[go: up one dir, main page]

JPS5873249A - Optical transmission monitoring device - Google Patents

Optical transmission monitoring device

Info

Publication number
JPS5873249A
JPS5873249A JP56170808A JP17080881A JPS5873249A JP S5873249 A JPS5873249 A JP S5873249A JP 56170808 A JP56170808 A JP 56170808A JP 17080881 A JP17080881 A JP 17080881A JP S5873249 A JPS5873249 A JP S5873249A
Authority
JP
Japan
Prior art keywords
optical
power
signal
optical signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56170808A
Other languages
Japanese (ja)
Inventor
Eiji Toyoda
豊田 栄次
Susumu Yoshizawa
吉沢 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56170808A priority Critical patent/JPS5873249A/en
Publication of JPS5873249A publication Critical patent/JPS5873249A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To detect the transmission error due to the increased loss in the optical transmission, by providing an optical branching filter branching a part of an optical signal prior to a photoelectric converter at the reception side, a power meter detecting the power of the optical signal, and a level discriminator. CONSTITUTION:An optical signal from a transmission section 5 is transmitted to a reception section 10 via an optical fiber 11. An optical branching filter 6 such as half miror which branches the power of an incident optical signal to a prescribed ratio is provided at the pre-stage of an photoelectric converter 7 of the reception section 10 and the branched optical signal is inputted to a power meter 8. The optical signal power measured at the power meter 8 is detected at a level discriminator 9 to discriminate whether or not the incident optical signal power is a minimum reception level or over of the converter 7.

Description

【発明の詳細な説明】 1ml  技術分舒 本発明減光過信において党ファ4パ中V@送する党パワ
の減衰を費−側で常−監視する光伝送の監視1i1E4
−関するものである。
[Detailed description of the invention] 1ml Technical distribution This invention Optical transmission monitoring 1i1E4 that constantly monitors the attenuation of the transmitting power during optical transmission during overconfidence at the transmitter side 1i1E4
-It is related to

4t+1  従来技術 光7アイパを使った光通信は、その特長とする無誘尋性
、信号の絶縁性広帯域伝送性を利用して、近年多(採用
されてきている。しかし、この光通信にもいくつかの短
所があり適用仁制約がある。
4t+1 Conventional technology Optical communication using Optical 7-IPA has been widely adopted in recent years, taking advantage of its characteristics of non-interrogation, signal insulation, and wideband transmission.However, this optical communication also There are some disadvantages and restrictions on application.

ft通信の問題の一つに覚ファイバの放射−による伝送
損失の増加かある。これは、元ファイバの党の伝送部に
使用されているガラスとそのガラスl利用した伝送11
1114二よって発生する問題である。
One of the problems with ft communication is the increase in transmission loss due to radiation of optical fibers. This is the glass used in the transmission part of the original fiber and the transmission 11 that utilizes that glass.
This is a problem caused by 11142.

第11に光7アイパの伝送aI橘を示す。第1図4:お
いて、 yt、V伝送する中心部のコアlには石英ガラ
スとG・やPが化学的4=結合され石英ガラスのみの屈
折率よりも高い屈折1!−を持つガラスが用いられ、コ
アlの回りに石英ガラスのクラッド2vもうけ屈折率の
異るコアとクラッドの境界面で光を全反射させてコア内
部C:光tとじ込め、これによって光の伝送を行なって
いる・このようにt7アイパは屈折率の異るコアとクラ
ッドの間の全反射を利用した伝送機構な持つており、こ
の屈折率11vっけるために石英ガラスとG・やPil
l”化学的に結合する展進方法か用いられている。
11th shows the transmission aI Tachibana of Hikari 7 AIPA. Figure 1 4: In the central core l that transmits yt, V, quartz glass and G/P are chemically combined with 4 = refraction 1 which is higher than the refractive index of silica glass alone. A cladding of quartz glass 2v is used around the core l, and the light is totally reflected at the interface between the core and the cladding, which have different refractive indexes, and the light is trapped inside the core.・In this way, the T7 Eyepa has a transmission mechanism that utilizes total internal reflection between the core and cladding, which have different refractive indexes, and in order to achieve this refractive index of 11V, it is
1'' chemical bonding expansion method is used.

