JPS5892974A - Radial computer tomography device - Google Patents
Radial computer tomography deviceInfo
- Publication number
- JPS5892974A JPS5892974A JP19250981A JP19250981A JPS5892974A JP S5892974 A JPS5892974 A JP S5892974A JP 19250981 A JP19250981 A JP 19250981A JP 19250981 A JP19250981 A JP 19250981A JP S5892974 A JPS5892974 A JP S5892974A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- camera
- subject
- gamma rays
- emitted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
- G01T1/1615—Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources simultaneously
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/29—Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
- G01T1/2914—Measurement of spatial distribution of radiation
- G01T1/2985—In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、被検体(患者身体)内に集積した放射性物
質(放射性同位元素、以下率にRIと称する)から放射
される放射線を体外で検出することにより被検体内のR
I分布像を再構成する放射型コンビエータ断層撮影装f
(以下ECTと略称する)Klmする。DETAILED DESCRIPTION OF THE INVENTION This invention detects radiation emitted from radioactive substances (radioisotopes, hereinafter referred to as RI) accumulated within the subject (patient's body) outside the body. R of
Radial combinator tomography device f that reconstructs the I distribution image
(hereinafter abbreviated as ECT) Klm.
ECTでは体内RIから発せられた放射線(たとえばガ
ンマ線)が体表面に達するまでの関に体内組繊によって
一部吸収されてしまうため、RI分布像として得られる
断層偉の定置的絆価が離しいという欠点が本質的に存在
する。In ECT, radiation (e.g. gamma rays) emitted from the RI in the body is partially absorbed by the tissue fibers of the body before reaching the body surface, so the stationary bond value of the tomographic image obtained as an RI distribution image is different. There is an inherent drawback.
本発明は上記に鑑み、透過放射線による放射線吸収係数
分布像をR1分布像と同一条件で同時に得ることができ
、もって放射線の体内での吸収補正を行ない、体内RI
分布の定置を即座に可能とするECTを提供することを
目的とする。In view of the above, the present invention is capable of simultaneously obtaining a radiation absorption coefficient distribution image by transmitted radiation under the same conditions as an R1 distribution image, thereby correcting the absorption of radiation in the body, and improving the internal RI.
The purpose is to provide an ECT that allows immediate distribution emplacement.
以下、本発明の一実施例について図面を参照しながら説
明する。この実施例は、180°の角度に対向配置した
2つのシンチレーションカメラを回転させるタイプの、
所謂デエアルヘッドカメラ回転型ECTK本発明を適用
したものである。第1図において、1.8はそれぞれ平
行多穴コリメータ2.9を備えたシンテレーシ璽ンカメ
ラで、回転フレーム3に取シ付けられて180°の角度
に互に対向している。この回転フレーム3は、支持台5
に支持されている駆動部4によって保持されて、ベッド
6上に横臥させられた被検体70体軸0を中心軸として
、回転させられる。An embodiment of the present invention will be described below with reference to the drawings. This example is of a type that rotates two scintillation cameras arranged oppositely at an angle of 180°.
This is a so-called digital head camera rotating type ECTK to which the present invention is applied. In FIG. 1, reference numerals 1.8 are synchronized cameras each equipped with parallel multi-hole collimators 2.9, which are mounted on the rotating frame 3 and are opposed to each other at an angle of 180°. This rotating frame 3 has a support base 5
The subject 70 lying on the bed 6 is rotated about the body axis 0 as a central axis.
コリメータ2の放射線迩蔽壁21には、第2図に示すよ
うに適当な深さのi$$22が設けられており、この溝
22内にRIZ3が配置され、RI23からのガンマ線
が適当な広さに広がるようにされている。このコリメー
タ2の背部にはNaI(TJ)結晶などのシンチレータ
11が配置され、さらにライトガイド12を介して多数
のフォトマルチプライアト3が配−されている。The radiation shielding wall 21 of the collimator 2 is provided with a groove 22 of an appropriate depth as shown in FIG. It is spread out over a wide area. A scintillator 11 such as a NaI (TJ) crystal is arranged at the back of the collimator 2, and a large number of photomultipliers 3 are arranged via a light guide 12.
