[go: up one dir, main page]

JPS59101827A - Detecting optical system - Google Patents

Detecting optical system

Info

Publication number
JPS59101827A
JPS59101827A JP57210908A JP21090882A JPS59101827A JP S59101827 A JPS59101827 A JP S59101827A JP 57210908 A JP57210908 A JP 57210908A JP 21090882 A JP21090882 A JP 21090882A JP S59101827 A JPS59101827 A JP S59101827A
Authority
JP
Japan
Prior art keywords
aperture
alignment
diaphragm
wafer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57210908A
Other languages
Japanese (ja)
Other versions
JPS6348421B2 (en
Inventor
Akiyoshi Suzuki
章義 鈴木
Michio Kono
道生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57210908A priority Critical patent/JPS59101827A/en
Publication of JPS59101827A publication Critical patent/JPS59101827A/en
Priority to US07/225,826 priority patent/US4871257A/en
Publication of JPS6348421B2 publication Critical patent/JPS6348421B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7069Alignment mark illumination, e.g. darkfield, dual focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To interrupt unnecessary diffracted light by the longitudinal line and lateral line of an actual element, to detect only desired luminous flux and to improve the accuracy of alignment by adequately combining a way of transmission of lighting luminous flux and a diaphragm of a light-receiving system. CONSTITUTION:The diaphragms C1, C2 of an illumination system Sc are arranged on a diaphragm plate Pc so that images C'1, C'2 on the imaging surface Pi surface of the diaphragms are formed to a section except a region surrounded by two pairs of parallel lines M, N. The diffraction patterns of the longitudinal and lateral lines often observed in the actual element of a wafer are not observed on the imaging surface because they are distributed in the lateral direction and the longitudinal direction while using each point in C'1, C'2 as the positions of 0 order beams and do not pass through an opening Co. When a line group pattern extending in the direction of 45 deg. is formed to a body surface 0 as a mask for alignment, the diffracted patterns pass through the opening Co of the diaphragm plate Pc because the distribution of diffracted light by the pattern extends in the direction of 45 deg. as shown in crosses, are detected in a photoelectric manner by an imaging surface I, and can be observed with eyes.

Description

【発明の詳細な説明】 あるいはテレビ受像器を使って目視観察あるいは光電検
出もしくは両者のための装置に関し、特に既設のバター
/とは別に書き込んだパターンを他と明瞭に検知し得る
ものであって、半導体集積回路製造装置の位置合わせマ
ークを検知するだめの装置に適する。
DETAILED DESCRIPTION OF THE INVENTION Or, it relates to a device for visual observation or photoelectric detection, or both using a television receiver, which can clearly detect patterns written separately from existing butter/patterns. The present invention is suitable for use in devices for detecting alignment marks in semiconductor integrated circuit manufacturing equipment.

近年半導体集積回路の集積化が進むにつれて、回路の縮
幅も増々倣細化の傾向におる。そしてこの様な傾向を受
けて微細な電子回路(実素子)パターンをウェハ上に焼
付けるために、高解像度の投影用結像レンズあるいは反
射系を用いてマスク上の回路パターンを転写する光学式
投影露光装置や、マスクとウェハをコンタクトあるいは
近接(プロキシミテイ)して転写する装置が使用されて
いる。
In recent years, as the integration of semiconductor integrated circuits has progressed, the width of circuits has become increasingly narrower. In response to this trend, in order to print fine electronic circuit (actual element) patterns onto wafers, an optical method is being developed that uses a high-resolution projection imaging lens or reflection system to transfer the circuit patterns on the mask. Projection exposure equipment and equipment that transfers images by bringing the mask and wafer into contact or in close proximity (proximity) are used.

転写が行われる場合、露光過程に先立ってマスフとウェ
ハを規定の位置関係に1μm以下の高い精度で整合させ
ることが不可欠となるが、単位時間に大量のウェハを処
理する為にはアライメント作業を自動化することが要求
されるので、それに応じた配慮が必要となる。従来、マ
スクとウェハの整合を行う際には、マスクとウェハの各
々にアライメント用のマークを設け、顕微鏡系でこれを
覗き込んで両者を重畳させるか所、・ 定、関係に整列
させると云う方式が採られている。
When transferring, it is essential to align the mask and wafer in a specified positional relationship with a high precision of 1 μm or less prior to the exposure process, but alignment work is necessary to process a large number of wafers per unit time. Since automation is required, consideration must be given accordingly. Conventionally, when aligning a mask and a wafer, alignment marks are placed on each of the mask and wafer, and a microscope system is used to look into these marks and the two are aligned so that they overlap or are aligned in a fixed relationship. method is adopted.

その際、アライメントマークを光電検出して自動アライ
メントするが、確認のために目視観察可能になってお)
、また特別の場合は目視観察をしながら手動アライメン
トすることもできる。
At that time, the alignment mark is photoelectrically detected and automatically aligned, but it is possible to visually observe it for confirmation.)
In special cases, manual alignment can also be performed with visual observation.

本出願人による特開昭54−5406号は自動アライメ
ントの1例を示してお)、例えばアライメントマークか
らの反射光を顕微鏡内の瞳位置で空間周波数フィルタリ
ングし、その回折光を検出している。
Japanese Patent Application Laid-Open No. 54-5406 by the present applicant shows an example of automatic alignment), for example, the reflected light from the alignment mark is subjected to spatial frequency filtering at the pupil position in the microscope, and the diffracted light is detected. .