この屈折率!をつけるためのGe中1vドーパントと呼
んでいるが、ドーパシトを含む石英ガラスに高エネルギ
の款射−vJII射すると、ドーバン)t−核としてカ
ラーセンタと呼ばれる党の吸収部が発生する0党7アイ
パ中のコアを伝送する元信号はこのカラーセンタで吸収
され、伝送損失の増加をもたらす。
This refractive index! It is called a 1V dopant in Ge to attach a dopant, but when a high-energy irradiation is applied to a quartz glass containing a dopant, an absorbing part called a color center is generated as a dopant nucleus. The original signal transmitted through the core in the AIPA is absorbed at this color center, resulting in an increase in transmission loss.

この状態の一例を第2gに示す、カラーセンタによる伝
送損失の増加は光ファイバに照射した放射線量に関係あ
り放射−量の増加とともに伝送損失も増加する。また放
射−照射111Wf7アイパの伝送損失は低下して行く
が、照射前の損失まで兜食に復令するまでは、かなりの
時間がかかる。従って光7アイパを放射−の照射のある
所で使用すると、伝送損失は、照射中、照射後にかかわ
らず増加する。
An example of this state is shown in 2g. The increase in transmission loss due to the color center is related to the amount of radiation irradiated to the optical fiber, and as the amount of radiation increases, the transmission loss also increases. Although the transmission loss of the irradiation-irradiation 111Wf7 AIPA is decreasing, it takes a considerable amount of time until the loss returns to the level before irradiation. Therefore, when the Hikari 7 Eyeper is used in a place where radiation is irradiated, transmission loss increases both during and after irradiation.

一方1党ファイバ中に光信号を入力する*itが電気−
尤度換器(以後I10と呼ぶ)である。
On the other hand, the optical signal is input into the first fiber.
This is a likelihood converter (hereinafter referred to as I10).

このIloは電気信号v′yt、信号に変換して元ファ
イバ中に光信号l入射するfiillであり、変換素子
としては通常レーザダイオード(以後LDと呼ぶ)や発
光ダイオード(以後LDIと呼ぶ)か使われる・I、D
4’LI)lが光ファイバ仁入射する入射光パワは通常
数鳳Wかう0.01mW程度であり、変換素子の性能と
光ファイバの種類によってきまる。
This Ilo is an electric signal v'yt, which is converted into a signal and is input into the original fiber as an optical signal l.The conversion element is usually a laser diode (hereinafter referred to as LD) or a light emitting diode (hereinafter referred to as LDI). Used・I, D
The power of the incident light incident on the optical fiber is usually a few watts or about 0.01 mW, and is determined by the performance of the conversion element and the type of optical fiber.

党ファイバから出力した元信号を受信し、電気信号に変
換するのが、元−電気変換器(以後0/lと呼ぶ)であ
る、 O/lとしては、アバランンエフオトダイオード
(以後APOと呼ぶ〕やフォトダイオード(以後I’D
と呼ぶ)が使われている。o/mの重要な性能の一つに
最低受信レベルがあり、これはディジタル信号の場合一
定の符号誤り率以下で元信号のパルスが、#0−か・1
−v判別可能な最低の元信号パワレベルであるO アナログ信号では信号電力対雑音電力比(以下81M比
と呼ぶ)か一定の値以上で、元信号を電気信号に置換す
るための最低元信号パワ値のことである。すなわち、o
/1か信頼性ある置換Il能を持つには最低受信レベル
以上の元信号パワの受信が必要となる。この最低受信レ
ベルはFDやムPDの種liAによって異るが過常数声
Wから数nW程度でありその変換素子の性能によってき
まる一定値である。
The original-to-electrical converter (hereinafter referred to as 0/l) receives the original signal output from the optical fiber and converts it into an electrical signal. ] and photodiode (hereinafter referred to as I'D)
) is used. One of the important performances of O/M is the minimum reception level, which means that in the case of digital signals, if the pulse of the original signal is below a certain bit error rate, it is #0- or 1.
-v is the lowest original signal power level that can be determined. It is about value. That is, o
/1 or reliable replacement Il capability requires receiving the original signal power at or above the minimum reception level. This minimum reception level varies depending on the type of FD or PD, but it ranges from a normal number W to several nW, and is a constant value determined by the performance of the conversion element.

