JPS5856524B2 - Ethylene polymerization method - Google Patents
Ethylene polymerization methodInfo
- Publication number
- JPS5856524B2 JPS5856524B2 JP54108201A JP10820179A JPS5856524B2 JP S5856524 B2 JPS5856524 B2 JP S5856524B2 JP 54108201 A JP54108201 A JP 54108201A JP 10820179 A JP10820179 A JP 10820179A JP S5856524 B2 JPS5856524 B2 JP S5856524B2
- Authority
- JP
- Japan
- Prior art keywords
- polymerization
- polymer
- molecular weight
- stage
- polymerization vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Polymerisation Methods In General (AREA)
Description
【発明の詳細な説明】
本発明は、それぞれが広い分子量分布を有し、かつ物性
のすぐれた分子量の異なる2種類以上の製品を、高い生
産性で2つ以上の重合器から同時に製造するエチレンの
重合方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is an ethylene polymer that simultaneously produces two or more products with different molecular weights each having a wide molecular weight distribution and excellent physical properties from two or more polymerization vessels with high productivity. The present invention relates to a polymerization method.
分子量分布の広いポリエチレンポリマーを高い生産性で
製造することは、経済性の点から非常に有用なことであ
るが、通常の重合では十分高い生産性を得ることが難し
く、一つの方法として2段重合方法が試みられてきた。Producing polyethylene polymers with a wide molecular weight distribution with high productivity is very useful from an economic point of view, but it is difficult to obtain sufficiently high productivity with normal polymerization, and one method is a two-stage polymerization method. Polymerization methods have been tried.
この方法により製造されたポリマーは、一般に剛性、E
SCR性(環境応力亀裂抵抗力)の物性バランスも良好
なポリマーが得られるが、逆に1スルーの2段連続重合
では、一般的にフィルムに成型したときに表面にゲルが
表われるという難点がある。Polymers produced by this method generally have stiffness, E
Polymers with a good balance of SCR properties (environmental stress cracking resistance) can be obtained, but conversely, one-through two-stage continuous polymerization generally has the disadvantage that gel appears on the surface when molded into a film. be.
この改良方法として重合器をさらに直列に接続した多段
重合、あるいは後段重合器内容物を前段に循環する2段
循環連続重合法が試みられた。As a method for improving this, attempts have been made to perform multistage polymerization in which polymerization vessels are further connected in series, or a two-stage circulation continuous polymerization method in which the contents of the latter stage polymerization vessel are circulated to the first stage.
これらの方法に関しては、特公昭46−11349号、
特公昭48−42716号、特開昭51−47079号
、特開昭52−19788号などが公知である。Regarding these methods, see Japanese Patent Publication No. 46-11349,
Japanese Patent Publication No. 48-42716, Japanese Patent Application Publication No. 51-47079, and Japanese Patent Application Publication No. 52-19788 are known.
しかしながら、これらの2段および多段連続重合法にお
いては、各段で重合されるポリマーのそれぞれの分子量
はほとんどが通常使用される領域から外れたものであり
、最終段から得られるポリマーのみが製品として利用で
きるもので、最低2基の重合器から1種類のポリマーが
得られるのみである。However, in these two-stage and multi-stage continuous polymerization methods, most of the molecular weights of the polymers polymerized in each stage are outside the commonly used range, and only the polymer obtained from the final stage can be used as a product. Of those available, only one type of polymer can be obtained from at least two polymerization vessels.
したがって、突発トラブルその他で停止した場合は、最
終段以外の特に第1段の重合器内のポリマーはロスとな
る。Therefore, if the process is stopped due to unexpected trouble or other reasons, the polymer in the polymerization vessel other than the last stage, especially the first stage, will be lost.
さらに上述したように、従来の2段および多段重合では
、1種類のポリマーを得るのに最低2基以上の重合器が
必要であり、経済性の点からも、またある分子量のグレ
ードから異なる分子量のグレードへのグレード切換の際
に発生するスペックアウトポリマーの量も多くならざる
をえない。Furthermore, as mentioned above, in conventional two-stage and multi-stage polymerization, at least two or more polymerization vessels are required to obtain one type of polymer. The amount of spec-out polymer that is generated when switching to the above grade also increases.
したがって、もし2段および多段重合で得られるポリマ
ーか、単独重合の場合と同じように1基の重合器当り1
種類のポリマー、2基以上の重合器で2種類以上のポリ
マー(製品)が得られるようになれは、突発トラブル等
停止によるロスポリマーの除去、グレード切換の際のス
ペックアウトポリマーの減少、さらに運転の融通値があ
がることによる必要在庫量の減少などの点で極めて有用
である。Therefore, if the polymer obtained in two-stage and multi-stage polymerization is
It is possible to obtain two or more types of polymers (products) using two or more polymerizers, remove lost polymers due to sudden troubles or other shutdowns, reduce out-of-spec polymers when changing grades, and further improve operations. This is extremely useful in terms of reducing the amount of inventory required by increasing the flexibility of
本発明者らは、適当な重合条件下で多段循環連続重合を
行なうと、十分生産性が高く、分子量分布が広く、物性
的に良好で、さらにまたゲルの少ない分子量の異なる2
種類以上のポリマーを二つ以上の重合器から同時に生産
できることを見い出し、本発明をなすに到った。The present inventors have discovered that by carrying out multi-stage cyclic continuous polymerization under appropriate polymerization conditions, the productivity is sufficiently high, the molecular weight distribution is wide, the physical properties are good, and furthermore, two polymers with different molecular weights with less gelation can be produced.