一方、ウェハ上でアライメントマーク」を配する位置と
しては、チップの1つをつぶしてそこに設ける場合や、
チップとチップの間のスクライブ線S(第1図)に設け
る場合がある。しかしながら、実素子パターンはアライ
メントマークを構成する要素と同様の光学作用を持つた
め、実素子の近傍にアライメントマークがあると、アラ
イメントマークの回折反射光に実素子の回折反射光が混
入してアライメントを困難にする。
On the other hand, the location on the wafer for placing the alignment mark is when one of the chips is crushed and placed there,
It may be provided at the scribe line S (FIG. 1) between chips. However, since the real element pattern has the same optical effect as the elements constituting the alignment mark, if there is an alignment mark near the real element, the diffracted reflected light from the real element will mix with the diffracted reflected light from the alignment mark, causing alignment problems. make it difficult.

そしてこの難点を免れるためにはアライメントマークを
実素子から充分離すのが最適であるが、こうすると実素
子の有効領域が減少する問題が生ずる。
In order to avoid this difficulty, it is optimal to separate the alignment mark from the actual device by a sufficient distance, but this causes the problem that the effective area of the actual device decreases.

またアライメント動作としては、上述の如きマスクとウ
ェハのアライメントの他に、それに先立ってウェハの座
標位置を比較的粗い精阜で測長し、更には所定のステー
ジに移動させて正確に位置決めするプリアライメントと
いう動作がある。この場合も、ウェハの位置を光電的に
検出しよりとすると、同様に実素子の影響を受けること
になる。但し半導体の実素子は設計ルールからくる要請
で直交する線を基調としてパターンが構成される特殊性
がある。
In addition to the alignment of the mask and wafer as described above, the alignment operation involves first measuring the coordinate position of the wafer with relatively rough precision, and then moving it to a predetermined stage for accurate positioning. There is an operation called alignment. In this case as well, if the position of the wafer is to be detected photoelectrically, it will be similarly affected by the actual device. However, actual semiconductor devices have the peculiarity that patterns are constructed based on orthogonal lines as required by design rules.

本発明の目的は検知対象とするパターンとそれ以外のパ
ターンとが近接配置されたとしても検知対象とするパタ
ーンを明瞭に検知することにある。そして本発明の実施
例に於いては、主に縦横の線条から成る実素子パターン
の近くに傾斜した線群で構成したアライメントマークを
設けたウェハを暗視野照明するため、絞りpcをその照
明光路中に設けたウェハ照明系と、ウェハの平坦な面0
を鏡面として介在させた状態で、絞りPCと光学的共役
になる位置に設けた別の絞シP1を内蔵する結像系を配
置し、照明系の絞すPcの開口の形状を結像形の絞fi
11に対してアライメントマークの回折反射光を選択し
、他を速断する形状に決めている。更に実施例の詳細を
第2図に従って説明する。
An object of the present invention is to clearly detect a pattern to be detected even if the pattern to be detected and other patterns are placed close to each other. In the embodiment of the present invention, in order to perform dark-field illumination on a wafer having an alignment mark formed by a group of inclined lines near the actual device pattern mainly consisting of vertical and horizontal lines, the aperture PC is used for illumination. The wafer illumination system installed in the optical path and the flat surface of the wafer
An imaging system incorporating another diaphragm P1 provided at a position optically conjugate with the diaphragm PC is arranged with the diaphragm P1 interposed as a mirror surface, and the shape of the aperture of the aperture of the illumination system diaphragm P is shaped into an image formation shape. aperture fi
For No. 11, the diffracted reflection light of the alignment mark is selected, and the other shapes are determined to be cut quickly. Further details of the embodiment will be explained with reference to FIG.

図中、Oは物体面でウェハあるいはマスクの表面である
。またScは照明系で、Laは照明光源、Llは第1コ
ンデンサーレンズ、Pcは照明絞り板(詳しくは後述す
る)、LOは第2コンデンサーレンズ、Beはビームス
プリッタ−1L、は顕微鏡対物レンズである。光源La
を発した光束は第1:2/デンサーレンズIJを介して
絞シ板Pcの開口を照明する。この開口上の一点から出
た光線は第2コンデンサーレンズLOで結像作用を受け
た後、ビームスプリッタ−Beで反射し、対物レンズL
In the figure, O is the object plane, which is the surface of the wafer or mask. Also, Sc is the illumination system, La is the illumination light source, Ll is the first condenser lens, Pc is the illumination diaphragm plate (details will be described later), LO is the second condenser lens, Be is the beam splitter-1L, and is the microscope objective lens. be. Light source La
The emitted light flux illuminates the aperture of the aperture plate Pc via the 1:2/denser lens IJ. The light beam emitted from one point on this aperture undergoes an imaging action by the second condenser lens LO, is reflected by the beam splitter Be, and is reflected by the objective lens L.
.

の瞳位置に一旦結像し、更に対物レンズTJOを介して
物体面Oを照明する。との結像関係を実線で描く。
The image is once formed at the pupil position, and then the object plane O is further illuminated via the objective lens TJO. The imaging relationship with is drawn as a solid line.

