JPS5866330A - Position correction method for electron beam drawing system - Google Patents
Position correction method for electron beam drawing systemInfo
- Publication number
- JPS5866330A JPS5866330A JP56165133A JP16513381A JPS5866330A JP S5866330 A JPS5866330 A JP S5866330A JP 56165133 A JP56165133 A JP 56165133A JP 16513381 A JP16513381 A JP 16513381A JP S5866330 A JPS5866330 A JP S5866330A
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- substrate
- mark
- variation
- drawn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 230000003287 optical effect Effects 0.000 claims abstract description 19
- 238000001514 detection method Methods 0.000 claims description 15
- 238000000609 electron-beam lithography Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000005192 partition Methods 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000001259 photo etching Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/304—Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
- H01J37/3045—Object or beam position registration
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は電子ビーム描画に関し、その目的は、第1に被
描画基板を支持する可動ステージの位置を計測するため
に該ステージに取りつけられたレーザー測長系用反射鏡
構体部にマークを設け、また上記被描画基板にもマーク
を設け、これら二つのマークの位置を任意のはシ一定時
間々隔毎に電子ビームにより検出しレーザー測長系によ
り計測した位置変動を、制御システムにフィードバック
して補正することにより描画パターンの位置精度を向上
させる方法全提供するものである。更に第一 2に電
子ビーム光学鏡筒最下端付近の位置変動を別のレーザー
測長系により計測して、前記二つのマーク位置から計測
された位置変動の値に補正を加えることによジ描画パタ
ーンの位置精度全画期的に向上させる方法をも提供する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electron beam lithography, and its first purpose is to provide a reflector for a laser length measurement system attached to a movable stage that supports a substrate to be lithographically mounted. Marks are provided on the structure, and marks are also provided on the substrate to be drawn, and the positions of these two marks are detected at arbitrary intervals with an electron beam, and the positional fluctuations measured by a laser length measurement system are detected. The present invention provides a method for improving the positional accuracy of a drawn pattern by feeding back and correcting it to a control system. Furthermore, in the first and second steps, the positional fluctuation near the bottom end of the electron beam optical lens barrel is measured by another laser length measurement system, and the positional fluctuation values measured from the two mark positions are corrected. It also provides a method for dramatically improving the positional accuracy of patterns.
以下本発明の方法を図面を用いて説明する。The method of the present invention will be explained below with reference to the drawings.
第1図は本発明に用いる電子ビーム描画装置の主要部分
全概念的に示す側断面図である。1は電子光学鏡筒外壁
、2は描画室上壁、3は描画室ベースグレート、4はフ
ィラメントとウェネルトからなる電子銃、5は電子光学
系に対するビームの透過・遮断を制御するブランキング
電極、6はコン7 / f L/ 7 X’、 7
ハM少投影レンズ、8,9は筒1oに支えられた偏向電
極、11は後方散乱電子検出器で、筒1oに支えられて
いる。12はたとえば半導体基板あるいは半導体用のフ
ォトマスクとなる基板等の被描画基板、13は基板全保
持する金属製カセットで、金属製可動ステージ14に保
持されている。ステージ14はモーター15、送りネジ
16によって勤かされ、その移動量は2波長レーザー光
束17と干渉計18、反射鏡1951、− ・
等よフなる周知の測長系にて計測される。別のレーザー
干渉計21と、笥1oに固定された反射鏡22によって
、電子光学系の機械的光軸の位置変動が検出される。FIG. 1 is a side sectional view conceptually showing all the main parts of an electron beam lithography apparatus used in the present invention. 1 is the outer wall of the electron optical lens barrel, 2 is the upper wall of the drawing chamber, 3 is the drawing chamber base grate, 4 is an electron gun consisting of a filament and Wehnelt, 5 is a blanking electrode that controls the transmission and blocking of the beam to the electron optical system, 6 is con 7 / f L / 7 X', 7
C M small projection lens, 8 and 9 are deflection electrodes supported by the tube 1o, and 11 is a backscattered electron detector, which is supported by the tube 1o. Reference numeral 12 denotes a substrate to be drawn, such as a semiconductor substrate or a substrate serving as a photomask for a semiconductor, and 13 a metal cassette for holding all the substrates, which is held on a metal movable stage 14. The stage 14 is driven by a motor 15 and a feed screw 16, and the amount of movement thereof is measured by a well-known length measurement system such as a two-wavelength laser beam 17, an interferometer 18, a reflecting mirror 1951, etc. A change in the position of the mechanical optical axis of the electron optical system is detected by another laser interferometer 21 and a reflecting mirror 22 fixed to the cabinet 1o.