We have discovered that more than one type of polymer can be produced simultaneously from two or more polymerization vessels, and have accomplished the present invention.
すなわち、本発明は、直列に接続した2基以上の重合器
内で、それぞれ異なった分子量のポリエチレンを遷移金
属化合物と有機金属化合物とからなる触媒を用いて製造
する重合方法において、(1)重合器内容物を後段の重
合器から前段の重合器へ循環させながら同時に各重合器
から分子量の異なった製品を取出し、
(ii) その際に循環させる重合内容物の流量(v
)と製品抜取量(u)の比v / uを1〜50に調節
し、(iii) さらにそれぞれの重合器で製造する
ポリエチレンの分子量の比(r)を5〜100に調節し
、また生成量の比を7:3〜3ニアに調節する。That is, the present invention provides a polymerization method for producing polyethylene of different molecular weights in two or more polymerization vessels connected in series using a catalyst consisting of a transition metal compound and an organometallic compound. While circulating the contents of the vessel from the latter polymerization vessel to the former polymerization vessel, products with different molecular weights are simultaneously taken out from each polymerization vessel, (ii) the flow rate (v) of the polymerization contents to be circulated at this time;
) and the product extraction amount (u) (v/u) is adjusted to 1 to 50, and (iii) the ratio (r) of the molecular weight of polyethylene produced in each polymerization vessel is adjusted to 5 to 100. Adjust the ratio of amounts to 7:3-3 near.
ことを特徴とするエチレンの重合法に係るものである。This invention relates to an ethylene polymerization method characterized by the following.
本発明に使用する遷移金属化合物と有機金属化合物から
なる触媒としては、本発明者らの発明になる特公昭52
−36788 、52−36790゜52−36791
.52−36792.52−50070.52−367
94.52−36795゜52−36796.52−3
6915.52−36917.53−6019、特開昭
50−21876.50−31835.50−7204
4゜50−78619.53−40696号のものが有
効であり、これらは(1)一般式
%式%
(式中、αは0または0より大きい数、p 、 q。The catalyst composed of a transition metal compound and an organometallic compound used in the present invention is
-36788, 52-36790゜52-36791
.. 52-36792.52-50070.52-367
94.52-36795゜52-36796.52-3
6915.52-36917.53-6019, JP-A-50-21876.50-31835.50-7204
4゜50-78619.53-40696 is effective, and these are (1) general formula % formula % (where α is 0 or a number larger than 0, p, q.
r、sはOまたは0より大きい数で、p 十q + r
+s=mα」−2βの関係を有し、Mは周期律表第1族
ないし第■族に属する金属元素、R1、R2は同一また
は異なった炭素原子数の炭化水素基、X。r and s are O or a number larger than 0, p 1q + r
+s=mα''-2β, M is a metal element belonging to Groups 1 to 2 of the periodic table, R1 and R2 are hydrocarbon groups having the same or different numbers of carbon atoms, and X.
Yは同一または異なった基であり、ハロゲ゛ン、OR3
,08iR’R5R6,NR7R8,SR9なる基を表
わし、R3、R4、R5、R6、R7、R8は水素原子
または炭化水素基、R9は炭化水素基を表わす)で示さ
れる有機マグネシウム化合物と、(11)少なくとも1
個のハロゲン原子を含有するチタンまたはバナジウム化
合物と、(III)AZ t By s is c e
t s n tTe、Sbのハライド化合物の(i)
〜(iii)のうち(1)と(ii)あるいは(1)と
(ii)と011)とを反応させてなる固体触媒成分[
A、l]と、有機金属化合物〔B〕からなる。Y is the same or different group, halogen, OR3
,08iR'R5R6,NR7R8,SR9, R3, R4, R5, R6, R7, R8 are hydrogen atoms or hydrocarbon groups, R9 is a hydrocarbon group); ) at least 1
a titanium or vanadium compound containing halogen atoms; and (III) AZ t By is c e
t s n tTe, Sb halide compound (i)
A solid catalyst component obtained by reacting (1) and (ii) or (1) and (ii) and 011) of ~(iii) [
A, l] and an organometallic compound [B].
有機金属化合物としては、周期律表第1〜■族の化合物
で、特に有機アルミニウム化合物および有機マグネシウ
ムを含む錯体が好ましい。The organometallic compound is preferably a compound of Groups 1 to 1 of the periodic table, and in particular a complex containing an organoaluminium compound and an organomagnesium compound.
触媒成分〔AIと有機金属化合物〔B〕酸成分反応は、
重合系内に周成分を添加し、重合条件下に重合の進行と
5もに行なわせることも可能であり、あらかじめ重合に
先立って実施してもよい。Catalyst component [AI and organometallic compound [B] acid component reaction is
It is also possible to add surrounding components to the polymerization system and allow the polymerization to proceed under the polymerization conditions, and may be carried out in advance prior to the polymerization.
また触媒成分の反応比率は、〔A〕威分1?に対し〔B
〕成分1〜3000 mmo、/−の範囲で行なうこと
が好ましい。Also, the reaction ratio of the catalyst components is [A] 1? Against [B
] It is preferable to carry out the component in a range of 1 to 3000 mmo, /-.