こうして、カメラl側から、第3図に示すように平行ガ
ンマ線ビーム(点線で示す)が被検体7に向けて照射さ
れ、この被検体7を透過したものがカメラ8に入射する
。また被検体7の特定の臓器71に集積したRIから発
せられるガンマ線(IJ!線で示す)4このカメラ8及
び対向jるカメラ1に入射する。被検体7に投与される
RIとコリメータ2に埋め込まれるRIとは、それらか
ら発せられるガンマ線のエネルギが異なる種類のものと
されており、カメラ8において入射ガンマ線のエネルギ
弁別をすることによシ、カメラ1側からの被検体7を透
過したガンマ線強度のみを検出して透過放射線強度に関
するデータを得ることができるようにされ工いる。また
同様にエネルギ弁別によってカメラ1側でもコリメータ
2の放射線迩蔽壁21を透過して入射するガンマ線があ
る場合にこれを除去することができ、カメラ1では被検
体7のRIからのガンマ線のみを検出することができる
。In this way, a parallel gamma ray beam (indicated by a dotted line) is irradiated from the camera l side toward the subject 7 as shown in FIG. 3, and the beam that passes through the subject 7 is incident on the camera 8. In addition, gamma rays (indicated by IJ! lines) 4 emitted from RI accumulated in a specific organ 71 of the subject 7 enter this camera 8 and the camera 1 opposite to it. The RI administered to the subject 7 and the RI embedded in the collimator 2 are of different types in the energy of the gamma rays emitted from them, and by discriminating the energy of the incident gamma rays in the camera 8, It is designed to detect only the intensity of gamma rays transmitted through the subject 7 from the camera 1 side, and to obtain data regarding the intensity of transmitted radiation. Similarly, by energy discrimination, if there is a gamma ray that passes through the radiation shielding wall 21 of the collimator 2 and enters the camera 1 side, it can be removed. can be detected.
これら対向するカメラ1,8を360°回転させると、
カメラ1からはRII置データが得られ、カメz)8か
らは透過放射線強度のデータが得られる。RII置デー
タをコンピエーメで処理する仁とによシ被検体7内での
RIの分布像を再構成することができ、透過放射線強度
のデとができる。これらの分布像は同一新面に関する2
次元的―儂である九め、両者は位置に関して全く同じ条
件で得られえものである。その九めこの放射線吸収係数
分布像を使うことによυR1分布分布像検体70体内吸
収による誤差の補正を正確且つ容易に行なうことができ
る。When these facing cameras 1 and 8 are rotated 360 degrees,
RII position data is obtained from camera 1, and transmitted radiation intensity data is obtained from camera z)8. By processing the RII position data using a computer, it is possible to reconstruct the distribution image of the RI within the subject 7, and to determine the intensity of the transmitted radiation. These distribution images are 2 for the same new surface.
Dimensional - I am the ninth, and both can be obtained under exactly the same conditions regarding position. By using this ninth radiation absorption coefficient distribution image, it is possible to accurately and easily correct errors caused by internal absorption of the υR1 distribution distribution image sample 70.
なお、第2図に示したように配置されるRI23を有す
る放射##(図示しないがたとえばjlIz図のコリメ
ータ2)をカメラ8の位置に位置するようフレーム3
Kjlu)付け、カメラlかう得た信号を、2つのエネ
ルギウィンドを有する波高分析器で分離し、被検体7内
RIによるデータと透過ガンマ線強度のデータとを得る
ようにすれば、1個のカメラでRI分分布色放射Ii!
吸収吸収係数分布管同時に得ることもできる。Note that the frame 3 is arranged so that the radiation ## (not shown, but for example, the collimator 2 in the diagram jlIz) having the RI 23 arranged as shown in FIG. 2 is located at the position of the camera 8.
If the signal obtained from the camera is separated by a wave height analyzer with two energy windows to obtain data from the RI inside the object 7 and data about the intensity of transmitted gamma rays, one camera can be used. And RI distribution color radiation Ii!
It is also possible to obtain an absorption coefficient distribution tube at the same time.
また、シンチレータ1ンカメ−71,8としてはアンガ
型のものやオートフルオロスコープなど種々の放射線位
置検出器を使うことができる。Further, as the scintillator cameras 71 and 8, various radiation position detectors such as an Anger-type one and an autofluoroscope can be used.
以上実施例について述べたように、本発明によれば、被
検体のある断層面に関するRI分布偉を得る場合に、こ
れと同時に且つ位置的に全く同一条件で岡−断層面に関
する放射線吸収係数分布像を得ることができるので、R
I分分布色吸収補正を正確且つ容易に行ない1体内R1
分布の定置を即座に行なうことが可能となる。As described above with respect to the embodiments, according to the present invention, when obtaining the RI distribution on a certain tomographic plane of a subject, the radiation absorption coefficient distribution on the Oka tomographic plane at the same time and under exactly the same positional conditions. Since the image can be obtained, R
Accurately and easily perform I distribution color absorption correction for R1 in one body.
