve j4m provided in the middle part of a, and one end of the pi/rath pipe jja is located at the position of the pi/fourth inlet hole 21 shown in FIG. It's the same. The on-off valve JJm opens only when the condensing pressure exceeds a predetermined pressure. As a result, the same effect as in the above embodiment is obtained.
さらにまた本発明の要旨を変えない範囲内で種々羨形実
施可能なこと勿論である。Furthermore, it goes without saying that various modifications can be made without departing from the gist of the present invention.
以上説明したように本発明によれd1膨張機における作
動媒体が膨張完了する直前位置と凝縮器の導入側部位と
を連通し、凝縮圧力が所定圧力よシも高いときに開放す
るdイ/ヤス回、路を設けたから、互いの圧力が同一と
なって逆方向の回転力の発生がない、したがって過膨張
損失をなくして運転効率の向上化を得ることができると
いう効果を奏する。As explained above, according to the present invention, the position immediately before the expansion of the working medium in the d1 expander is communicated with the introduction side part of the condenser, and the d/yarn is opened when the condensing pressure is higher than a predetermined pressure. Since the circuits and paths are provided, the mutual pressures are the same, and there is no generation of rotational force in opposite directions.Therefore, there is an effect that overexpansion loss can be eliminated and operational efficiency can be improved.
第1図はランキンサイクル構成図、tK2図は本発明の
従来例を示す膨張機要部の縦断面図、第3図はランキン
サイクル装置における媒体変化を表したp−v特性図、
第4図は本発明の一実施例を示す膨張機要部の縦断面図
、第5図は本発明の他の実施例を示すランキンサイクル
構成図である。
1−・・膨張機、2−・凝縮器、3・・・循環ポンプ、
4・・・蒸気発生器、j l # I i a ・−バ
イ4ス回路。
出願人代理人 弁理士 鈴 江 武 彦 1111
第4図
第5図Fig. 1 is a Rankine cycle configuration diagram, tK2 is a longitudinal sectional view of the main parts of an expander showing a conventional example of the present invention, Fig. 3 is a p-v characteristic diagram showing medium changes in a Rankine cycle device,
FIG. 4 is a vertical cross-sectional view of the main parts of an expander showing one embodiment of the present invention, and FIG. 5 is a configuration diagram of a Rankine cycle showing another embodiment of the present invention. 1--expander, 2--condenser, 3--circulation pump,
4...Steam generator, j l # I i a ·-bis 4th circuit. Applicant's agent Patent attorney Takehiko Suzue 1111 Figure 4 Figure 5
Claims (1)
発生器の順に繰返えして循環するものにおいて、上記膨
張機における作動媒体が膨張完了する直前位置と凝縮器
の作動媒体導入側部位とを連通するパイノ譬ス回路を設
け、上記凝縮圧力が所定圧力よシも高いときに上記パイ
/#ス回路を開放することを特徴とするランキンサイク
ル装置・In a device in which a working medium is repeatedly circulated in the order of an expander, a condenser, a circulation chamber, and a steam generator, the position immediately before the expansion of the working medium in the expander is completed and the working medium introduction side of the condenser. A Rankine cycle device, characterized in that a pi/spring circuit is provided which communicates with the parts, and the pi/#s circuit is opened when the condensation pressure is higher than a predetermined pressure.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14721281A JPS5848706A (en) | 1981-09-18 | 1981-09-18 | Rankine cycle device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14721281A JPS5848706A (en) | 1981-09-18 | 1981-09-18 | Rankine cycle device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS5848706A true JPS5848706A (en) | 1983-03-22 |
Family
ID=15425099
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP14721281A Pending JPS5848706A (en) | 1981-09-18 | 1981-09-18 | Rankine cycle device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5848706A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0447104A (en) * | 1990-06-13 | 1992-02-17 | Aisin Seiki Co Ltd | Vapor motor |
| JPH09500526A (en) * | 1993-06-14 | 1997-01-21 | ベーアーエスエフ アクツィエンゲゼルシャフト | Tight regulation of eukaryotic gene expression by the tetracycline-responsive promoter |
| US6513482B1 (en) | 1999-03-05 | 2003-02-04 | Honda Giken Kogyo Kabushiki Kaisha | Rotary fluid machinery, vane fluid machinery, and waste heat recovery device of internal combustion engine |
| WO2004053298A1 (en) * | 2002-12-11 | 2004-06-24 | Daikin Industries,Ltd. | Volume expander and fluid machine |
| WO2006013959A1 (en) * | 2004-08-05 | 2006-02-09 | Daikin Industries, Ltd. | Displacement type expansion machine and fluid machine |