触媒成分〔A〕の代りに、無機のMg化合物にTi化合
物を担持したものでもよい。Instead of the catalyst component [A], a Ti compound supported on an inorganic Mg compound may be used.
重合は炭素原子数4〜10個を有する飽和炭化水素中で
行なう。The polymerization is carried out in saturated hydrocarbons having 4 to 10 carbon atoms.
■、2段目共に重合温度110℃以下、好ましくは60
〜90℃の範囲で行なう。(2) The polymerization temperature for both the second stage is 110°C or less, preferably 60°C.
It is carried out in the range of ~90°C.
1段目重合は圧力1〜30kg/ff1G、好ましくは
5〜20kg/iGの範囲で低分子量を重合する。In the first stage polymerization, a low molecular weight polymer is polymerized at a pressure of 1 to 30 kg/ff1G, preferably 5 to 20 kg/iG.
2段目重合は圧力1〜3oh/crita、好ましくは
1〜20ky/ff1Gの範囲で高分子量を重合する。In the second stage polymerization, a high molecular weight is polymerized under a pressure of 1 to 3 oh/crita, preferably 1 to 20 ky/ff1G.
1段目で生成するポリマーの分子量は1ooo〜500
00、好ましくは5000〜30000である。The molecular weight of the polymer produced in the first stage is 1ooo~500
00, preferably 5,000 to 30,000.
分子量がこの範囲以上に高くなると分子量分布が十分に
広くならず、また、この範囲以下に低くなると分子量調
節剤としての水素の重合器中での濃度が高くなり、触媒
活性が低下する。If the molecular weight is higher than this range, the molecular weight distribution will not be sufficiently wide, and if it is lower than this range, the concentration of hydrogen as a molecular weight regulator in the polymerization vessel will be high, resulting in a decrease in catalytic activity.
さらに、いわゆるワックスが増加し重合コントロールが
不調になり、エチレンロスも多くなる。Furthermore, so-called wax increases, polymerization control becomes poor, and ethylene loss increases.
72段目と1段目の分子量の比(r)は5〜100、好
ましくは10〜60の範囲である。The ratio (r) of the molecular weights of the 72nd stage and the first stage is in the range of 5 to 100, preferably 10 to 60.
次に本発明の代表的なフローの一つを示す図面を参照し
ながら説明を加える。Next, a description will be given with reference to a drawing showing one of the typical flows of the present invention.
1段目の重合器1にライン2よりエチレン、水素、ヘキ
サン、触媒等を供給し、低分子量のポリマーを重合する
。Ethylene, hydrogen, hexane, a catalyst, etc. are supplied to the first-stage polymerization vessel 1 through line 2, and a low molecular weight polymer is polymerized.
重合した低分子量ポリエチレンを含むスラリーはフラッ
シュドラム3に導かれ、未反応のエチレン、水素が除か
れる。The slurry containing polymerized low molecular weight polyethylene is led to a flash drum 3, where unreacted ethylene and hydrogen are removed.
除去されたエチレン、水素はコンプレッサー4により昇
圧され重合器1に戻される。The removed ethylene and hydrogen are pressurized by a compressor 4 and returned to the polymerization vessel 1.
−力、ポリマースラリーはポンプ5により一部製品とし
てライン6より抜き出され、一部2段目の重合器7に導
入される。- A portion of the polymer slurry is extracted as a product from a line 6 by a pump 5, and a portion is introduced into a second stage polymerization vessel 7.
重合器7ではライン8より、エチレン、ヘキサン、触媒
成分等が供給され、高分子量のポリエチレンが重合され
る。In the polymerization vessel 7, ethylene, hexane, catalyst components, etc. are supplied from a line 8, and high molecular weight polyethylene is polymerized.
重合器7内のポリマースラリーは、ポンプ9−により一
部製品としてライン10より抜き出され、一部は1段目
の重合器1σこ循環される。A portion of the polymer slurry in the polymerization vessel 7 is extracted from a line 10 as a product by a pump 9-, and a portion is circulated through the first-stage polymerization vessel 1σ.
このフローにより連続的に重合が行なわれ、分子量の異
なる製品が同時に得られる。Due to this flow, polymerization is carried out continuously, and products with different molecular weights are obtained at the same time.
1段目の生成量(W’+ ky/ Hr )と2段目の
生成量(W2 ky/Hr )の割合は、7:3〜3ニ
アの範囲、好ましくは6:4〜4:6の範囲で重合する
のがよい。The ratio of the first stage production amount (W'+ ky/Hr) to the second stage production amount (W2 ky/Hr) is in the range of 7:3 to 3 near, preferably 6:4 to 4:6. It is best to polymerize within a range.
1段目から2段目へのポリマー抜き取り速度(V1kg
/Hr)と2段目から1段目への循環速度(V2kg/
Hr)は異なってもよいが、通常同一速度(vkg/H
r)で実施する。Polymer removal speed from the 1st stage to the 2nd stage (V1kg
/Hr) and the circulation speed from the second stage to the first stage (V2kg/
Hr) may be different, but usually the same speed (vkg/H
r).
一方、それぞれの重合器からの製品としての抜き出し速
度も、要求される分子量のポリマーの必要に応じて異な
ってもよい。On the other hand, the rate of withdrawal of the product from each polymerization vessel may also be different depending on the need for a polymer of a required molecular weight.
仮に今、同一速度(ukg/Hr)で実施するとすれば
、(た\′し、当然のことなから2u=wl十w2であ
る。If we were to carry out the work at the same speed (ukg/hr), then, of course, 2u = wl + w2.