第2図は、位置測定系を概念的に説明する平面図で、1
次元増えた分たけレーザー光束23,25、レーザー干
渉計24.28が第1図よりは追加されている。つまフ
、第1図示の電子ビーム描画系は2次元の位置移動を測
定し得るものである。電子ビーム描画システムでは以上
に述べた電子光学系主要部分とステージ移動、およびそ
の測長系がすべてコンピュータシステムによって制御さ
れ、予め用意されたパターンデーターの通りにステージ
移動と電子ビームのブランキング・偏向を組合せて描画
するものである。Figure 2 is a plan view conceptually explaining the position measurement system.
Laser beams 23, 25 and laser interferometers 24, 28, which have an increased dimension, are added compared to FIG. 1. The electron beam lithography system shown in FIG. 1 is capable of measuring two-dimensional positional movement. In the electron beam writing system, the main parts of the electron optical system, stage movement, and its length measurement system mentioned above are all controlled by a computer system, and the stage movement and electron beam blanking/deflection are performed according to pattern data prepared in advance. It is used to draw by combining.
然し実際の装置においては、第1図に示す主要部分の温
度変化による機械的位置変動、電子光学系の電気的変化
によるビーム光軸の位置変動を伴うのが普通である。本
発明はこれら゛の変動の検出およびその変動に伴なう誤
差の補正について新規61.1、
の方法を提供するものである。However, in an actual device, there are usually mechanical positional changes due to temperature changes in the main parts shown in FIG. 1, and positional changes of the beam optical axis due to electrical changes in the electron optical system. The present invention provides a novel method for detecting these fluctuations and correcting errors associated with the fluctuations.
第2図で1jはレーザービーム反射鏡190反射面とは
ゾ90度をなす面に形成された電子ビーム検出用マーク
であり、B1は被描画基板12の表面に形成された電子
ビーム検出用マークである。In FIG. 2, 1j is an electron beam detection mark formed on a surface that makes an angle of 90 degrees with the reflecting surface of the laser beam reflecting mirror 190, and B1 is an electron beam detection mark formed on the surface of the substrate 12 to be drawn. It is.
0点は電子ビーム光学系の光軸(偏向電極電圧が2次元
方向に対して共に零のとき)が上記被描画基板12の面
と交差する位置である。即ち、ム1゜B1 の位置は、
それらのマークをステージの移動操作によって、Cの付
近に移動させたためのレーザー光束のドプラーシフトの
積分値と、更扛電子ビームで走査したときにマークの検
出された偏向電圧の位置換算値の和(または差)として
計測される。The zero point is the position where the optical axis of the electron beam optical system (when the deflection electrode voltages are zero in both two-dimensional directions) intersects the surface of the substrate 12 to be imaged. That is, the position of M1°B1 is
The sum of the integral value of the Doppler shift of the laser beam when those marks are moved near C by the stage movement operation, and the position displacement value of the deflection voltage detected when the mark is scanned by the changing electron beam. (or difference).
このように計測される値の成る一定の時間々隅肉の変動
要因素として、ムラマークについては、同マークが反射
鏡の反射面に対して変動する量δ1と、電子光学系の光
軸の位置の機械的原因に基づく変動量δ。および電気的
原因に基づく変動量εがある。B1マークについては、
上記電子光学系の光の反射面に対して変動する量δ2か
らなっている。Regarding the irregularity mark, the fluctuation factor δ1 of the mark with respect to the reflecting surface of the reflecting mirror and the position of the optical axis of the electron optical system are factors contributing to the fluctuation of the fillet over time, which is the value measured in this way. The amount of variation δ due to mechanical causes. and a variation amount ε based on electrical causes. Regarding B1 mark,
It consists of an amount δ2 that varies with respect to the light reflecting surface of the electron optical system.
また、上記マークA1と81の間隔については、従って
、δ1とB2との両変動量が相互に関与する。Further, regarding the distance between the marks A1 and 81, therefore, both the fluctuation amounts of δ1 and B2 are related to each other.