次にSlは結像系で、LOは顕微鏡対物レンズ、Beは
ビームスプリッタ−1Lrはリレーレンズ、Leは像拡
大用のエレクタ−レンズである。そして物体面0上の一
点を発した光線は対物レンズLoで収斂作用を受けた後
、リレーレンズ′Lrによシ中間結像位置工0に一旦結
像し、更に倍率拡大用エレクタ−レンズLeにより最終
面1上に結像する。この最終面が光電検出面もしくは接
眼レンズを通して目視観察される嘗察面あるいはテレビ
撮像面である。この系の結像関係を破線で描く。
Next, Sl is an imaging system, LO is a microscope objective lens, Be is a beam splitter, 1Lr is a relay lens, and Le is an erector lens for image magnification. The light beam emitted from a point on the object plane 0 is converged by the objective lens Lo, and then focused on the intermediate imaging position 0 by the relay lens 'Lr. An image is formed on the final surface 1. This final surface is a photoelectric detection surface, a viewing surface visually observed through an eyepiece, or a television imaging surface. The imaging relationship of this system is drawn with a dashed line.

またこの結像系Si中に実線で描いた光線は、垂直落射
照明された物体Oで鏡面反射がなされた場合に反射して
戻って来る光線で、対物レンズLOを通った後、瞳工p
上に結像し、更にリレーレンズLrを介して第2結像面
(Pl)に結像する。
In addition, the light ray drawn as a solid line in this imaging system Si is a light ray that is reflected and returned when specular reflection is performed on the vertically epi-illuminated object O. After passing through the objective lens LO, the light ray is returned to the pupil lens.
The image is formed on the second image plane (Pl) via the relay lens Lr.

但し、本例では第2結像面がエレクタ−レンズLθの内
部に位置するが、外部の場合もある。第2結像面には絞
り板P1を配置して不要な光をカットする。Seは周知
の光電検出呆乙 Tは光電変換器、■は電気処理回路で
ある。この部分は発明の目的に関係しないから説明を省
く。
However, in this example, the second imaging plane is located inside the erector lens Lθ, but it may be located outside. A diaphragm plate P1 is arranged on the second imaging plane to cut unnecessary light. Se is a well-known photoelectric detection device, T is a photoelectric converter, and ■ is an electrical processing circuit. Since this part is not related to the purpose of the invention, the explanation will be omitted.

以上の構成によシ暗視野照明されたとき、物体に書き込
まれたアライメントマークを構成する線条の方向と、顕
微鏡内の瞳あるいは瞳共役位置での、線条による回折光
の分布を以下に説明する。
When dark-field illumination is performed using the above configuration, the direction of the striations forming the alignment mark written on the object and the distribution of diffracted light due to the striations at the pupil or pupil conjugate position within the microscope are shown below. explain.

まず物体面0上に任意の方向の線パターンを置き、照明
絞シ板Pcの中央にピンホールを開けて、線パターンを
照明する。すると、結像系内の絞シ面P1上にはそのパ
ターンによる回折光がパターンの線条と直交する方向に
並ぶ。例えば第3図に描く様に線パターンlvを縦方向
(これは半導体焼付装置の前側パネルに対し垂直な方向
である)に置くとその回折光は横方向に飛び、0次光(
直接光)を中心に横方向に並び、また第4図のように線
パターンノhを横方向に置くと、その回折光は縦方向に
並ぶ。そして絞夛板Pc上のピンホールの位置をずらす
と、結像系絞シ面P1上での回折光のO次光以下の光の
位置もこれに対応して移動する。従って、もしピンホー
ルの開口を広げたとすれば、その時には各ピンホールの
回折光を積分して考えれば良いことになる。即ち、結像
系絞シ面P1上での回折光の分布は、物体上に刻まれた
パターンの方向性と照明系の絞シ板PCの開口形状によ
って決定されることになる。なお、開口の部分は同じ形
状の鏡面で置換できる場合がある。
First, a line pattern in an arbitrary direction is placed on the object plane 0, a pinhole is made in the center of the illumination diaphragm plate Pc, and the line pattern is illuminated. Then, on the aperture plane P1 in the imaging system, the diffracted light due to the pattern is lined up in a direction perpendicular to the lines of the pattern. For example, if the line pattern lv is placed in the vertical direction (this is the direction perpendicular to the front panel of the semiconductor printing apparatus) as shown in FIG.
If the line pattern h is placed in the horizontal direction as shown in FIG. 4, the diffracted light beams will be arranged in the vertical direction. When the position of the pinhole on the aperture plate Pc is shifted, the position of the O-order and lower diffracted lights on the aperture surface P1 of the imaging system also moves correspondingly. Therefore, if the aperture of the pinhole is widened, then all that is required is to integrate the diffracted light of each pinhole. That is, the distribution of the diffracted light on the imaging system aperture plane P1 is determined by the directionality of the pattern carved on the object and the aperture shape of the aperture plate PC of the illumination system. Note that the opening portion may be replaced with a mirror surface of the same shape.

以下、この原理にもとすいて実現された、特定方向のパ
ターンのみを選択的に、高精度に検出できる暗視野照明
系を更に詳説する・第5図は照明系中の絞シ位置(Pc
)に設ける開口の好ましい形状0.;02を示す。
Below, we will explain in more detail a dark-field illumination system that was realized based on this principle and can selectively detect patterns in a specific direction with high accuracy. Figure 5 shows the aperture position (Pc) in the illumination system.
) Preferred shape of opening provided in 0. ;02 is shown.