ここで従来の元通信方疵は、入力電気信号かディジタル
信号であれアナログ信号であれ、VOにて変換された元
信号パワと党7アイパに入射し、一定の伝送損失會持つ
党7アイパV伝送した後の最低受信レベル以上の光信号
パワt’ QA≦二て置換し、入力電気信号と崗等の出
力電気信号を取り出す方式である。ここで、Iloより
一定の出力元信号が党ファイバ中に入射されても。
Here, the conventional original communication method is that whether it is an input electrical signal, a digital signal, or an analog signal, the original signal power converted by the VO and the input signal power are input to the 7-channel 7-iper, and the 7-channel 7-iper V has a certain transmission loss. This is a method of replacing the optical signal power t' QA≦2 which is higher than the lowest reception level after transmission, and extracting the input electrical signal and the output electrical signal. Here, even if a constant output source signal from Ilo is input into the optical fiber.

もし光ファイバの伝送損失が時間的ζ装置化した場合は
0/1での受信光信号が最低受信レベル以上になつ℃い
る保障はできなくなる・ すなわち、従来の光通信方式で光伝送な行う場合は、受
信器側のO/lが信頼性ある九−電気変換1行うために
は必要な最低受信レベル以上の元信号を入力する必要が
あり、これを保障するには元伝送路である党ファイバ中
の伝送損失が配−後は一定値であり、時間的に変化しな
いと言う条件が必要である。
If the transmission loss of an optical fiber becomes a temporal ζ device, it is no longer possible to guarantee that the received optical signal at 0/1 will exceed the minimum reception level.In other words, when optical transmission is performed using conventional optical communication methods In order for the O/L on the receiver side to perform reliable electrical conversion, it is necessary to input the original signal at a level higher than the required minimum reception level. A condition is required that the transmission loss in the fiber is a constant value after installation and does not change over time.

このことは、放射−の照射が考えられる所では党7アイ
パの伝送損失が変化するために、従来のi:Jm信方式
ではIIIII性に欠け、その適用か難しくなる。また
、款射麹による伝送損失の増加lおさえた耐放射線用光
ファイバが考えられているが、この党7アイパも伝送損
失の増加lゼE1(−することはできない・さらに・光
7ア4バl放射−から完全に7−ルドする方法もあるが
この方法では光ファイバの配線コストが上昇するので現
実的な方法とは言えない・ lcl  発明の目的 本発明の目的は、放射線が照射され、光ファイバの伝送
損失が変化する光通信システムにおいて、受信側のO/
Bに最低受傷レベル以上の尤信号が入力しているかどう
かを検出する光伝送の監視装置t’s供するものである
This means that the transmission loss of the IPA changes in places where radiation is likely to be irradiated, so the conventional i:Jm communication system lacks III-III characteristics and is difficult to apply. In addition, a radiation-resistant optical fiber is being considered that suppresses the increase in transmission loss due to radiation exposure. There is a method of completely shielding the beam from radiation, but this method increases the cost of wiring the optical fiber, so it cannot be said to be a realistic method. , in optical communication systems where the transmission loss of optical fibers changes, the receiving side O/
An optical transmission monitoring device t's is provided to detect whether or not a likely signal of a minimum damage level or higher is input to B.