これらの変動量を測定して描画パターン位置を補正しよ
うとするときの蜀題は、各測定において上記変動要因中
−の各変動量を分離でき々いことと一つの測定の中に含
まれる複数の変動量が殆んど独立した要因に支配されて
いることにある。従ってより高精度の補正を行うために
は、測定の時間間隔を極端に短くすることも、ひとつの
方策であるが、これは描画装置の生産能力の低下を斉ら
すので実用上は不適当であり、あまり意味がない。The problem when attempting to correct the drawing pattern position by measuring these fluctuation amounts is that it is difficult to separate each fluctuation amount among the above fluctuation factors in each measurement, and that multiple fluctuations included in one measurement are difficult to separate. The reason is that the amount of variation in is controlled by almost independent factors. Therefore, in order to perform higher-precision correction, one measure is to extremely shorten the measurement time interval, but this is not practical as it would reduce the production capacity of the drawing equipment. , and it doesn't make much sense.
本発明は、上述の各変動要因が出来るたけ小さくなるよ
うに関連諸条件を抑え、描画装置の生産能力を実際上殆
んど低下させずに高精度の補正を行うようにするもので
ある。The present invention suppresses related conditions so that each of the above-mentioned fluctuation factors is as small as possible, and performs highly accurate correction without practically reducing the production capacity of the drawing apparatus.
電子ビーム描画装置の器壁を厳密に(は\1/1oo℃
程度に)温度制御すれば、第1図示装置の描画室上壁2
とベースグレート3の相対的伸通常の描画操作期間、す
なわち、10分ないし30分程度以下の期間に生ずる上
記マークム1の変動量δCは0.1μm程度に抑え得る
ことが期待できる。また、この程度の期間内であれば、
変動量εも0.1μm程度に抑え得ることが期待できる
。The walls of the electron beam lithography equipment must be kept strictly at
If the temperature is controlled (to a certain degree), the upper wall 2 of the drawing chamber of the first illustration device
It can be expected that the variation δC of the markum 1 that occurs during a normal drawing operation period, that is, a period of about 10 to 30 minutes, can be suppressed to about 0.1 μm. Also, within this period,
It can be expected that the amount of variation ε can also be suppressed to about 0.1 μm.
金属製ステージの移動運動に伴うステージ14の温度要
因による変動、金属製カセット13の温度要因による変
動は描画室外から制御することは殆んど不可能であり、
またカセット13がステージ14に保持される支点はカ
セットを交換する毎に変動するものとみなければならな
い。従って上記マークB1の変動量δ2は、普通には、
0.1μm程度以上になりうるものである。反射鏡構体
部に付したマークム1の位置の変動量δ、についてみる
と、反射鏡は、普通硬質ガラスを主要材質として作られ
るので、この変動量δ1 は無視しうるほどに微小であ
る。It is almost impossible to control fluctuations due to temperature factors of the stage 14 due to the movement of the metal stage and fluctuations due to temperature factors of the metal cassette 13 from outside the drawing room.
Furthermore, it must be assumed that the fulcrum at which the cassette 13 is held on the stage 14 changes each time the cassette is replaced. Therefore, the variation amount δ2 of the mark B1 is normally
It can be about 0.1 μm or more. Regarding the amount of variation δ in the position of markum 1 attached to the reflecting mirror structure, the amount of variation δ1 is so small that it can be ignored since the reflecting mirror is usually made of hard glass.
以上を要約すると、本発明ではレーザー測長系の反射鏡
構体部に電子ビーム検出用マークム1f!:付し、被描
画基板上のマークB1七上記ム1の間隔省測定し、ム1
に対する基板位置i10分ないし30分程度以内のは
X゛一定の時間々隔で補正するので、電子ビーム描画装
置の外壁温度を前記の如くにがなり厳密に制御すること
により、描画位置に対する変動は、電子光学系の変動量
(δC十ε)に支配されるのみとなる。したがって、本
発明の方法によると、0.2μI11以下のパターン位
置精度が得られる。To summarize the above, in the present invention, the electron beam detection Markum 1f! :Attach mark B1 on the substrate to be drawn, and measure the distance between M1 above M1.
The substrate position relative to i within about 10 to 30 minutes is corrected at fixed time intervals, so by strictly controlling the temperature of the outer wall of the electron beam lithography system as described above, fluctuations in the lithography position can be reduced. , it is only controlled by the amount of variation (δC+ε) of the electron optical system. Therefore, according to the method of the present invention, a pattern position accuracy of 0.2 μI11 or less can be obtained.