絞シ板Pcの開口C1,02を結像系の絞シ板P1上へ
投影した時の結像面を第8図に示す。0′と02′はそ
れぞれ開口C1と02の像に当る。第9図は第8図と同
じ配置を描くが、更に2つの平行線の組M、!:Nを加
える。平行線の方向は実素子を構成する縦線と横線の方
向に一致し、各線条は開口部(C0)に外接し、互いに
直交している。いま図のように、照明系の絞10.t0
2)をその21面での像(a; 、 a;)が、この二
組の平行線M、Nの各々で囲まれた領域外に、しかも光
軸に対して対称になるようにpc画面上配置する。する
と、前述の原理に従い、ウェハの実素子に多い縦、横線
の回折パターンは、0: 、 C4内の各点を0次光の
位置として、各々横方向、縦方向に分布する。その結果
開口COを通過しないので、これらの方向のパターンは
結像面(1)上で観察されない。
FIG. 8 shows an image plane when the apertures C1, 02 of the aperture plate Pc are projected onto the aperture plate P1 of the imaging system. 0' and 02' correspond to the images of the apertures C1 and 02, respectively. Figure 9 depicts the same arrangement as Figure 8, but also includes two sets of parallel lines, M,! : Add N. The direction of the parallel lines corresponds to the directions of the vertical lines and horizontal lines constituting the actual element, and each filament circumscribes the opening (C0) and is orthogonal to each other. As shown in the figure, the aperture of the illumination system is 10. t0
2) on the PC screen so that the image (a;, a;) on the 21 plane is outside the area surrounded by each of the two sets of parallel lines M and N and is symmetrical with respect to the optical axis. Place on top. Then, in accordance with the above-mentioned principle, the diffraction patterns of vertical and horizontal lines, which are common in actual elements on the wafer, are distributed in the horizontal and vertical directions, respectively, with each point in 0: , C4 as the position of the zero-order light. As a result, the pattern in these directions is not observed on the imaging plane (1) because the light does not pass through the aperture CO.

これに対し斜め方向(特に45°方向)に伸びた線群パ
ターンを、アライメント用のマークとして物体面0に設
けたとすると、このパターンによる回折光の分布は第8
図にX印で示されたように逆傾斜の45°方向に拡がる
から絞シ板Pcの開口Coを通過する。その結果、アラ
イメントこの様に照明光束の与え方と受光系の絞りを適
切に組合わせることにより、実素子の縦線と横線による
不要な回折光を遮断し、所望の光束のみを検出し、アラ
イメント精度を向上させることができる。
On the other hand, if a line group pattern extending in an oblique direction (particularly in a 45° direction) is provided on the object plane 0 as an alignment mark, the distribution of diffracted light due to this pattern will be the 8th
As shown by the X mark in the figure, it spreads in the 45° direction of the reverse inclination, so it passes through the opening Co of the diaphragm plate Pc. As a result, by appropriately combining the way the illumination light flux is given and the aperture of the light receiving system, unnecessary diffracted light due to the vertical and horizontal lines of the actual element can be blocked, only the desired light flux can be detected, and alignment can be achieved. Accuracy can be improved.

また必要に応じて明視野照明を行う場合には、照明系の
絞シ板Pcとして第6図の、円形開口りを有する絞シ板
を設けて物体面0を照明する。
In addition, when performing bright field illumination as necessary, an aperture plate having a circular aperture shown in FIG. 6 is provided as the aperture plate Pc of the illumination system to illuminate the object plane 0.

! 物体面の像は対物レンズLo、I)レーレンズLr。! The image on the object plane is formed by the objective lens Lo, I) Ray lens Lr.

そしてエレクタ−レンズLθを経て最終結像面■上に結
像する。即ち明視野と暗視野の切シ換えは絞シ面(P 
c)で開口形状の異なる絞シ板を交換するだけで実現で
きる。
Then, it passes through the erector lens Lθ and forms an image on the final imaging plane (2). In other words, switching between bright field and dark field is performed at the aperture plane (P
This can be achieved by simply replacing the aperture plates with different opening shapes in c).

以上の様な特徴を持った光学系は前述の様に半導体製造
装置のマスク又はレチクルとウニノ・の位置合せ光学系
として好適である。即ちアライメントマークとして実素
子の縦線、横線の方向と異なる方向、例えば45c′方
向のマークを採用すれば、本発明の光学系をそのまま適
用することができる。マスク又はレチクルとウニノ・の
位置合せといっても色々なやシ方があシ、位置合せする
べき両者を同時に観察する方法や、単独に観察する方法
があるが、本発明はそのどちらにも適用が可能である。
As described above, an optical system having the above-mentioned characteristics is suitable as an optical system for aligning a mask or a reticle with a camera in semiconductor manufacturing equipment. That is, if a mark in a direction different from the vertical and horizontal lines of the actual element, for example, in the 45c' direction, is used as the alignment mark, the optical system of the present invention can be applied as is. There are various ways to align the mask or reticle and the unit. There are methods of observing both of them at the same time and methods of observing them individually, but the present invention is suitable for both of them. Applicable.