((11発明の構成 以下、図面な参照して本発明舎説明する。第3図は本発
明の一実施例を示すブーツ1図である。電気信号送信器
3は送信すべき電気信号を発信する機器であり、通常の
計測の場合はセンナとセンナからの入力信号vm10と
のIIl!レベルに合せる置換器等がこれにあたる、電
気信号送信器3から出力した電気信号は1704に入力
される。
(11 Structure of the Invention The present invention will be explained below with reference to the drawings. Fig. 3 is a diagram of a boot 1 showing an embodiment of the present invention. The electric signal transmitter 3 transmits an electric signal to be transmitted. In the case of normal measurement, this is a device such as a replacer that matches the senna and the input signal vm10 from the senna to the IIl! level.The electrical signal output from the electrical signal transmitter 3 is input to 1704.

この1104には前述した変換素子等が鑑み込まれてお
り、ここで入力した電気信号vfta号に置換して党7
アイパ11に出力する0以上の電気信号送信器3及びm
1041’組合せた部分が送信部5である。過信lls
より出力された元信号は元ファイバ中を伝送して受信部
101:ある光分岐器6に入力される。光分#ILs6
は入力元信号パワを一定の分錬比に分岐する機器で通常
ハーフ叱う−か使用されている。
This 1104 incorporates the above-mentioned conversion element, etc., and converts the input electric signal vfta to the party 7.
0 or more electrical signal transmitters 3 and m that output to the AIPA 11
1041', the combined part is the transmitter 5. overconfidence
The original signal outputted from the optical fiber is transmitted through the original fiber and input to the receiving section 101: an optical branching device 6. Light minutes #ILs6
is a device that splits the input source signal power into a fixed splitting ratio, and is usually used as a half filter.

光分岐器6により分岐された元信号の一方は07m1−
人力され、ここで元信号は電気信号に変換されて送信部
5の電気信号送信器3により出力された電気信号と陶等
の電気信号l出力する@ O/17より出力された電気
信号が計測用アナログ信号であれば記録針等により紀−
したり、制御信号であれば、壱制御器に出力して、各機
器が制御される。
One of the original signals branched by the optical splitter 6 is 07m1-
Here, the original signal is converted into an electric signal, and the electric signal output by the electric signal transmitter 3 of the transmitter 5 and the electric signal output from the ceramic etc. are measured. If it is an analog signal, it can be recorded using a recording needle etc.
Or, if it is a control signal, it is output to the first controller and each device is controlled.

また光分岐器6により分岐された他方の元信号はパワメ
ータ8に入力される。すなわち受信部lOで受けた元信
号パワのうち、光分岐器6により一定の比率で分岐され
た受信元信号パワk /<ワメータ8で計測する。この
パワメータ8で計測された値をレベル差判定器9に入力
して。
The other original signal branched by the optical splitter 6 is input to the power meter 8. That is, out of the original signal power received by the receiving section 10, the receiving source signal power k/< which is branched at a constant ratio by the optical splitter 6 is measured by the power meter 8. The value measured by this power meter 8 is input to the level difference determiner 9.

光分岐器6にて入力した元信号パワがO/Iの最低受信
レベル以上であるか1判定する・(・) 発明の作用 ここで光分岐器6及びパワメータ8及びレベル差判定器
9の動作について具体的に説明する。
Determine whether the original signal power input to the optical splitter 6 is equal to or higher than the O/I minimum reception level (・) Function of the invention Here, the operation of the optical splitter 6, power meter 8, and level difference determiner 9 is determined. This will be explained in detail.

ハーフミラ−は党を透過光と反射光に分岐するものであ
り、この分岐比率は、ハーフ擢う−のコーティングの度
合によって連続的に変化することができる。
The half mirror splits the light into transmitted light and reflected light, and this splitting ratio can be continuously changed depending on the degree of coating on the half mirror.