これに対して、従来実施されているように、電子ビーム
検出用ワイヤ番マーク付のファラデイカツブを、たとえ
ば、第2図中のステージ13の上の位置の付近に設置し
て、Dの位置の検出・補正のみによって描画パターン位
置を補正する方法で社、上記ステージ13上の位置りと
反射鏡の反射面との間隔について10分ないし30分間
の時間間隔での変動は0.1μm以上の無視しえない量
となり、また上記ステージ上の位置りに対する基板12
の位置の変動は91μm以上の無視しえない量となるの
で、かかる方法でのパターン位置精度10、。On the other hand, as conventionally practiced, a Faraday tube with a wire number mark for electron beam detection is installed near the position above the stage 13 in FIG. 2, for example, to detect the position D.・With a method of correcting the position of the drawn pattern only by correction, it is possible to ignore fluctuations of 0.1 μm or more in the interval between the position on the stage 13 and the reflecting surface of the reflecting mirror over a time interval of 10 to 30 minutes. Also, the amount of substrate 12 relative to the position on the stage is
Since the variation in position is a non-negligible amount of 91 μm or more, the pattern position accuracy in this method is 10.
は、0.2μmをこえるものとなっていた、したがって
、精度を向上させるには、たとえば、測定時間々隔の短
縮、器壁温度制御対策、ステージ温度の安定化対策、別
の面からの厳しい対策が必要となる。was over 0.2 μm. Therefore, in order to improve accuracy, it is necessary to shorten the measurement time interval, take measures to control the chamber wall temperature, take measures to stabilize the stage temperature, and take strict measures from other aspects. Measures are required.
一方、別途、従来実施されているように10分ないし3
0分程度の時間々隔でマークB1の位置変動のみを検出
し補正を加える方法もあるが、これによっても、前記の
δC1ε、δ2の分離できない変動量ならびにδ1.B
2の分離できない変動量を扱っているので、上記時間の
範囲内では少くとも0.2μiaf:こえる無視しえな
い誤差を伴うことは避けられないのが実情であった。On the other hand, a separate 10-minute to 3-minute
There is also a method of detecting and correcting only the positional fluctuation of mark B1 at time intervals of about 0 minutes, but even with this method, the above-mentioned inseparable fluctuation amounts of δC1ε and δ2 as well as δ1. B
Since we are dealing with an inseparable variation amount of 2, the actual situation is that within the above time range, it is inevitable that an error exceeding at least 0.2 .mu.iaf will be involved, which cannot be ignored.
したがって、本発明の方法は、上述の従来方法に比較し
て優位性のあることが明白である。Therefore, it is clear that the method of the present invention is superior to the conventional method described above.
本発明の第2の方法は、第1図および第2図に示すよう
に、ステージ測長系の他に更に、電子ビーム鏡筒最下端
付近の位置変動を検出する測長系を設けることである。The second method of the present invention is to provide, in addition to the stage length measurement system, a length measurement system for detecting positional fluctuations near the bottom end of the electron beam column, as shown in FIGS. 1 and 2. be.
鏡筒最下端部の筒1oに付設した反射鏡22.干渉計2
1.26によってこ11、、−1
れがなされ、前記変動要素δCまたはこれに相関した量
が検出される。ム1の変動量の中で残るのは無視しうる
ほどに微小なδ1 と、通常は測定不可能なεである。A reflecting mirror 22 attached to the tube 1o at the bottom end of the lens barrel. Interferometer 2
1.26, this is done, and the variable element δC or the amount correlated thereto is detected. What remains of the amount of variation in system 1 is δ1, which is negligibly small, and ε, which is normally impossible to measure.
従って1、斯くしてはじめてεを明確に計測し、補正で
きることになる。ム1に対するB1 位置の計測と補
正は先に述べた通りである従って、本発明の第2の方法
によれば、描画装置の外壁温度の制御が0.1℃ないし
0.2℃程度に緩くしても、描画パターン位置精度は0
.1μ閣程度またはそれ以下に保つことができる。Therefore, 1. Only in this way can ε be clearly measured and corrected. The measurement and correction of the B1 position with respect to the B1 position are as described above.Therefore, according to the second method of the present invention, the outer wall temperature of the drawing device is loosely controlled to about 0.1°C to 0.2°C. However, the drawing pattern position accuracy is 0.
.. It can be kept at about 1 μm or less.