両者を同時に観察する方式はグロキシミテイ、コンタク
ト焼付の場合は当然として、投影結像法の場合は所謂T
TL方式ということになる。投影光学系がミラー系の場
合には白色光を使うことができるが、レンズ系の場合に
は色収差から来る波長域の制限が、本発明の光学系に対
して要求される。具体的には干渉フィルター或いはシャ
ープカットフィルターの挿入が必須となる。
The method of observing both at the same time is gloximity, of course in the case of contact burning, and the so-called T in the case of projection imaging.
This will be the TL method. When the projection optical system is a mirror system, white light can be used, but when it is a lens system, the optical system of the present invention is required to limit the wavelength range due to chromatic aberration. Specifically, it is essential to insert an interference filter or a sharp cut filter.

第9図(A)中に示したAsというユニットの配置が同
時観察の配置を示している。但し、Uは投影レンズ、q
は照明系であ)、Mはマスク、Wはウェハである。
The arrangement of the unit As shown in FIG. 9(A) indicates the arrangement for simultaneous observation. However, U is the projection lens, q
is an illumination system), M is a mask, and W is a wafer.

この配置でABで検出される像は電気処理系を通じて信
号処理され、不図示の駆動系で位置合せが行なわれる。
In this arrangement, the image detected by AB is signal-processed through an electric processing system, and positioning is performed by a drive system (not shown).

これに対してマスク又はレチクルとウェハをそれぞれ単
独に観察、検知する光学系としても、本発明の光学系は
好適である。その最も典型的な例としてはステッパーと
言われる、ステップアンドリピート方式の焼付装置に使
われているオフアクシス方式のアライメント法である。
On the other hand, the optical system of the present invention is also suitable as an optical system for observing and detecting a mask or reticle and a wafer individually. The most typical example is the off-axis alignment method used in step-and-repeat printing devices called steppers.

オフアクシス方式は投影光学系で焼き付けが行なわれる
位置から所定の距離だけ離れた所に基準位置が設定され
る。その基、重位置は顕微鏡の観察位置であシ、ここに
ウニノ・を精度良く合わせた後、後はステージの精度を
頼りに投影光学系で焼き付けを行う位置までウェハな搬
送する方式である。本発明の光学系はこの基準位置を設
定する顕微鏡として好適である。投影光学系の制約を受
けないので、高分解能の対物レンズを用いるととも可能
であシ、又白色光を用いることも可能である。第10図
にオフアクシス方式アライメント法の配置を示す。
In the off-axis method, a reference position is set at a predetermined distance from a position where printing is performed using a projection optical system. The basic position is the observation position of the microscope, and after aligning the Unino with high precision, the wafer is transported to the position where it is printed using the projection optical system, relying on the precision of the stage. The optical system of the present invention is suitable as a microscope for setting this reference position. Since it is not limited by the projection optical system, it is possible to use a high-resolution objective lens, and it is also possible to use white light. FIG. 10 shows the arrangement of the off-axis alignment method.

第10図に描くシステムは投影型半導体焼付装置のプリ
アライメントに関し、第11図はウェハWとマスクMの
アライメントに関する。なお、■は例えば縮小投影レン
ズ、Qはマスク照明系、PASはプリアライメント検出
器、STはウェハを載置する移動ステージ、ASはマス
ク・ウェハアライメント検出器である。
The system depicted in FIG. 10 relates to pre-alignment of a projection type semiconductor printing apparatus, and FIG. 11 relates to alignment of wafer W and mask M. Note that ■ is, for example, a reduction projection lens, Q is a mask illumination system, PAS is a pre-alignment detector, ST is a moving stage on which a wafer is placed, and AS is a mask/wafer alignment detector.

マスク(レチクル)とウェハのアライメント−系は一般
にサブミクロンの高精度を必要とする反面、精度を上げ
ようとすると検出範囲(視野)を狭めざるを得ない難点
がある。その為、第11図に描くように投影レンズを通
して(TTLで)、アライメントを行うとするとアライ
メント視野に入る様な既定の位置へ、予めウニノーW(
第10図)の位置を計測して送シ込む機能が必要となる
。即ち検出したウニノ・位置を勘案して移動ステージS
Tをサーボ機構を介して所定量だけ移動させる。この為
の検出機能がウニ/飄のプリアライメントと呼ばれるも
のである。特にウニノ・は、焼付装置の別の機種による
焼付作業も含まれるのが普通であるため、特定の機種に
合ったウェハ形状にできないことも多く、機械的なプリ
アライメントでは精度の保証が難しい。ウニノ1のプリ
アライメント顕微鏡系は前述のような目的から、広い検
出範囲をもたなくてはならない。
Mask (reticle) and wafer alignment systems generally require high accuracy on the order of submicrons, but on the other hand, increasing the accuracy has the disadvantage of having to narrow the detection range (field of view). Therefore, when performing alignment through the projection lens (TTL) as shown in Figure 11, the Uni-No W (
It is necessary to have a function to measure the position shown in Fig. 10) and feed it. In other words, the moving stage S is
T is moved by a predetermined amount via a servo mechanism. The detection function for this purpose is called sea urchin/fly pre-alignment. In particular, Unino usually involves printing work using a different model of printing equipment, so it is often not possible to create a wafer shape that matches a specific model, and it is difficult to guarantee accuracy with mechanical pre-alignment. The UNINO 1 pre-alignment microscope system must have a wide detection range for the above-mentioned purpose.

