JPS5857744A - Diode with high dielectric strength - Google Patents
Diode with high dielectric strengthInfo
- Publication number
- JPS5857744A JPS5857744A JP15663681A JP15663681A JPS5857744A JP S5857744 A JPS5857744 A JP S5857744A JP 15663681 A JP15663681 A JP 15663681A JP 15663681 A JP15663681 A JP 15663681A JP S5857744 A JPS5857744 A JP S5857744A
- Authority
- JP
- Japan
- Prior art keywords
- diode
- chip
- fluctuation
- neutron
- dielectric strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はPH1合を有する半導体チップをはんだあるい
はアル?=ウムなどのろう材を用いて積層させてなる高
耐圧ダイオードに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a semiconductor chip having a pH of 1 by solder or aluminum. This invention relates to a high voltage diode formed by laminating layers using a brazing material such as aluminum.
このような高耐圧ダイオードの半導体としては耐熱性の
高いシリコンが用いられ、高抵抗シリコ“ン基板にPN
接合を形成したのち、ろう材をはさんで所定の数積層し
、賽の目状に切断して高耐圧ダイオードを得る。用いら
れたシリコン基板の比抵抗、ベース巾6チツプ面積、逆
回復時間および表面処理などによって決められる。そし
て素子全体としての逆耐圧は、ある一定逆漏れ電流値で
の各チップでの耐圧の和となる。従って各ダイオ−・ト
チツブのアバランシ電圧のばらつきがあると、各チップ
毎の電圧分担にばらつきが生ずる。特に高温になると逆
漏れ電流が増大し、逆方向特性がソフトになってくるた
め、各々のチップの電圧分担はさらにくずれ、耐圧が高
く逆漏れ電流の小さなチップはさらに分担が大きくなっ
て発生損失が゛増大する。積層型ダイオードでは個々の
チップが隣接しているため、あるチップが熱暴走をおこ
すと周囲のチップtで影響を及ぼし、連鎖反応的に熱暴
走を起こすことが知られている。それ故、積層型高耐圧
ダイオードでは個々のチップでの逆耐圧をそろえる事が
極めて重要な線層である。Highly heat-resistant silicon is used as the semiconductor for such high-voltage diodes, and PN is formed on a high-resistance silicon substrate.
After forming a bond, a predetermined number of layers are stacked with brazing filler metals in between and cut into dice shapes to obtain a high voltage diode. It is determined by the resistivity of the silicon substrate used, base width 6 chip area, reverse recovery time, surface treatment, etc. The reverse breakdown voltage of the element as a whole is the sum of the breakdown voltages of each chip at a certain constant reverse leakage current value. Therefore, if there are variations in the avalanche voltage of each diode, there will be variations in the voltage sharing for each chip. Particularly at high temperatures, the reverse leakage current increases and the reverse characteristics become softer, so the voltage sharing of each chip further collapses, and chips with high withstand voltage and low reverse leakage current have an even larger share, resulting in higher losses. increases. In a stacked diode, individual chips are adjacent to each other, so it is known that when one chip causes thermal runaway, it affects the surrounding chips t, causing thermal runaway in a chain reaction. Therefore, in a stacked high-voltage diode, it is extremely important to make the reverse breakdown voltages of the individual chips the same in the line layer.
しかるに従来の高比抵抗シリコン単結晶力1らiそり
ワ
畔出された基板は、比抵抗が均一でなく、1枚の板の中
で最大±7チ、板と板の間となると量大±25%のばら
つきがあり、このような基板を用いて積層して作られる
高耐圧ダイオードの各チップ間の逆耐圧および逆漏れ電
流をそろえることは極めて困離であった。However, the conventional high resistivity silicon single crystal force 1
The resistivity of the exposed substrates is not uniform, with variations of up to ±7 inches within a single plate and large variations of ±25% between the plates. It has been extremely difficult to match the reverse breakdown voltage and reverse leakage current between each chip of a high-voltage diode manufactured using the same method.
本発明は、このような問題点を解決して、各ダイオード
チップの特性がそろっており、信頼性の高い積層蓋高耐
圧ダイオードを提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a highly reliable laminated lid high voltage diode in which the characteristics of each diode chip are uniform.
この目的はダイオードチップをろう材を用いて積層して
なる高耐圧ダイオードにおいて、各ダイオードチップを
中性子照射シリコン基板を用いて作成することによって
達成される。This object is achieved by forming each diode chip using a neutron irradiated silicon substrate in a high voltage diode formed by laminating diode chips using a brazing material.
シリコンに中性子を照射し、シリコンの同位元素である
3081 を核反応によりSipに変換して、シリコ
ンの比抵抗を制御する方法が知られている。A known method is to control the resistivity of silicon by irradiating silicon with neutrons and converting 3081, an isotope of silicon, into Sip through a nuclear reaction.