以上の説明においては計測系の量子雑音、検出用マーク
の出来・不出来などによる誤差は共通の問題として省い
た。また、被描画基板上に一定間隔で多数並べられたマ
ークを基準として描画する場合、即ち半導体結晶基板の
いわゆる直接描画の場合は本発明の適用対象外である。In the above explanation, errors due to quantum noise in the measurement system, the production/failing of detection marks, etc. have been omitted as common problems. Further, the present invention is not applicable to the case where drawing is performed based on a large number of marks arranged at regular intervals on the substrate to be drawn, that is, the case of so-called direct drawing of a semiconductor crystal substrate.
然し、このような描画法を行うための上記多数のマーク
を基板きる。However, in order to perform such a drawing method, the above-mentioned large number of marks cannot be made on the substrate.
本発明の適用にあたっては、反射鏡に付加するマークム
1 を、反射鏡の反射面と90度をなす面上に直接に形
成する代りに、別のガラス薄板上に真空蒸着とホトエツ
チングによって例えばクロムと金の二重膜の十字形また
はL字形のマーク全形成し、このマーク基板を反射鏡側
面に貼りつける。 のが最も実用的である。また、か
がるマーク基板は、シリコンのように低膨張率の板にホ
トエツチングにより1μm程度の深ての十字形またはL
字形マークを形成し、これを同様に反射鏡側面に貼りつ
け七もよい。さらに、第2図に示す如くに、これらマー
ク基板27t−ステージ14の表面の一部をおおうまで
張出し、この張出し部にマークム2を設けてもよい。こ
のようにすれば、同マークム1を検出するためのステー
ジ14の移動量が小さくてよく、これによって、レーザ
ー干渉計18と21の間隔、24と26の間隔を広くと
れるという実際の構成上の便宜がはかられる。なおマー
ク基板は電流の流出を可能とするために第2図28に示
す如くに導通aが必要であることは云うまでもないO
137,−、。In applying the present invention, instead of forming the mark 1 to be added to the reflecting mirror directly on a surface that makes a 90 degree angle with the reflecting surface of the reflecting mirror, for example, the mark 1 is formed by vacuum deposition and photoetching on another thin glass plate. A cross-shaped or L-shaped mark is entirely formed using a gold double film, and this mark substrate is attached to the side surface of the reflector. is the most practical. In addition, the darning mark substrate is made by photo-etching a plate with a low expansion coefficient such as silicon into a cross shape or L shape with a depth of about 1 μm.
You can also form a letter-shaped mark and paste it on the side of the reflector in the same way. Further, as shown in FIG. 2, the mark substrate 27t may be extended to cover a part of the surface of the stage 14, and the mark 2 may be provided on this extended portion. In this way, the amount of movement of the stage 14 for detecting the markum 1 is small, and as a result, the distance between the laser interferometers 18 and 21 and the distance between 24 and 26 can be widened. Convenience will be provided. It goes without saying that the mark substrate requires conduction a as shown in FIG. 28 in order to allow current to flow out.
第2図でレーザー測長系の一要素をなす反射鏡19は2
次元の方向に対して1個で済むようにL字形の形状にな
っているが、仁れが2個に分割されたものであってもよ
い。その際は各反射鏡にマークを付加しなければならな
い。これらム1あるいはム2に相当するマークは、何れ
の場合にも2個以上付加してもよい。その際は、2個以
上のマークの計測によって時間経過に伴う反射鏡の水平
面内の傾斜を計測し、この傾斜に伴う位置測定の誤差を
補正することもできる。これは通常2次的な補正であジ
、その量が大きいときは警戒すべきである。In Fig. 2, the reflecting mirror 19, which is an element of the laser length measurement system, is 2
Although it has an L-shape so that only one piece is required in the dimensional direction, the groove may be divided into two pieces. In that case, a mark must be added to each reflector. Two or more marks corresponding to M1 or M2 may be added in any case. In this case, it is also possible to measure the inclination of the reflecting mirror in the horizontal plane over time by measuring two or more marks, and to correct errors in position measurement due to this inclination. This is usually a secondary correction and should be taken into account when its amount is large.