It becomes possible to immediately fix the distribution.
第1図は本発明の一実施例の斜視図、第2図は一部の拡
大断面図、第3図は模式図である。
1.8・・・シンテレーシ冒ンカメラ
2.9・・・コリメータ 3・・・回転フレーム4・・
・駆動部 5・・・支持台6・・・ペッド
7・・・被検体21・・・放射線蓮蔽壁 22・
・・溝23・・・RI 11・・・シンチ
レータ12・・・ライトガイド
l3・・・フォトマルチプライア
出願人 株式会社島津製作所FIG. 1 is a perspective view of one embodiment of the present invention, FIG. 2 is a partially enlarged sectional view, and FIG. 3 is a schematic diagram. 1.8... Synthesis camera 2.9... Collimator 3... Rotating frame 4...
・Drive part 5... Support stand 6... Ped
7... Subject 21... Radiation lotus shielding wall 22.
...Groove 23...RI 11...Scintillator 12...Light guide l3...Photomultiplier Applicant: Shimadzu Corporation
Claims (1)
少なくとも1個の放射線位置検出器と、この放射線位置
検出器に対し前記被検体をはさんで対向し、前記放射性
物質から放射される放射線とは真なるエネルギの平行放
射線ビームを前記被検体に向けて照射する放射線源とを
、これら放射線位置検出器と放射線源とが互に対向しえ
位置関係を保つようにして両者を前記被検体の周囲を回
転させ、前記放射性物質からの放射線と前記放射線源か
らの放射線とをエネルギによって区別することによ如、
被検体内の放射性物質の分布像と、被検体内の放射線吸
収係数の分布像とを同時に再構成するようにした放射型
コ/ピ具−夕断層撮影装置=□(1) At least one radiation position detector facing the subject in which radioactive material is accumulated, and a radiation position detector facing the radiation position detector with the subject sandwiched therebetween, and radiation emitted from the radioactive material. A radiation source that irradiates a parallel radiation beam of true energy toward the subject, and a radiation position detector and a radiation source that face each other and maintain a positional relationship so that they are connected to the subject. by rotating around the radioactive substance and distinguishing radiation from the radioactive substance and radiation from the radiation source by energy,
A radiation tomography device that simultaneously reconstructs the distribution image of radioactive substances within the subject and the distribution image of the radiation absorption coefficient within the subject = □
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP19250981A JPS5892974A (en) | 1981-11-30 | 1981-11-30 | Radial computer tomography device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP19250981A JPS5892974A (en) | 1981-11-30 | 1981-11-30 | Radial computer tomography device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS5892974A true JPS5892974A (en) | 1983-06-02 |
Family
ID=16292465
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP19250981A Pending JPS5892974A (en) | 1981-11-30 | 1981-11-30 | Radial computer tomography device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5892974A (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61226674A (en) * | 1985-03-30 | 1986-10-08 | Shimadzu Corp | Method for absorbing and correcting single photon ect device |
| WO1991000048A3 (en) * | 1989-06-30 | 1991-02-21 | H Charles Kaplan | Transmission/emission registered image (teri) computed tomography scanners |
| US5155365A (en) * | 1990-07-09 | 1992-10-13 | Cann Christopher E | Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data |
| US5252830A (en) * | 1992-01-22 | 1993-10-12 | Irving Weinberg | Dedicated apparatus and method for emission mammography |
| US5359198A (en) * | 1989-07-28 | 1994-10-25 | Sopha Medical | Scintillation device usable for measuring attenuation through transmission tomography |
| US5376795A (en) * | 1990-07-09 | 1994-12-27 | Regents Of The University Of California | Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data |
| US5449913A (en) * | 1993-11-03 | 1995-09-12 | Chang; Wei | Apparatus for producing attenuation scan |
| US5600145A (en) * | 1995-01-19 | 1997-02-04 | Picker International, Inc. | Emission/transmission device for use with a dual head nuclear medicine gamma camera with the transmission source located behind the emission collimator |
| US5739540A (en) * | 1995-06-23 | 1998-04-14 | Kabushiki Kaisha Toshiba | Nuclear medicine diagnostic apparatus |
| US5834780A (en) * | 1996-05-29 | 1998-11-10 | Picker International, Inc. | Scanning line source for gamma camera |
| US5965891A (en) * | 1992-01-22 | 1999-10-12 | Frederick M. Mako | Dedicated apparatus and method for emission mammography |
| WO1999056150A1 (en) * | 1998-04-27 | 1999-11-04 | Duke University | Transmission scanning technique for gamma camera coincidence imaging |