その為その視野内には、ウニノ・とマスクのアライメン
ト顕微鏡にもまして、実素子の特に縦、横線が多くはい
シ込んでくる・ そのような条件下でプリアライメントを行なおうとする
時でも、プリアライメント用のアライメントマークを例
えば第1図のように、チップ間のスクライプ線上に、こ
れに対して4..5°方向に設け、本発明の照明方式を
採用すれば(第1図の場合、左上と右下の扇状の開口で
照明される。第5図の絞し使用)、前述の作用によシア
ライメント顕微鏡視野内で実素子の影響を受けることな
く、アライメントマークの位置を高い精度で検出できる
。この場合、特にプリアライメント用の領域を設けずに
スクライブ線の中にアライメントマークを収容すること
ができるのは製造上の収率効果が太きい。
For this reason, more vertical and horizontal lines of the actual device intrude into the field of view than with the Unino-Mask alignment microscope. Even when attempting to perform pre-alignment under such conditions, For example, as shown in FIG. 1, place an alignment mark for pre-alignment on the scribe line between the chips, and mark 4. .. If the illumination system of the present invention is used (in the case of Fig. 1, illumination is provided by fan-shaped openings at the upper left and lower right; using the aperture shown in Fig. 5), the above-mentioned effect can be achieved. The position of the alignment mark can be detected with high precision within the field of view of the alignment microscope without being affected by the actual element. In this case, the fact that the alignment mark can be accommodated within the scribe line without providing a region for pre-alignment has a significant yield effect on manufacturing.

この様にして得られたマークの位置信号に基づいて、焼
付位置W′の近傍へのウェハの送シ量を加減すれば、ウ
ェハを、マスクとアライメントされる場所へ高精度で送
シ込むことができる。
By adjusting the amount by which the wafer is fed to the vicinity of the printing position W' based on the mark position signal obtained in this way, the wafer can be fed with high precision to the location where it is aligned with the mask. I can do it.

送シ込んだ後の顕微鏡系(第11図のAs)は本方式を
採用したものであっても良いし、又、プリアライメント
の組合せが完了しているので別方式でもよい。
The microscope system after feeding (As in FIG. 11) may adopt this method, or may use another method since the pre-alignment combination has been completed.

本発明に係る別の絞シ形状の実施例として第12図の様
に顕微鏡内結像系の絞りが矩形開口を有する場合あるい
は多角形の場合が考えられる。
As another embodiment of the aperture shape according to the present invention, a case where the aperture of the imaging system in the microscope has a rectangular aperture or a polygonal shape as shown in FIG. 12 can be considered.

この場合、結像系内の絞υの形状に対応して顕微鏡内照
明系の絞りの開口形状を決定することができる。即ち照
明系の絞シが結像系の絞り位置に結像した状態で、これ
を観察した時、照明系絞りの開口は結像系絞カの矩形開
口の各辺を外挿してえられる、互いに直交する2組の平
行線の各々のどちらにもはさまれない領域に存在する様
にすると良い。この様子は第8図に示され、照明系に第
5図の様な開口、結像系には第12図の形状の絞シ、ア
ライメント用のマークは第1図という組み合わせとなる
In this case, the aperture shape of the aperture of the illumination system within the microscope can be determined in accordance with the shape of the aperture υ in the imaging system. That is, when observing a state in which the aperture of the illumination system is imaged at the aperture position of the imaging system, the aperture of the illumination system aperture can be obtained by extrapolating each side of the rectangular aperture of the imaging system aperture. It is preferable to make it exist in a region that is not sandwiched between two sets of parallel lines that are orthogonal to each other. This situation is shown in FIG. 8, where the illumination system has an aperture as shown in FIG. 5, the imaging system has an aperture having the shape shown in FIG. 12, and the alignment mark is shown in FIG. 1.

結像系内の絞りを矩形開口とすることによシ次のような
利点がある。第一の利点は、縦、横線に対する斜めのパ
ターンの検出力を円形開口(第8図中coの部分)に比
べて一層高められる点である。なぜなら第8図で斜めパ
ターンの回折光(×印)のうち、Pの位置にくる光は、
円形開口の場合には遮断されてしまうが、矩形−口の場
合には、絞りを通過できるからである・その結果、縦、
横線については円形開口の場合と同じであるのに対し、
検出すべき斜めパターンの回折光については像面1上で
の受光光量がPの分だけ増加する為、このパターンの検
出精度向上につながる。
By using a rectangular aperture as the aperture in the imaging system, there are the following advantages. The first advantage is that the ability to detect diagonal patterns with respect to vertical and horizontal lines can be further improved compared to a circular aperture (the part indicated by co in FIG. 8). This is because, among the diffracted lights (x marks) of the diagonal pattern in Fig. 8, the light that comes to the position P is
In the case of a circular aperture, it is blocked, but in the case of a rectangular aperture, it is possible to pass through the diaphragm.As a result, vertical,
While the horizontal line is the same as for the circular opening,
Regarding the diffracted light of the diagonal pattern to be detected, the amount of light received on the image plane 1 increases by an amount of P, which leads to an improvement in the detection accuracy of this pattern.