被描画基板12の上のマークは、基板がクロムまたはク
ロムと酸化クロムの薄膜がガラス板上に付着されたいわ
ゆるハードマスク基板の場合には、予めホトエツチング
その他の方法によって十字形またはL字形マークを直接
にマスク基板上に設ければ、後方厳乱電子にょ今マーク
検出が可能であることは確めてあり、他の重金属膜のマ
ークを形成するまでもない。また、マークム2に関して
述14゜
べたように別のマークB2 y2設けたマーク基板小片
29を基板12に一時的に圧接しておいて、B1の代り
に使用することができる。When the substrate 12 is a so-called hard mask substrate in which a thin film of chromium or chromium and chromium oxide is deposited on a glass plate, a cross-shaped or L-shaped mark is formed in advance by photo-etching or other method. It has been confirmed that if the mask substrate is provided directly on the mask substrate, it is possible to detect the mark using backward scattered electrons, and there is no need to form another heavy metal film mark. Furthermore, as described above with respect to Markum 2, the mark substrate piece 29 provided with another mark B2 y2 can be temporarily pressed against the substrate 12 and used in place of B1.
被描画基板が半導体ウェハの場合には予めホトエツチン
グその他の方法により基板上に直接マークIhf形成し
ておけばよい。If the substrate to be drawn is a semiconductor wafer, the marks Ihf may be formed directly on the substrate in advance by photoetching or other methods.
BliたはB2’i2個以上設けることもできる。Two or more Bli or B2'i may also be provided.
さらに、それらの相対変動量を検知すれば、基板の回転
変動量をも見出すことができ、これにより、基板とカセ
ットまたはカセットとステージの間の保持の不安定を認
識することも可能である。Furthermore, by detecting these relative fluctuation amounts, the rotational fluctuation amount of the substrate can also be found, and thereby it is also possible to recognize instability in the holding between the substrate and the cassette or between the cassette and the stage.
以上に述べた電子ビーム検出用マークの水平面は電子ビ
ームの焦点深度以内で被描画基板と同一の平面内にある
ように設計すればよいが、特定のマークの面のみ上記被
描画基板面より特定の距離内でズしていても、自動的に
焦点を調整できるようにしておけば、電子ビームによる
マ〜り検出は可能である。The horizontal plane of the electron beam detection mark described above may be designed to be within the focal depth of the electron beam and within the same plane as the substrate to be drawn, but only the surface of a specific mark can be specified from the surface of the substrate to be drawn. If the focus is automatically adjusted even if the focus is shifted within a distance of
以上に述べた説明では、電子ビームの形状については触
れなかったが、スポットビーム、固定矩16、、、。In the above explanation, the shape of the electron beam was not mentioned, but the shape of the electron beam is a spot beam, a fixed rectangle 16, etc.
形ビーム、可変面積ビームの何れにおいても、ビームの
形状−寸法はシステムにおいて制御されているので、本
発明の方法の適用には何れのビーム形状においても問題
はない。Since the shape and dimensions of the beam are controlled in the system, whether it is a shaped beam or a variable area beam, there is no problem in applying the method of the present invention to either beam shape.
以上詳細に説明したように、本発明は電子ビーム描画装
置において描画位置精度の向上を斉らす新規の方法を提
供するもので、あることは明らかであり、工業的意義を
斉らすことも明らかである。As explained in detail above, the present invention provides a new method for uniformly improving the writing position accuracy in an electron beam lithography system, and it is clear that the present invention has certain industrial significance. it is obvious.
第1図は本発明の一実施例の方法に用−る電子ビーム描
画装置の主要部分を示す断面概念図、第2図は同装置の
位置測定系を示す平面概念図である。
1.2.3・・・・・・電子ビーム描画装置器壁、12
・・・・・・被描画基板、13・・・・・・金属製カセ
ット、14・・・・・・金属製ステージ、16・・・・
・・送りネジ、17゜20.23.26・・・・・・2
波長レーザー光束、18゜21.24.26・・・・・
・干渉計、19.22・・・・・・反射鏡、27.29
・・・・・・マーク用小基板、ム1.ム2゜Bl、B2
・・・・・・電子ビーム検出用マーク、0・・・・・・
電子光学系光軸位置、D・・・・−・ファラデーカップ
位置。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第
1 図
、2 図
zzIθFIG. 1 is a conceptual cross-sectional view showing the main parts of an electron beam lithography system used in a method according to an embodiment of the present invention, and FIG. 2 is a conceptual plan view showing a position measuring system of the same system. 1.2.3...Electron beam lithography device wall, 12
...Drawing substrate, 13...Metal cassette, 14...Metal stage, 16...
...Feed screw, 17゜20.23.26...2
Wavelength laser beam, 18°21.24.26...