このような中性子照射シリコンは比抵抗のばらつきが少
なく、1枚のシリコン板面内においては±5−以下、シ
リコン板間でも±10%以下のばらつきに押えることが
可能である。この中性子照射シリコン板の板肉の比抵抗
の均一性は大電流用の、すなわち大面積のダイオードに
生かされ、その特性の向上に役立っている。本発明はこ
の中性子照射シリコンの板肉ばかりでなく、各板間に2
いても比抵抗のばらつきの少ないことを利用したもので
ある。Such neutron-irradiated silicon has little variation in specific resistance, and it is possible to suppress the variation to ±5% or less within the surface of one silicon plate, and to ±10% or less even between silicon plates. The uniformity of the specific resistance of this neutron-irradiated silicon plate is utilized in large-current, ie, large-area, diodes, and helps improve their characteristics. The present invention is designed not only for this neutron-irradiated silicon plate but also for the
This takes advantage of the fact that there is little variation in resistivity even when
このような中性子照射シリコン基板を用いた積層型高圧
ダイオードにおいては、用いられたシリコン基板の比抵
抗のばらつきが少ないことに基づき、各ダイオードチッ
プの逆耐圧右よび逆漏れ電流のばらつきは従来のシリコ
ン単結晶を用いた場合に比して半分以下となり、素子全
体の特性の均一性および熱的安定性が著しく向上した。In such a multilayer high voltage diode using a neutron irradiated silicon substrate, based on the small variation in resistivity of the silicon substrate used, the variation in reverse breakdown voltage and reverse leakage current of each diode chip is smaller than that of conventional silicon. This was less than half that of the case using a single crystal, and the uniformity of characteristics and thermal stability of the entire device were significantly improved.
従って本発明に基づく高圧ダイオードはテレビのブラウ
ン管用高圧整流体、自動車のデス)IJピユータレス用
高圧ダイオードのはか一般電源用高圧ダイオードとして
極めて有効に使用できる。Therefore, the high voltage diode according to the present invention can be very effectively used as a high voltage regulating fluid for cathode ray tubes in televisions, high voltage diodes for IJ computerless devices in automobiles, and high voltage diodes for general power supplies.
Claims (1)
ダイオードチップが中性子照射シリコン基板を用いて作
成されたことを特徴とする高耐圧ダイオード。1) A high voltage diode comprising stacked diode chips, each diode chip being made using a neutron irradiated silicon substrate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15663681A JPS5857744A (en) | 1981-10-01 | 1981-10-01 | Diode with high dielectric strength |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15663681A JPS5857744A (en) | 1981-10-01 | 1981-10-01 | Diode with high dielectric strength |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS5857744A true JPS5857744A (en) | 1983-04-06 |
Family
ID=15631995
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP15663681A Pending JPS5857744A (en) | 1981-10-01 | 1981-10-01 | Diode with high dielectric strength |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5857744A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8178266B2 (en) | 2008-06-27 | 2012-05-15 | Ricoh Company, Ltd. | Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor |
-
1981
- 1981-10-01 JP JP15663681A patent/JPS5857744A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8178266B2 (en) | 2008-06-27 | 2012-05-15 | Ricoh Company, Ltd. | Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8866152B2 (en) | Betavoltaic apparatus and method | |
| JPH01258476A (en) | High breakdown voltage semiconductor device and manufacture thereof | |
| GB1100697A (en) | Alternator semiconductor diode and rectifying circuit assembly | |
| US5223442A (en) | Method of making a semiconductor device of a high withstand voltage | |
| JPS5857744A (en) | Diode with high dielectric strength | |
| US3116443A (en) | Semiconductor device | |
| CN107706229A (en) | Transient Voltage Suppressor and its manufacture method | |
| US3327183A (en) | Controlled rectifier having asymmetric conductivity gradients | |
| JPS58206174A (en) | Mesa type semiconductor device and manufacture thereof | |
| US3227896A (en) | Power switching field effect transistor | |
| JPH01259570A (en) | Semiconductor device and its manufacturing method | |
| JPS5817678A (en) | Manufacturing method of semiconductor device | |
| DE69031935T2 (en) | Pressure contact semiconductor device and method of manufacturing the same | |
| CN207165571U (en) | Transient voltage suppressor | |
| US20010045624A1 (en) | High-voltage silicon diode | |
| JPS6235660A (en) | Laminated high voltage semiconductor rectifying element | |
| JPS5846167B2 (en) | Manufacturing method of semiconductor device | |
| JPS6220688B2 (en) | ||
| Nishizawa et al. | Minority carrier lifetime extraction methodology based on parallel pn diodes with a field plate | |
| Bhave et al. | Improvement in switching characteristics of silicon diodes through a selective zone of defects produced by 6 MeV electrons | |
| RU2474926C1 (en) | Method to control voltage of power semiconductor instrument switching | |
| DE102011015283A1 (en) | Production of a semiconductor device by laser-assisted bonding | |
| JPS60198733A (en) | Method for manufacturing high-speed semiconductor devices | |
| CN101931002A (en) | Reverse blocking diode thyristor | |
| JPH04111358A (en) | Overvoltage self-protected thyristor |