| US8541748B2 (en) | 2009-06-29 | 2013-09-24 | General Electric Company | System and method for performing nuclear mammography imaging |
-
1981
- 1981-11-30 JP JP19250981A patent/JPS5892974A/en active Pending
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61226674A (en) * | 1985-03-30 | 1986-10-08 | Shimadzu Corp | Method for absorbing and correcting single photon ect device |
| WO1991000048A3 (en) * | 1989-06-30 | 1991-02-21 | H Charles Kaplan | Transmission/emission registered image (teri) computed tomography scanners |
| US5359198A (en) * | 1989-07-28 | 1994-10-25 | Sopha Medical | Scintillation device usable for measuring attenuation through transmission tomography |
| US5155365A (en) * | 1990-07-09 | 1992-10-13 | Cann Christopher E | Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data |
| US5376795A (en) * | 1990-07-09 | 1994-12-27 | Regents Of The University Of California | Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data |
| US5965891A (en) * | 1992-01-22 | 1999-10-12 | Frederick M. Mako | Dedicated apparatus and method for emission mammography |
| US5252830A (en) * | 1992-01-22 | 1993-10-12 | Irving Weinberg | Dedicated apparatus and method for emission mammography |
| US5449913A (en) * | 1993-11-03 | 1995-09-12 | Chang; Wei | Apparatus for producing attenuation scan |
| US5600145A (en) * | 1995-01-19 | 1997-02-04 | Picker International, Inc. | Emission/transmission device for use with a dual head nuclear medicine gamma camera with the transmission source located behind the emission collimator |
| US5739540A (en) * | 1995-06-23 | 1998-04-14 | Kabushiki Kaisha Toshiba | Nuclear medicine diagnostic apparatus |
| US5834780A (en) * | 1996-05-29 | 1998-11-10 | Picker International, Inc. | Scanning line source for gamma camera |
| US6060712A (en) * | 1996-05-29 | 2000-05-09 | Picker International, Inc. | Scanning line source for gamma camera |
| WO1999056150A1 (en) * | 1998-04-27 | 1999-11-04 | Duke University | Transmission scanning technique for gamma camera coincidence imaging |
| US8541748B2 (en) | 2009-06-29 | 2013-09-24 | General Electric Company | System and method for performing nuclear mammography imaging |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4095107A (en) | Transaxial radionuclide emission camera apparatus and method | |
| US6455856B1 (en) | Gamma camera gantry and imaging method | |
| CA2252993C (en) | Detector assembly for multi-modality scanners | |
| US7723674B2 (en) | Attenuation correction for SPECT imaging using non-classical orbits of many small gamma cameras | |
| US20100163736A1 (en) | Spect gamma camera with a fixed detector radius of orbit | |
| US5583343A (en) | Flexible nuclear medicine camera and method of using | |
| US6201247B1 (en) | Line source for gamma camera | |
| US6211523B1 (en) | Autocontouring device for gamma camera using radioactive source and transverse motion | |
| JP7181194B2 (en) | Gamma ray detector with parallax compensation | |
| JP2004512512A (en) | System and method for nuclear imaging using feature enhanced transmission imaging | |
| US20040227091A1 (en) | Methods and apparatus for radiation detecting and imaging using monolithic detectors | |
| US6175116B1 (en) | Hybrid collimation and coincidence imager for simultaneous positron and single photon imaging | |
| US6661865B1 (en) | Variable axial shielding for pet imaging | |
| JPS5892974A (en) | Radial computer tomography device | |
| US6429433B1 (en) | Continuous rotation sampling scheme for transmission radiation corrected gamma cameras | |
| US7683333B2 (en) | Detector for nuclear medicine | |
| US3431413A (en) | Rotational technique for assessing quantity and distribution of body radioactivity | |
| JPH0141950B2 (en) | ||
| JP2919963B2 (en) | Scintillation device used to measure attenuation by transmission tomography | |
| JPH08122438A (en) | TCT / SPECT simultaneous acquisition system | |
| US6725084B2 (en) | Apparatus for measuring nonuniform attenuation in a scintillation camera | |
| JP3881403B2 (en) | Nuclear medicine diagnostic equipment | |
| US20040159791A1 (en) | Pet/spect nuclear scanner | |
| CA2349403C (en) | Apparatus for measuring nonuniform attenuation in a scintillation camera | |
| JPH0616092B2 (en) | Positron CT shield device |