・Interferometer, 19.22...Reflector, 27.29
・・・・・・Small board for mark, 1. M2゜Bl, B2
・・・・・・Electron beam detection mark, 0・・・・・・
Electron optical system optical axis position, D...- Faraday cup position. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure, 2 FigurezzIθ
Claims (1)
するために該ステージに取りつけられた2次元のレーザ
ー測長系用反射鏡構体部に少くとも1個の電子ビーム検
出用のマーク、上記被描画基板に少くとも1個の電子ビ
ーム検出用のマークをそれぞれ設けて、これらのマーク
位置を任意のほぼ一定の時間々隔毎に前記電子ビームに
より検出するとともに、上記レーザー測長系によって計
測した位置変動を、基板位置制御系にフィードバックし
て補正することを特徴とする電子ビーム描画系の位置補
正方法。 ?) ステージに取9つけられた2次元のレーザー測長
系用反射鏡構体部に、少くとも1個の電子ビーム検出用
マークを設けられたマーク用の低膨張率の小基板を固着
させ、該マークを用いることを特徴とする特許請求の範
囲第1項記載の2−1゜ 電子ビーム描画系の位置補正方法。 (3)少くとも1個の電子ビーム検出用マークを設けら
れたマーク用の低膨張率の小基板を被描画基板に隣接し
て一時的に該基板に固定し、該マークを用いることを特
徴とする特許請求の範囲第1項記載の電子ビーム描画系
の位置補正方法。 (42次元のレーザー測長光用反射鏡に2個の電子ビー
ム検出用のマークを設け、被描画基板に2個の電子ビー
ム検出用のマークを設け、前者によって2次元のレーザ
ー測長系の面角度の変動を補正し、後者によって被描画
基板とこれを保持するカセットの機械的安定度全監視す
ることを特徴とする特許請求の範囲第1項記載の電子ビ
ーム描画系の位置補正方法。 (6)被描画基板を支持する可動ステージの位置を計測
するための該ステージに取9つけられた第1の2次元の
レーザ測長系用反射鏡構体部に少くとも1個の電子ビー
ム検出用のマーク、上記被描画基板に少くとも1個の電
子ビーム検出用のマーク全それぞれ設けるとともに、電
子ビー3 ムの電子光学的光軸用筒部に反射鏡を付設して、該光軸
用筒部の位置を計測する第2の2次元レーザ測長系を設
け、上記各マーク位置を任意のほぼ一定の時間間隔毎に
電子ビームにより検出し、上記第1および第2のレーザ
測長系によって計測した位置変動全基板位置制御系にフ
ィードバックして補正することを特徴とする電子ビーム
描画系の位置補正方法。[Claims] (1) In order to measure the position of a movable stage that supports a substrate to be drawn, at least one electron beam is applied to a reflecting mirror structure for a two-dimensional laser length measurement system attached to the stage. a detection mark, and at least one mark for electron beam detection is provided on the substrate to be drawn, and the positions of these marks are detected by the electron beam at arbitrary approximately constant time intervals; A method for correcting the position of an electron beam writing system, characterized in that positional fluctuations measured by a laser length measurement system are corrected by being fed back to a substrate position control system. ? ) A small substrate with a low expansion coefficient for marks provided with at least one electron beam detection mark is fixed to the two-dimensional laser length measurement system reflecting mirror structure mounted on the stage. 2. A position correction method for a 2-1° electron beam drawing system according to claim 1, characterized in that a mark is used. (3) A small substrate with a low expansion coefficient for marks provided with at least one electron beam detection mark is temporarily fixed to the substrate adjacent to the substrate to be drawn, and the mark is used. A method for correcting the position of an electron beam writing system according to claim 1. (Two marks for electron beam detection are provided on the reflector for the 42-dimensional laser length measurement light, and two marks for electron beam detection are provided on the substrate to be drawn, and the former allows the detection of the two-dimensional laser length measurement system. 2. A position correction method for an electron beam lithography system according to claim 1, characterized in that variations in the surface angle are corrected, and the mechanical stability of the substrate to be drawn and the cassette holding the same is completely monitored by the latter. (6) At least one electron beam detection unit is installed in the first two-dimensional laser length measurement system reflector structure mounted on the movable stage that supports the substrate to be drawn. At least one mark for detecting the electron beam is provided on the substrate to be drawn, and a reflecting mirror is attached to the tube for the electron optical optical axis of the electron beam. A second two-dimensional laser length measurement system for measuring the position of the cylinder part is provided, and each mark position is detected by an electron beam at arbitrary approximately constant time intervals, and the first and second laser length measurement systems A position correction method for an electron beam lithography system, characterized in that position fluctuations measured by the above are corrected by feeding them back to an all-substrate position control system.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56165133A JPS5866330A (en) | 1981-10-15 | 1981-10-15 | Position correction method for electron beam drawing system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56165133A JPS5866330A (en) | 1981-10-15 | 1981-10-15 | Position correction method for electron beam drawing system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5866330A true JPS5866330A (en) | 1983-04-20 |