)循環速度(v)と製品抜き取り速度Uの比(v/u)
は1〜501好ましくは2〜50である。) Ratio of circulation speed (v) to product withdrawal speed U (v/u)
is 1-501, preferably 2-50.
(v/u)の値が50を超えて大きくなると、各段で製
造されるポリマーかはゾ同一のものとなり、前述した利
点がなくなる。If the value of (v/u) becomes larger than 50, the polymers produced in each stage will be the same, and the above-mentioned advantages will disappear.
さらに循環量が非常に大きくなり、設備的にもエネルギ
ー的(運転コスト)にも得策ではない。Furthermore, the amount of circulation becomes extremely large, which is not a good idea in terms of equipment or energy (operating costs).
この循環速度(v)と製品抜き取り速度(u)の比(v
/u)、2段目と1段目で重合されるポリマーの分子量
の比(r)、および1段目と2段目の生成量の比によっ
て、1段目と2段目から得られる製品ポリマーの分子量
、その他の物性の大半はコントロールされる。The ratio (v) of this circulation speed (v) to the product withdrawal speed (u)
/u), the ratio of the molecular weights of the polymers polymerized in the second stage and the first stage (r), and the ratio of the amounts produced in the first stage and the second stage, depending on the product obtained from the first stage and the second stage. Most of the molecular weight and other physical properties of the polymer are controlled.
すなわち、1段目と2段目の分子量の比(r)が小さい
場合は、(v/u)が大きくなると1.2段目共にほと
んど同一の分子量のものとなり、また(r)が非常に小
さい場合(く3)は、分子量分布の広がりが不十分なも
のとなる。In other words, when the ratio (r) of the molecular weights of the first and second stages is small, when (v/u) increases, both the first and second stages have almost the same molecular weight, and (r) is very If it is small (3), the molecular weight distribution will not be sufficiently broadened.
(r)が大きい場合には、(v/u)の値が1以上でな
ければ1段目から得られるポリマーは、通常使用される
分子量以下で使用できないことがあり、逆に(v/u)
の値が50を超えて大きくなると、1段目と2段目から
得られるポリマーの分子量はほぼ同一となる。When (r) is large, unless the value of (v/u) is 1 or more, the polymer obtained from the first stage may not be usable because the molecular weight is below the commonly used molecular weight; )
When the value of is larger than 50, the molecular weights of the polymers obtained from the first and second stages become almost the same.
したがって、(V/U)の値によって1段目から得られ
るポリマーの分子量の比は自由に変えられる。Therefore, the molecular weight ratio of the polymer obtained from the first stage can be freely changed depending on the value of (V/U).
さらに1段目と2段目で重合される低分子量ポリマー、
高分子量ポリマーの生成速度の比によっても、各段から
得られるポリマーの分子量が異なり、その他の物性にも
影響を与える。Furthermore, low molecular weight polymers polymerized in the first and second stages,
The molecular weight of the polymer obtained from each stage also differs depending on the ratio of production rates of high molecular weight polymers, which also affects other physical properties.
すなわち、一般に低分子量ポリマーの生成速度が大きい
ほど高分子量ポリマーの生成速度が大きい場合に比較し
、各重合器でのポリマーの分子量を合わせようとすると
、物性の面(たとえばフィルムゲルなと)からも(V/
U)の値を大きくとる必要がある。In other words, in general, the faster the production rate of a low molecular weight polymer, the faster the production rate of a high molecular weight polymer.If you try to match the molecular weight of the polymer in each polymerization vessel, it will be difficult to match the molecular weight of the polymer in terms of physical properties (for example, in the case of a film gel). Also (V/
It is necessary to take a large value for U).
これらの要因の適当な範囲が前述の範囲である。Appropriate ranges for these factors are the aforementioned ranges.
以上のことかられかるように、この点が本発明の最大の
ポイントであり、これらの要因をコントロールすること
により、それぞれの重合器から同時に広い範囲で分子量
の異なったポリマーを得ることができる。As can be seen from the above, this point is the most important point of the present invention, and by controlling these factors, it is possible to simultaneously obtain polymers with different molecular weights in a wide range from each polymerization vessel.
これらはたとえば中空成m (Blow)用途用ポリマ
ーと高分子量フィルム用途用ポリマー、あるいは射出成
型(Injection)用途用ポリマーなどである。These include, for example, polymers for blow molding applications, polymers for high molecular weight film applications, or polymers for injection molding applications.
本発明の重合は、エチレン単独重合の他、プロピレン、
ブテン、ヘキセン、オクテン等のオレフィンを0.5〜
20モル係の範囲で共重合させることにより、それぞれ
特徴のある物性のものが得られる。In addition to ethylene homopolymerization, the polymerization of the present invention includes propylene,
Olefins such as butene, hexene, octene etc. from 0.5 to
By copolymerizing within the range of 20 molar ratios, products with characteristic physical properties can be obtained.
このように2基以上の重合器から同時に分子量の異なっ
た2種類以上のポリマーが生産できることは、グレード
切換えロスの減少、必要在庫量の減少に大きな効果があ
る。The ability to simultaneously produce two or more types of polymers with different molecular weights from two or more polymerization vessels has a great effect on reducing grade changeover losses and reducing the amount of inventory required.