第二の利点は同顕微鏡系番明視野との切シ換えとして用
いる場合、光量を増加するだけでなく、斜め方向のパタ
ーンの解像力を上げるという利点である。
The second advantage is that when used as a replacement for the bright field microscope system, it not only increases the amount of light but also increases the resolution of diagonal patterns.

照明系内に入れる絞りはパターンの形状に応じて色々な
変形が考えられる。例えば、照明系の絞り開口形状を、
第15図のように、光軸に対して対称に斜め方向(例え
ば±45°方向)に計4箇所設けた絞りが好ましい場合
がある。アライメントマークとしてクロスパターンの第
14図の十字マークを用い、かつこの開口絞りを用いる
ことで、これまで述べてきた原理に基づくと、ウェハ上
実素子に対するアライメントマークの選択性が高まり、
アライメント精度向上につながる。
The aperture inserted into the illumination system can be modified in various ways depending on the shape of the pattern. For example, the aperture shape of the illumination system is
As shown in FIG. 15, it may be preferable to have apertures provided at four locations symmetrically and obliquely (for example, in the ±45° direction) with respect to the optical axis. By using the cross pattern shown in FIG. 14 as an alignment mark and using this aperture diaphragm, based on the principle described so far, the selectivity of the alignment mark with respect to the actual elements on the wafer is increased.
This leads to improved alignment accuracy.

以上説明したように、半導体焼付装置のマスク・ウェハ
アライメント顕微鏡系に、斜め方向(最適は45°方向
)のみを選択的に検出できる本発明に係る照明方式を採
用することにより、実素子に多い縦、横線の回折光の影
響を少なくし、アライメントの能力を高めることが可能
となった。又、アライメントマークを実素子の近くにも
配置できる為、同マークの配置場所に関する制約が従来
より格段に軽減されしかも、マスク上での有効部を広げ
ることも可能となる。
As explained above, by adopting the illumination method according to the present invention that can selectively detect only oblique directions (optimally 45° direction) in the mask/wafer alignment microscope system of semiconductor printing equipment, it is possible to It has become possible to reduce the influence of diffracted light from vertical and horizontal lines and improve alignment ability. Furthermore, since the alignment mark can be placed close to the actual element, the restrictions on the placement location of the mark are significantly reduced compared to conventional techniques, and it is also possible to expand the effective area on the mask.

また、半導体焼付装置のプリアライメント機構を始めと
する、一般の顕微鏡測長機構へ本方式を採用することで
、φ比を改善し、信号検出精度を高めることもできる。
Further, by adopting this method to a general microscope length measuring mechanism, such as a pre-alignment mechanism of a semiconductor printing device, it is possible to improve the φ ratio and increase the signal detection accuracy.

【図面の簡単な説明】 第1図はウェハ上のアライメントマーク配置例を示す平
面図。第2図は本発明実施例の光学断面図。第3図と第
4図は夫々、線パターンと回折光の関係を示す図。第5
図、第6図、第7図は夫々実施例の構成部材を示す平面
図や第8図は光学作用の説明図。第9図は半導体焼付装
置の概念図。第10図はプリアライメントの説明図。第
11図はマスク・ウエハアライメントの説明図。第12
図と第15図は夫々、別実施例の構成部材を示す平面図
。第14図はアライメントマークの別の例を示す図。 図中、 W+拳・ウェハ AM・・・アライメントマーク 0・・・物体面 So・・・顕微鏡照明系 ■Ja・・・光源 Pc・・・絞シ板 Lc・・・第2コンデンサーレンズ Be・・・ビームスプリッタ− エp・・・瞳 LO・・・顕微鏡対物レンズ Sl・・・顕微鏡結像系 Lr・・・リレーレンズ Le・・・エレクタ−レンズ Pl・・・絞夛板 工・・・最終結像面 CC・・・照明開口  92 CO・・・絞シ開ロ ノV、へ・・・線パターン Q・・・照明系 U・・・投影レンズ で′拳ろ。 出願人 キャノン株式会社 域10口 =====ゴー” 811層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing an example of arrangement of alignment marks on a wafer. FIG. 2 is an optical cross-sectional view of an embodiment of the present invention. FIG. 3 and FIG. 4 are diagrams showing the relationship between line patterns and diffracted light, respectively. Fifth
6 and 7 are plan views showing the constituent members of the embodiment, respectively, and FIG. 8 is an explanatory diagram of the optical function. FIG. 9 is a conceptual diagram of a semiconductor printing device. FIG. 10 is an explanatory diagram of pre-alignment. FIG. 11 is an explanatory diagram of mask-wafer alignment. 12th
FIG. 15 and FIG. 15 are plan views showing constituent members of another embodiment, respectively. FIG. 14 is a diagram showing another example of alignment marks. In the figure, W+Fist/Wafer AM...Alignment mark 0...Object surface So...Microscope illumination system ■Ja...Light source Pc...Aperture plate Lc...Second condenser lens Be...・Beam splitter Ep...pupil LO...microscope objective lens Sl...microscope imaging system Lr...relay lens Le...erector lens PL...diaphragm platework...final Imaging plane CC...Illumination aperture 92 CO...Aperture opening Rono V, to...Line pattern Q...Illumination system U...Fist with the projection lens. Applicant Canon Co., Ltd. area 10 units=====Go” 811 layers

Claims (1)