例えば透過光と反射光の屁率vs:tt:設定して、透
過光側QO/)7と結合し、反射光測をパワメータ8に
結合すると光分岐器6にて入力した光信号パワのうち皇
は通常の通信として利G 用でき、光伝送路としての損失は、それほど多くならな
い。
For example, if you set the fart ratio of transmitted light and reflected light vs: tt: and combine it with the transmitted light side QO/) 7, and connect the reflected light measurement with the power meter 8, the optical signal power input at the optical splitter 6 will be The optical fiber can be used for normal communication, and the loss as an optical transmission line will not be too great.

一方、パワメータ8に入力される元信号パワは光分岐器
6にて入力した元信号パワの1であG るが、パワメータ8の最低一定レンジは通常0.1nW
程度まであり、この様な黴少党信号パワでも十分に測定
可能である。このパワメータ8にて測定した9倍の元信
号パワが07M7C−人力されているわけであり、レベ
ル差判定器9ではパワメータ8からの出力値直:対して
9倍の積算値と0/17 e使用されている置換素子に
よって決まる最低受信レベルの元信号パワと比較するこ
とができる。
On the other hand, the original signal power input to the power meter 8 is 1 of the original signal power input at the optical splitter 6, but the lowest constant range of the power meter 8 is usually 0.1 nW.
Even with such a low signal power, it is possible to sufficiently measure the signal power. This means that the 9 times the original signal power measured by the power meter 8 is manually input, and the level difference determiner 9 directly outputs the output value from the power meter 8: whereas the 9 times the integrated value and 0/17 e It can be compared with the original signal power of the lowest received level determined by the replacement element used.

光分岐器6及びO/M’l ’t’結ぶi7アイバと光
分岐器5及びパワメータ8v結ぶ元7アイパは同一の伝
送損失を持ち長さもm−にすれば精度の良い伝送路にな
る。またこのyt7アイバは非常に短くすることができ
るのでここでの伝送損失は無視することが可能である。
The i7 eyeglass connecting the optical splitter 6 and the O/M'l't' and the original 7 eyeglass connecting the optical splitter 5 and the power meter 8v have the same transmission loss, and if the length is made m-, the transmission line becomes a highly accurate transmission line. Moreover, since this yt7 eyebar can be made very short, the transmission loss here can be ignored.

次にレベル1判定器9の機能を第4図を用いて説明する
・パワメータ8にて測定した信号値は積算器12に入力
されて9倍の積算値1減算器13に出力する。この積算
値は0/17に入力している元信号パワと陶等であり、
減算器13では別にO/17のIk低受信レベルを人力
しており、ここで積算器12の出力値−最低受信レベル
の減算ン行ないこの値か負であればボロー信号14V出
力する。
Next, the function of the level 1 determiner 9 will be explained using FIG. 4. The signal value measured by the power meter 8 is input to the integrator 12 and outputted to the 9 times integrated value 1 subtracter 13. This integrated value is the original signal power input at 0/17,
The subtracter 13 separately inputs the Ik low reception level of O/17, and subtracts the output value of the integrator 12 minus the lowest reception level, and if this value is negative, outputs a borrow signal of 14V.

ボロー信号14が出力される峙は0/17にて受信して
いる元信号パワかO/]c7の最低受信レベル以下にな
っており1本元伝送ンステムは(11+1性のない通信
が行なわれている状1isv小している。
The level at which the borrow signal 14 is output is the original signal power received at 0/17, which is below the lowest reception level of O/]c7, and the one-source transmission system is (11+1). The state of being 1isv is small.

このポー−信号の便用方法はいろいろ肴見られるが一例
を第5園に示す、すなわち、レベル差判定器9にてlロ
ー信号14か出力されると貼になるm点15にて輸動リ
レーXv#礒し、この補助リレーの接l:116で運転
員に表示及び警報に′C異常し知らせる一万Wi点17
を用し\て運転しているプラントを停止させる。
There are many ways to use this P-signal, but an example is shown in the fifth example. In other words, when the level difference judger 9 outputs a L-low signal 14, the signal is moved at the m-point 15. relay
Stop the plant in operation using