すなわち、通常ある分子量のグレードから異なるグレー
ドへ運転を切換える場合、切換え中途段階で両方のグレ
ードに属さない(分子量の異なる、その細密度など物性
の異なる)ポリマーがかなり製造されるが、それらはス
ペックアウトポリマーとして通常処理される。In other words, when switching from one molecular weight grade to another, a large number of polymers that do not belong to either grade (with different molecular weights, different physical properties such as fine density) are produced during the transition stage, but these polymers do not meet the specifications. Usually processed as an outpolymer.
本発明法によれば同時に2種類以上のグレードが生産で
きるので、単純に考えても切換えロスは半分以下になり
、実際には2種類以上のグレードが同時に生産できるの
で融通性がきS、生産計画−運転グレードのサイクルに
余裕ができ、切換えロスの減少はさらに大きくなる。According to the method of the present invention, two or more grades can be produced at the same time, so even if you think about it simply, the changeover loss will be less than half, and in reality, two or more grades can be produced at the same time, which increases flexibility and production planning. - There will be more margin in the operating grade cycle, and the reduction in switching loss will be even greater.
本発明の特徴は、以上の記載および後述の実施例からも
わかるように、多段循環連続重合法により非常に高い生
産性を有し、十分に広い分子量分布をもち、環境応力亀
裂抵抗力(ESCR)〜剛性のバランスなど物性的に良
好で、かつフィルム物性でもゲルの少ない良好な品質を
もつ分子量の異なる2種類以上のポリマーが二つ以上の
重合器から同時に生産されることにある。As can be seen from the above description and the examples below, the characteristics of the present invention are that it has extremely high productivity through the multistage cyclic continuous polymerization method, has a sufficiently wide molecular weight distribution, and has an environmental stress cracking resistance (ESCR). ) - Two or more types of polymers with different molecular weights having good physical properties such as rigidity balance and good film properties such as less gelation can be simultaneously produced from two or more polymerization vessels.
それによりグレード切換えロスの減少、必要在庫量の減
少に大きな効果があるものである。This has a significant effect on reducing grade changeover losses and reducing required inventory.
以下実施例を挙げて本発明をさらに詳細に説明するが、
本発明は、これらの実施例によって何ら制限されるもの
ではない。The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited in any way by these Examples.
本実施例、比較例において示す記号、測定条件を説明す
る。The symbols and measurement conditions shown in the present example and comparative example will be explained.
MI :メルトインデックスを表わし、ASTM D
−1238により温度190℃、荷重2.16に9の条
件下で測定した値。MI: Melt index, ASTM D
-1238, measured at a temperature of 190°C and a load of 2.16 to 9.
MIR:MI測定条件において荷重21.6kgで測定
した値をMIで除した商を意味し、分子量分布の一つの
尺度であり、この値が大きいほど分子量分布が広いこと
を示す。MIR: Means the quotient obtained by dividing the value measured under MI measurement conditions with a load of 21.6 kg by MI, and is one measure of molecular weight distribution, and the larger the value, the wider the molecular weight distribution.
FR:MI測定条件において荷重5kgで測定した値(
これをMMIという)で、荷重21.6kgで測定した
値を除した商を意味し、MIR同様分子量分布の一つの
尺度であり、この値が大きいほど分子量分布が広いこと
を示す。FR: Value measured under MI measurement conditions with a load of 5 kg (
This is called MMI), which means the quotient obtained by dividing the value measured at a load of 21.6 kg, and like MIR, it is a measure of molecular weight distribution, and the larger the value, the wider the molecular weight distribution.
密度: ASTM D−1505により測定した真密
度。Density: True density measured by ASTM D-1505.
ESCR:耐環境応力亀裂抵抗力を表わし、測定法は5
00cc瓶(重量42?、肉厚0.8 in )にノニ
オン系界面活性剤を内容積の10多充填し、60℃のオ
ーブンに10ケ入れ、一定の内圧を加え試験瓶の50%
が破壊するまでの時間。ESCR: Represents environmental stress cracking resistance, and the measurement method is 5.
Fill 00cc bottles (weight 42?, wall thickness 0.8 inches) with 10 times the internal volume of nonionic surfactant, place them in an oven at 60°C, and apply a constant internal pressure until 50% of the test bottle is filled.
time until destruction.
ボトル成形条件:成形品形状500CC丸瓶(JISZ
−1703)、使用機械50mφ、中空成型機、シリン
ダ一温度160℃、金型温度、表面温度40℃。Bottle molding conditions: Molded product shape 500CC round bottle (JISZ
-1703), machine used: 50 mφ, hollow molding machine, cylinder temperature 160°C, mold temperature, surface temperature 40°C.
フィルムゲル:通常のインフレーションフィルム成膜機
(50mrtwfi )で厚さ40μのフィルムをひき
、目視により判定した。Film gel: A film with a thickness of 40 μm was drawn using an ordinary blown film forming machine (50 mrtwfi), and visually judged.
Izod衝撃強度:ASTM D−256にしたがっ
て測定した。Izod impact strength: Measured according to ASTM D-256.
実施例 1
(a) 触媒合成
ジ−n−ブチルマグネシウム1381とトリエチルアル
ミニウム19Pとをn−へブタン2tとともに容量4t
の攪拌槽に送入し、80℃で2時間反応させることによ
り、組成
AtMg6 (C2H5) 3 (n c4I(9)
l 、、 の有機アルミニウムーマグネシウム錯体
を合成した。Example 1 (a) Catalyst synthesis Di-n-butylmagnesium 1381 and triethylaluminum 19P with 2t of n-hebutane in a volume of 4t
The composition AtMg6 (C2H5) 3 (n c4I(9)
An organoaluminium-magnesium complex of 1, , , was synthesized.