【特許請求の範囲】 、(1)物体を暗視野照明するための第1絞り手段を内
在させた照明系及び、物体を介して第1絞り手段とほぼ
光学的に共役となる位置に第2絞り手段を設けた結像系
を具備し、第1絞り手段の像を第2の絞り手段に投影し
た状態で互に共通の開口域を持たず、且つ第1絞り手段
の形状と第2絞り手段の形状を物体の特定方向のパター
ンからの回折光を遮断すべく関係付けたことを特徴とす
る検知光学系。 (2)前記第1絞り手段は、前記第2絞り手段上へ投影
した時に前記第2絞り手段の開口に外接する互いに直交
する平行線の各々に挾まれない領域で且つ光軸に対称な
領域に開口を有する遮光板である特許請求の範囲第1項
記載の検知光学系。 (6)前記物体は半導体製造のためのウェハ又はマスク
であって、特定方向のパターンは実素子パターンである
、特許請求の範囲第1項記載の検知光学系。
[Scope of Claims] (1) An illumination system incorporating a first aperture means for dark-field illuminating an object, and a second aperture means disposed through the object at a position substantially optically conjugate with the first aperture means. An imaging system is provided with a diaphragm, and the image of the first diaphragm is projected onto the second diaphragm, and the image does not have a common aperture area, and the shape of the first diaphragm and the second diaphragm are different from each other. 1. A detection optical system characterized in that the shape of the means is related to block diffracted light from a pattern in a specific direction of an object. (2) The first aperture means is an area that is not sandwiched by mutually orthogonal parallel lines circumscribing the aperture of the second aperture means when projected onto the second aperture means, and is symmetrical to the optical axis. 2. The detection optical system according to claim 1, which is a light-shielding plate having an aperture. (6) The detection optical system according to claim 1, wherein the object is a wafer or a mask for semiconductor manufacturing, and the pattern in a specific direction is a real device pattern.
JP57210908A 1982-12-01 1982-12-01 Detecting optical system Granted JPS59101827A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57210908A JPS59101827A (en) 1982-12-01 1982-12-01 Detecting optical system
US07/225,826 US4871257A (en) 1982-12-01 1988-07-29 Optical apparatus for observing patterned article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210908A JPS59101827A (en) 1982-12-01 1982-12-01 Detecting optical system

Publications (2)

Publication Number Publication Date
JPS59101827A true JPS59101827A (en) 1984-06-12
JPS6348421B2 JPS6348421B2 (en) 1988-09-29

Family

ID=16597055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210908A Granted JPS59101827A (en) 1982-12-01 1982-12-01 Detecting optical system

Country Status (1)

Country Link
JP (1) JPS59101827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043199A (en) * 1994-08-17 2007-02-15 Asml Us Inc Off axis alignment system for scanning photolithography and photolithography tool
US7366420B2 (en) 2003-03-27 2008-04-29 Canon Kabushiki Kaisha Optical transmission device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864884A (en) * 1971-12-01 1973-09-07
JPS51117538A (en) * 1975-04-07 1976-10-15 Canon Inc Object image recognizing method and device
JPS5612728A (en) * 1979-07-12 1981-02-07 Nippon Kogaku Kk <Nikon> Alignmening device for ic projection exposure equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864884A (en) * 1971-12-01 1973-09-07
JPS51117538A (en) * 1975-04-07 1976-10-15 Canon Inc Object image recognizing method and device
JPS5612728A (en) * 1979-07-12 1981-02-07 Nippon Kogaku Kk <Nikon> Alignmening device for ic projection exposure equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043199A (en) * 1994-08-17 2007-02-15 Asml Us Inc Off axis alignment system for scanning photolithography and photolithography tool
US7366420B2 (en) 2003-03-27 2008-04-29 Canon Kabushiki Kaisha Optical transmission device

Also Published As

Publication number Publication date
JPS6348421B2 (en) 1988-09-29

Similar Documents

Publication Publication Date Title
US4871257A (en) Optical apparatus for observing patterned article
CA1154175A (en) Method and apparatus for mask/wafer alignment
US4402596A (en) Projection type exposure device
JPS593791B2 (en) Object image recognition method
GB2133874A (en) Apparatus for observing and aligning objects
JPH0121614B2 (en)
JPS6313330A (en) alignment device
JPS6337321B2 (en)
US6797443B2 (en) Focus monitoring method, focus monitoring apparatus, and method of manufacturing semiconductor device
JPH0245324B2 (en)
US5448350A (en) Surface state inspection apparatus and exposure apparatus including the same
JPS638402B2 (en)
JPS59101827A (en) Detecting optical system
JP2000010013A (en) Phase contrast microscope and overlay measurement device
JP3109107B2 (en) Position detecting apparatus, exposure apparatus and exposure method
JPS6370419A (en) projection exposure equipment
JPH0359568B2 (en)
JP3163669B2 (en) Detection apparatus, exposure apparatus, and exposure method
JPH0774094A (en) Projection exposure apparatus and method
JPS649606B2 (en)
JPS58213207A (en) Recognizing device of image of object
JP3326446B2 (en) Exposure method and apparatus, lithography method, mark printing apparatus, and proximity exposure apparatus
JPH06120108A (en) Projection exposure method and apparatus
JPH11121357A (en) Position detecting device and position detecting method
JPH0650389B2 (en) Mask and exposure apparatus using the mask