このような保護クーケンス【用いれば、放射線の照射か
考えられるJFrj二元伝゛送りステムV用いて、制御
しているプラン)6:対して、光伝送ンステムか正常に
動作している一I:力λぎり運転1kTIj能とし、異
常があれば自動的6;警報および保111V行なうAi
傷Ill性のプランシカ五実現できる。
Such a protective sequence [If used, it may be considered to be radiation irradiation. If the plan is controlled using the JFrj dual transmission system V) 6: On the other hand, if the optical transmission system is operating normally - I: The power is set to 1kTIj, and if there is an abnormality, it will automatically issue a warning and maintain 111V.
I'll be able to realize five scratches.

また、この伝送りステ^t−tt―用書=便用し、レベ
ル差判定器9でプ謬−値号141’出力した時刻【記憶
しておけば、計画機のデーIのうち信頼性のデータを信
頼性のなtl−夕とを区別することに使用することも可
能であるelら6二覚フア1パ11に機械的な応力によ
る折れ等i6L発生して元僅号か伝送不可能(:なった
場合でも、レベル差判定器9&二よってその異常を検出
することができる。
Also, use this transmission step t-tt-form for convenience, and the time when the level difference judger 9 outputs the error value 141'. It is also possible to use this data to distinguish between unreliable tl and tl data. Even if this happens, the level difference determiner 9 & 2 can detect the abnormality.

lfl  組合的な効果 以上説明したように1本発明によれ、光通信システムに
おいて、放射線等による光ンアイパの伝送損失の増加や
、送信部にあるIC10の動作不良、元ファイバの折れ
等が発生しても、受信部における元!¥iJi+パワが
0/lの最低受信レベル以上かを常に監視しており、元
伝送路の異常としてこれt検出できるので、信頼性のあ
る光通信システムが実現できる。
lfl Combined Effects As explained above, according to the present invention, in an optical communication system, an increase in the transmission loss of optical fibers due to radiation etc., malfunction of IC10 in the transmitting section, bending of the original fiber, etc. can occur. Even in the receiving department! Since it is constantly monitored to see if ¥iJi+power is equal to or higher than the minimum reception level of 0/l, and this can be detected as an abnormality in the original transmission path, a reliable optical communication system can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は元ファイバの一般的な構造を不す図、第2因は
元ファイバの放射線による伝送損失を示すグラフ、第3
図は本発明の一実施例を示すブロック内、第4図は第3
−におけるレベル差判定器の機能を示すブロック図、第
5図は本発明における保護V−タンスの一例【示す因で
ある・3;電気信号送信器。 4;電気−元変換器、 6;光分銃器。 7;光−電気変換器、 8;バワメー!、 9;レベル11判定器。 lzs’fll算器。 13;比aS。 (7317)代理人 弁理士 則 近 憲 佑(ほか1
名 第1図 / ( 〉 第2図 妙 ℃ 〒 ツ □峙間゛t
Figure 1 is a diagram showing the general structure of the original fiber, the second factor is a graph showing the transmission loss due to radiation in the original fiber, and the third
The figure shows the inside of a block showing one embodiment of the present invention, and FIG.
FIG. 5 is a block diagram showing the function of the level difference determiner in the present invention. 4; Electricity-source converter; 6; Optical weapon. 7; Photo-electrical converter, 8; Bawame! , 9; Level 11 judge. lzs'full calculator. 13; ratio aS. (7317) Agent Patent Attorney Noriyuki Chika (and 1 others)
Name Figure 1 / ( 〉 Figure 2 Myo ℃ 〒 〒 〒

Claims (1)