この錯体400mmot(54P)を含むn−ヘプタン
溶液800I711と四塩化チタン400mmo7を含
有するn−へブタン溶液800m1を乾燥窒素置換によ
って水分と酸素を除去した後、−20℃で攪拌下4時間
反応させた。An n-heptane solution 800I711 containing 400 mmot (54P) of this complex and 800 ml of an n-hebutane solution containing 400 mmo7 titanium tetrachloride were replaced with dry nitrogen to remove moisture and oxygen, and then reacted at -20°C with stirring for 4 hours. Ta.
生成した炭化水素不溶性固体を単離し、n−へブタンで
洗浄し106?の固体を得た。The resulting hydrocarbon-insoluble solid was isolated and washed with n-hebutane. A solid was obtained.
このようにして得られた固体をn−へキサンで稀釈し、
重合に使用した。The solid thus obtained was diluted with n-hexane,
used for polymerization.
(b)重合
内容積300tの重合器1に上記の固体触媒を1.3m
mot(Ti原子基準)/Hrの速度で、20mmo7
(金属原子基準)/Hrの速度でトリエチルアルミニウ
ムを、40t/Hrの速度で精製ヘキサンを供給し、ま
たエチレンを7NM3/Hr、水素を0.25 NM3
/ Hrの速度で供給し、重合温度85℃、全圧15に
9/cIrLGの条件下で重合を行なう。(b) 1.3 m of the above solid catalyst is placed in the polymerization vessel 1 with an internal polymerization volume of 300 t.
At a rate of mot (Ti atom standard)/Hr, 20 mmo7
Triethylaluminum was supplied at a rate of (based on metal atoms)/Hr, purified hexane was supplied at a rate of 40t/Hr, and ethylene was supplied at a rate of 7NM3/Hr and hydrogen at a rate of 0.25NM3.
/Hr, and polymerization is carried out under the conditions of a polymerization temperature of 85° C. and a total pressure of 15 to 9/cIrLG.
この重合で生成したポリマースラリー内容液を圧力2
kg/criLG、温度75℃のフラッシュドラムに導
き、未反応のエチレン、水素を分離した後、重合機7に
導入する。The content of the polymer slurry produced by this polymerization was
kg/criLG, is introduced into a flash drum at a temperature of 75° C., and after separating unreacted ethylene and hydrogen, is introduced into the polymerizer 7.
また、一方でフラッシュドラムから製品としてポリマー
を抜き出す。On the other hand, polymer is extracted as a product from the flash drum.
フラッシュドラムから重合器7に導入する速度と製品と
して抜き出す速度の比は5:1である。The ratio of the speed at which the polymer is introduced into the polymerization vessel 7 from the flash drum and the speed at which it is withdrawn as a product is 5:1.
重合器7は内容積250tで、トリエチルアルミニウム
を7.5 mmo7/ Hr (金属原子基準)の速度
で、精製ヘキサンを30t/Hrの速度で供給し、エチ
レンを7NM3/Hrの速度で導入し、温度80℃、圧
力8kg/crrtGの条件下で連続重合を行なう。The polymerization vessel 7 had an internal volume of 250 t, triethylaluminum was supplied at a rate of 7.5 mmo/Hr (based on metal atoms), purified hexane was supplied at a rate of 30 t/Hr, and ethylene was introduced at a rate of 7NM/Hr. Continuous polymerization is carried out under the conditions of a temperature of 80° C. and a pressure of 8 kg/crrtG.
重合器γ内のポリマースラリー内容物を重合器1にポン
プで昇圧し循環すると共に、重合器7より製品としてポ
リマーを抜き出す。The contents of the polymer slurry in the polymerization vessel γ are pressurized and circulated to the polymerization vessel 1 by a pump, and at the same time, the polymer is extracted from the polymerization vessel 7 as a product.
重合器1に循環する速度と製品として抜き出す速度の比
は6:1である。The ratio of the rate of circulation to the polymerization vessel 1 and the rate of withdrawal as a product is 6:1.
なお、それぞれの重合器での重合速度の比は1:1であ
る。Note that the ratio of polymerization rates in each polymerization vessel was 1:1.
このように2基の重合器の内容物を循環させながら重合
させ、重合器1よりMIo、25、重合器7よりMMI
o、35のポリマーが得られた。In this way, polymerization is carried out while circulating the contents of the two polymerization vessels, and MIo and 25 are obtained from polymerization vessel 1, and MMI is obtained from polymerization vessel 7.
o.35 polymer was obtained.
分子量分布の尺度と考えられるMIRおよびFRは、重
合器1より得られたポリマーのMIRが85、重合器7
より得られたポリマーのFRが32であった。MIR and FR, which are considered to be measures of molecular weight distribution, are as follows: MIR of the polymer obtained from polymerization vessel 1 is 85;
The FR of the polymer obtained was 32.
重合器1よりのポリマーは、中空成型グレードとして良
好な物性を有し、重合器7よりのポリマーは高分子量フ
ィルムグレードとしてゲルの〆
少ない良好なものであった。The polymer from polymerization vessel 1 had good physical properties as a hollow molding grade, and the polymer from polymerization vessel 7 had good properties as a high molecular weight film grade with little gelation.