| US7000394B2 (en) | 2000-09-05 | 2006-02-21 | Honda Giken Kogyo Kabushiki Kaisha | Rankine cycle device |
| US8172558B2 (en) * | 2006-10-11 | 2012-05-08 | Panasonic Corporation | Rotary expander with discharge and introduction passages for working fluid |
-
1981
- 1981-09-18 JP JP14721281A patent/JPS5848706A/en active Pending
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0447104A (en) * | 1990-06-13 | 1992-02-17 | Aisin Seiki Co Ltd | Vapor motor |
| JPH09500526A (en) * | 1993-06-14 | 1997-01-21 | ベーアーエスエフ アクツィエンゲゼルシャフト | Tight regulation of eukaryotic gene expression by the tetracycline-responsive promoter |
| US6513482B1 (en) | 1999-03-05 | 2003-02-04 | Honda Giken Kogyo Kabushiki Kaisha | Rotary fluid machinery, vane fluid machinery, and waste heat recovery device of internal combustion engine |
| US6668786B2 (en) | 1999-03-05 | 2003-12-30 | Honda Giken Kogyo Kabushiki Kaisha | Rotary type fluid machine, vane type fluid machine, and waste heat recovering device for internal combustion engine |
| US6675765B2 (en) | 1999-03-05 | 2004-01-13 | Honda Giken Kogyo Kabushiki Kaisha | Rotary type fluid machine, vane type fluid machine, and waste heat recovering device for internal combustion engine |
| US6681738B2 (en) | 1999-03-05 | 2004-01-27 | Honda Giken Kogyo Kabushiki Kaisha | Rotary type fluid machine, vane type fluid machine, and waste heat recovering device for internal combustion engine |
| US7000394B2 (en) | 2000-09-05 | 2006-02-21 | Honda Giken Kogyo Kabushiki Kaisha | Rankine cycle device |
| WO2004053298A1 (en) * | 2002-12-11 | 2004-06-24 | Daikin Industries,Ltd. | Volume expander and fluid machine |
| CN100348837C (en) * | 2002-12-11 | 2007-11-14 | 大金工业株式会社 | Volume expander and fluid machine |
| US7419369B2 (en) | 2002-12-11 | 2008-09-02 | Daikin Industries, Ltd. | Displacement type expansion machine and fluid machine |
| EP1577490A4 (en) * | 2002-12-11 | 2011-01-19 | Daikin Ind Ltd | VOLUME EXPANSION AND FLUID MACHINE |
| WO2006013959A1 (en) * | 2004-08-05 | 2006-02-09 | Daikin Industries, Ltd. | Displacement type expansion machine and fluid machine |
| JP2006046222A (en) * | 2004-08-05 | 2006-02-16 | Daikin Ind Ltd | Positive displacement expander and fluid machinery |
| US7607319B2 (en) | 2004-08-05 | 2009-10-27 | Daikin Industries, Ltd. | Positive displacement expander and fluid machinery |
| US8172558B2 (en) * | 2006-10-11 | 2012-05-08 | Panasonic Corporation | Rotary expander with discharge and introduction passages for working fluid |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5345755A (en) | Steam turbine plant | |
| EP0168494A1 (en) | Utilization of thermal energy. | |
| JPS5848706A (en) | Rankine cycle device | |
| US6125623A (en) | Heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle | |
| US3095704A (en) | Pressure exchanger apparatus | |
| JP2007535643A (en) | Power generation method and apparatus using turbine | |
| AU2005213593B2 (en) | Method and means for controlling a flow through an expander | |
| US9574446B2 (en) | Expander for recovery of thermal energy from a fluid | |
| SE8205196L (en) | ENGINE | |
| JP4399686B2 (en) | Partially regenerative two-fluid gas turbine with reduced pressure loss | |
| US4178766A (en) | Thermodynamic compressor method | |
| JP3276276B2 (en) | Gas turbine cooling system | |
| RU2044149C1 (en) | Method of operation of combined external combustion engine and external combustion engine | |
| Liu et al. | Endoreversible Meletis-Georgiou cycle | |
| JPS63167001A (en) | Reaction turbine | |
| US724907A (en) | Rotary expansion-engine. | |
| JPS6325343Y2 (en) | ||
| JPH02252901A (en) | Lubricating device for screw expander | |
| US207639A (en) | Improvement in reciprocating engines | |
| US722083A (en) | Steam-engine. | |
| US4107945A (en) | Thermodynamic compressor | |
| USRE5128E (en) | Improvement in steam-engines | |
| JP2536168B2 (en) | Air conditioner | |
| JPS6051622B2 (en) | Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle | |
| US782045A (en) | Engine. |