【特許請求の範囲】 光信号1元7アイパ【介して受信側のyt/電気変換器
に伝送する光伝送システムにおいて1gk信側の上記光
/電気変換器の手前仁元値号の一*を分岐する光分銃器
と、上記党分絃器で分岐された光信号のパワを検出する
パワメータと、上記パワメータの出力を所定のレベルと
比較するレベル判定器な設け、上記レベル判定器の出力
によって受信側の光/電気置換器6二人力される元信号
が麹全か否かをIl視することを特徴とする光伝送のW
l視装置。
[Claims] In an optical transmission system in which an optical signal is transmitted to a YT/electrical converter on a receiving side via a 1-source 7-aiper [1GK signal side optical/electrical converter], A branching light beam gun, a power meter for detecting the power of the optical signal branched by the splitter, and a level judger for comparing the output of the power meter with a predetermined level, and according to the output of the level judger. W of optical transmission characterized by two optical/electrical exchangers on the receiving side to check whether or not the input original signal is full or not.
l vision device.
JP56170808A 1981-10-27 1981-10-27 Optical transmission monitoring device Pending JPS5873249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170808A JPS5873249A (en) 1981-10-27 1981-10-27 Optical transmission monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170808A JPS5873249A (en) 1981-10-27 1981-10-27 Optical transmission monitoring device

Publications (1)

Publication Number Publication Date
JPS5873249A true JPS5873249A (en) 1983-05-02

Family

ID=15911717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170808A Pending JPS5873249A (en) 1981-10-27 1981-10-27 Optical transmission monitoring device

Country Status (1)

Country Link
JP (1) JPS5873249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010932A (en) * 1983-06-30 1985-01-21 Matsushita Electric Works Ltd Optical transmitter
JPS6234429A (en) * 1985-08-07 1987-02-14 Minolta Camera Co Ltd Receiver for optical communication
JPH0446691A (en) * 1990-06-14 1992-02-17 Mitsubishi Heavy Ind Ltd Method for measuring divergent angle of yag laser beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010932A (en) * 1983-06-30 1985-01-21 Matsushita Electric Works Ltd Optical transmitter
JPS6234429A (en) * 1985-08-07 1987-02-14 Minolta Camera Co Ltd Receiver for optical communication
JPH0446691A (en) * 1990-06-14 1992-02-17 Mitsubishi Heavy Ind Ltd Method for measuring divergent angle of yag laser beam

Similar Documents

Publication Publication Date Title
US5251001A (en) Reflected optical power fiber test system
CN102412902B (en) With the optical network unit photoelectric device of time domain reflection function
US4449782A (en) Modular, optical fiber communication system
EP0850514B1 (en) System, method and device for monitoring a fiber optic cable
CN110692207B (en) Automatic optical reflectometer power adjustment
US7309169B2 (en) Single-channel communication device for optical fibre
CN104426603A (en) Optical network detection method, optical network detection device, optical network detection equipment, optical network detection system and optical splitter
CN102752051B (en) Optical component of optical network unit with optical time domain reflection function
WO2020098577A1 (en) Planar optical waveguide device, and temperature measurement system
CN102135645A (en) Optical switch system and feedback control method of signal light
GB2332318A (en) Low power output monitoring tap
CN110176957A (en) A kind of device and method of high-precision, Larger Dynamic range monitoring WDM-PON failure
CN105577268B (en) Optical network device, optical module and optical link detection method
US20020164115A1 (en) Optical fiber communication system, communications apparatus and optical transceiver
US4736359A (en) Single fiber optical communication system
JPS5873249A (en) Optical transmission monitoring device
US7050665B2 (en) Bidirectional, co-located laser and detector
Szajowski et al. High-power optical amplifiers enable 1550-nm terrestrial free-space optical data links operating at WDM 2.5-Gb/s data rates
CN105515675A (en) Light transmitting-receiving device, optical line terminal, optical network unit (ONU) and passive optical network (PON) system
CN202127400U (en) Optical line terminal photoelectric device with optical time domain reflection function
RU2152689C1 (en) Device, method and instrument for checking fiber-optical cable
EP0619657B1 (en) Optical circuit for measuring the reflection sensitivity of an optical transmission system
JP2000231029A (en) Optical connector with optical filter
KR20200021395A (en) MoDule for MONITORING optical cable and optical cable monitoring system using the same
JP2907037B2 (en) Bidirectional line monitor