その他の物性では、重合器1より得られた中空成型用途
の密度が0、966 L?/cni1ボトルESCFt
が10Hrであった。Regarding other physical properties, the density obtained from polymerization vessel 1 for use in hollow molding is 0.966 L? /cni1 bottle ESCFt
was 10 hours.
実施例 2
実施例1で使用した固体触媒を1.0 mmo、4/H
rの速度で、水素を0.20 NM3/ Hrの速度で
、実施例1と同条件で重合器1で重合を行ない、重合器
γでは圧力を12kg/crtt Gで水素を0.02
NM3/Hrの速度で供給し、その他は実施例1と同
条件で実施例1と同様の重合を行なった。Example 2 The solid catalyst used in Example 1 was 1.0 mmo, 4/H
Polymerization was carried out in the polymerization vessel 1 under the same conditions as in Example 1, at a rate of 0.20 NM3/Hr, and in the polymerization vessel γ, the pressure was 12 kg/crtt G and 0.02 NM3/Hr.
Polymerization was carried out in the same manner as in Example 1, except that the polymer was supplied at a rate of NM3/Hr, and the other conditions were the same as in Example 1.
ただし、循環速度と製品抜き取り速度の比は8:lであ
る。However, the ratio of circulation speed to product withdrawal speed is 8:l.
それぞれの重合器から得られたポリマーはMIo、55
(重合器1)およびMIo、20(重合器7)であった
。The polymer obtained from each polymerization vessel was MIo, 55
(Polymerizer 1) and MIo, 20 (Polymerizer 7).
MIRはそれぞれ80.95であった。重合器1よりの
ポリマーはフィルムゲルがなく、フィルム、テープグレ
ードとして良好であり、重合器7よりのポリマーは中空
成型グレードとして良好な物性を有した。The MIR was 80.95 for each. The polymer from polymerizer 1 had no film gel and was good as a film or tape grade, and the polymer from polymerizer 7 had good physical properties as a hollow molding grade.
重合器7より得られた中空成型用途ポリマーの密度は0
.95 ?/crt1.、ボトルESCRは30Hrで
あった。The density of the polymer for hollow molding obtained from the polymerization vessel 7 is 0.
.. 95? /crt1. , bottle ESCR was 30 Hr.
比較例 1
実施例1,2で使用した触媒を用いて単独重合を行ない
、実施例1の重合器1より得られたポリマーと同じ分子
量をもつMIo、25のポリマーを得たが、実施例1の
ポリマーのMIR85に対しMIR38で分子量分布が
狭く、中空成型の際に発熱量が大きく、ボトル底型に不
適であった。Comparative Example 1 Homopolymerization was carried out using the catalyst used in Examples 1 and 2 to obtain a polymer with an MIo of 25 and the same molecular weight as the polymer obtained from polymerization vessel 1 in Example 1. The molecular weight distribution was narrow with an MIR of 38 compared to the MIR of 85 for the polymer, and the amount of heat generated during hollow molding was large, making it unsuitable for bottle bottom molding.
成製品はボトル表面にメルトフラクチャーが見られ、商
品価値のないものである。The finished product has melt fractures on the bottle surface and has no commercial value.
比較例 2
実施例1,2で使用した触媒を用いて単独重合を行ない
、実施例1の重合器γより得られたポリマーとほぼ同じ
分子量をもつMMIo、28のポリマーを得たが、実施
例1のポリマーのFR32に対しFRI 5と分子量分
布が狭く、フィルム成膜の際に押出量かでず成膜不能で
あった。Comparative Example 2 Homopolymerization was carried out using the catalyst used in Examples 1 and 2 to obtain a polymer with an MMIo of 28 having almost the same molecular weight as the polymer obtained from the polymerization vessel γ of Example 1. The molecular weight distribution was narrow with FRI 5 compared to FR32 of Polymer No. 1, and it was impossible to form a film due to the extrusion amount during film formation.
比較例 3
実施例1で循環速度と製品抜き出し速度の比(v/u)
を0.5で実施し、それぞれの重合器からポリマーを抜
き出すと、重合器1からはMI44のポリマーが得られ
、重合器7からはMMIo、35のポリマーが得られた
。Comparative Example 3 Ratio of circulation speed and product withdrawal speed (v/u) in Example 1
was carried out at 0.5, and the polymers were extracted from each polymerization vessel. Polymerization vessel 1 yielded a polymer with an MI of 44, and polymerization vessel 7 yielded a polymer with an MMI of 35.
重合器1からのポリマーは、中空成型グレード、フィル
ムグレードとしては分子量が低く、また分子量分布も狭
く不適であり、射出成型グレードとしては若干分子量が
高すぎて、Izod衝撃強度は1.8 kg −cm
7cmと弱い。The polymer from polymerizer 1 had a low molecular weight and a narrow molecular weight distribution that was inappropriate for hollow molding grade and film grade, and the molecular weight was slightly too high for injection molding grade, and the Izod impact strength was 1.8 kg - cm
It is weak at 7cm.
一方、重合器7からのポリマーのFRは35と分子量分
布は申し分ないものであったが、フィルムに成膜したと
きにフィルム表面にゲルが生じた。On the other hand, although the FR of the polymer from polymerization vessel 7 was 35 and the molecular weight distribution was satisfactory, gel was formed on the film surface when it was formed into a film.