| JPH0336298B2 JPH0336298B2 (en) | 1991-05-31 |
Family
ID=15806522
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP56165133A Granted JPS5866330A (en) | 1981-10-15 | 1981-10-15 | Position correction method for electron beam drawing system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5866330A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60254615A (en) * | 1984-05-30 | 1985-12-16 | Toshiba Mach Co Ltd | Temperature measurement method in electron beam exposure |
| JPS62173714A (en) * | 1986-01-27 | 1987-07-30 | Toshiba Mach Co Ltd | Electron beam lithography equipment |
| JPS62217686A (en) * | 1986-03-19 | 1987-09-25 | Toshiba Mach Co Ltd | Correction for position displacement of laser mirror |
| JP2000252204A (en) * | 1999-03-03 | 2000-09-14 | Nikon Corp | Reference mark structure, manufacturing method thereof, and charged particle beam exposure apparatus using the same |
-
1981
- 1981-10-15 JP JP56165133A patent/JPS5866330A/en active Granted
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60254615A (en) * | 1984-05-30 | 1985-12-16 | Toshiba Mach Co Ltd | Temperature measurement method in electron beam exposure |
| JPS62173714A (en) * | 1986-01-27 | 1987-07-30 | Toshiba Mach Co Ltd | Electron beam lithography equipment |
| JPS62217686A (en) * | 1986-03-19 | 1987-09-25 | Toshiba Mach Co Ltd | Correction for position displacement of laser mirror |
| JP2000252204A (en) * | 1999-03-03 | 2000-09-14 | Nikon Corp | Reference mark structure, manufacturing method thereof, and charged particle beam exposure apparatus using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0336298B2 (en) | 1991-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6778260B2 (en) | Coordinate measuring stage and coordinate measuring instrument | |
| KR100471018B1 (en) | Gap adjustment apparatus and gap adjustment method for adjusting gap between two objects | |
| US5209813A (en) | Lithographic apparatus and method | |
| US20030010902A1 (en) | Optical system with a plurality of optical elements | |
| US6018395A (en) | Alignment system | |
| JPH08250394A (en) | Semiconductor circuit pattern evaluation method, evaluation system, drawing method, and drawing system | |
| JP2009069151A (en) | Means and method for determining space position of transfer element in coordinate measuring device | |
| TWI411887B (en) | Method for determining exposure settings, lithographic exposure apparatus, computer program and data carrier | |
| JP2960746B2 (en) | Beam irradiation method, electron beam drawing method, beam irradiation apparatus, and electron beam drawing apparatus | |
| JPS5866330A (en) | Position correction method for electron beam drawing system | |
| US8766215B2 (en) | Charged particle beam drawing apparatus and method of manufacturing article | |
| JP2013021215A (en) | Beam measuring device, drawing device, and method of manufacturing article | |
| US7397039B2 (en) | Real-time compensation of mechanical position error in pattern generation or imaging applications | |
| JP2014086476A (en) | Lithography device, and method of manufacturing article using the same | |
| JP3790902B2 (en) | Stage structure | |
| US5966200A (en) | Charged particle beam exposure apparatus | |
| JPH04162337A (en) | electron beam equipment | |
| JP2004311659A (en) | Charged particle beam apparatus and method for regulating the same | |
| JP3866782B2 (en) | Electron beam exposure apparatus and exposure method | |
| JPH01313705A (en) | Thickness measuring instrument | |
| JPH0613299A (en) | Electron beam writing method and writing apparatus therefor | |
| JP2536059B2 (en) | Object surface condition measuring device and surface height measuring device | |
| JP4256232B2 (en) | Charged beam drawing method and charged beam drawing apparatus | |
| JPH09199573A (en) | Positioning stage apparatus and exposure apparatus using the same | |
| US7248365B2 (en) | Method for adjusting a substrate in an appliance for carrying out exposure |