比較例 4
実施例2で(v/u)をlOOで実施し、それぞれの重
合器からポリマーを抜き出すと、重合器1からはMI=
0.21のポリマーが得られ、重合器7からはMI=0
.20のポリマーが得られた。Comparative Example 4 In Example 2, when (v/u) was carried out at lOO and the polymer was extracted from each polymerization vessel, MI=
A polymer of 0.21 was obtained, and MI=0 from the polymerizer 7.
.. Twenty polymers were obtained.
それぞれのポリマーのMIRは85,82、密度はとも
に0.953 、 ESCRは31 Hr 、 33H
rと両方とも物性的に良好であるが、1,2段目共にほ
ぼ同一のポリマーである。The MIR of each polymer is 85 and 82, the density is both 0.953, and the ESCR is 31 Hr and 33H.
Both the polymers and r have good physical properties, but both the first and second stages are made of almost the same polymer.
図面は本発明の実施態様を示すフローシートである。 The drawings are flow sheets illustrating embodiments of the invention.
Claims (1)
なった分子量のポリエチレンを遷移金属化合物と有機金
属化合物とからなる触媒を用いて製造する重合方法にお
いて、 (i) 重合器内容物を後段の重合器から前段の重合
器へ循環させながら同時に各重合器から分子量の異なっ
た製品を取出し、 (11)その際に循環させる重合内容物の流量(v)と
製品抜取1(u)の比v / uを1〜50に調節し、
(iiD さらにそれぞれの重合器で製造するポリエ
チレンの分子量の比(r)を5〜100に調節し、また
生成量の比を7:3〜3ニアに調節することを特徴とす
るエチレンの重合法。 2 直列に接続した重合器が2基である特許請求の範囲
第1項記載のエチレンの重合法。 3 v/uの値が2以上である特許請求の範囲第1項
または第2項記載のエチレンの重合法。[Scope of Claims] 1. A polymerization method for producing polyethylene of different molecular weights in two or more polymerization vessels connected in series using a catalyst consisting of a transition metal compound and an organometallic compound, comprising: (i) While circulating the contents of the polymerization vessel from the latter polymerization vessel to the former polymerization vessel, products with different molecular weights are taken out from each polymerization vessel at the same time. (11) Flow rate (v) of the polymerization contents to be circulated and product extraction Adjust the ratio v/u of 1(u) to 1-50,
(iiD) An ethylene polymerization method characterized by further adjusting the molecular weight ratio (r) of polyethylene produced in each polymerization vessel to 5 to 100, and adjusting the production amount ratio to 7:3 to 3. 2. The ethylene polymerization method according to claim 1, in which there are two polymerization vessels connected in series. 3. The method according to claim 1 or 2, in which the value of v/u is 2 or more. Polymerization method of ethylene.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP54108201A JPS5856524B2 (en) | 1979-08-27 | 1979-08-27 | Ethylene polymerization method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP54108201A JPS5856524B2 (en) | 1979-08-27 | 1979-08-27 | Ethylene polymerization method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5632508A JPS5632508A (en) | 1981-04-02 |
| JPS5856524B2 true JPS5856524B2 (en) | 1983-12-15 |
Family
ID=14478575
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP54108201A Expired JPS5856524B2 (en) | 1979-08-27 | 1979-08-27 | Ethylene polymerization method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5856524B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0636386Y2 (en) * | 1987-02-10 | 1994-09-21 | 住友特殊金属株式会社 | Temperature compatible pressure control valve |
| BE1013235A4 (en) * | 2000-01-18 | 2001-11-06 | Solvay | Method of composition olefin polymers. |
-
1979
- 1979-08-27 JP JP54108201A patent/JPS5856524B2/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5632508A (en) | 1981-04-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1138148A (en) | Polyethylene composition and process for producing the same | |
| KR940008983B1 (en) | Process for the preparation of polyethylene | |
| JP2557054B2 (en) | Alpha-olefin polymerization catalyst composition | |
| JP2716615B2 (en) | Method for producing ethylene polymer composition | |
| US4245062A (en) | Process for producing propylene-ethylene copolymers | |
| JPS6310647A (en) | polyolefin composition | |
| JPS6261057B2 (en) | ||
| JPH08504883A (en) | Method for producing polyethylene showing a broad molecular weight distribution | |
| JPH02305811A (en) | Production of ethylene polymer composition | |
| JPS59204605A (en) | Method for polymerizing ethylene | |
| US4334041A (en) | Two-phase ethylene-propylene block copolymerization process | |
| JPS5856524B2 (en) | Ethylene polymerization method | |
| JPH0368890B2 (en) | ||
| EP0435515A1 (en) | Process for the gas phase (co-)polymerization of ethylene | |
| JPH05339319A (en) | Polyethylene manufacturing method | |
| EP0525608A2 (en) | Process for producing olefin polymer | |
| US4284739A (en) | Block copolymerization process | |
| JPS6150087B2 (en) | ||
| JPH07116251B2 (en) | Method for producing modified polyethylene | |
| US5756587A (en) | Propylene polymers and process for the production thereof | |
| JPS6026051A (en) | Polyethylene composition | |
| US3960987A (en) | Process for producing high melt flow poly-olefin polymers | |
| EA017729B1 (en) | Catalyst component comprising three bridged bis-indenyl metallocene components | |
| JP2712307B2 (en) | Method for producing polyethylene | |
| JPS6225105A (en) | Continuous polymerization of olefin |