[go: up one dir, main page]

JPS59103329A - Vapor growth of compound semiconductor layer - Google Patents

Vapor growth of compound semiconductor layer

Info

Publication number
JPS59103329A
JPS59103329A JP21277082A JP21277082A JPS59103329A JP S59103329 A JPS59103329 A JP S59103329A JP 21277082 A JP21277082 A JP 21277082A JP 21277082 A JP21277082 A JP 21277082A JP S59103329 A JPS59103329 A JP S59103329A
Authority
JP
Japan
Prior art keywords
crystal
compound semiconductor
gas
vessel
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21277082A
Other languages
Japanese (ja)
Inventor
Kenya Nakai
中井 建弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21277082A priority Critical patent/JPS59103329A/en
Publication of JPS59103329A publication Critical patent/JPS59103329A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reject formation of carrier trapping level by Al2O3 within the formed semiconductor crystal by previously adding the specified quantity of Mg into the reaction gas on the occasion of producing a compound semiconductor layer including Al on a substrate to be processed through thermal decomposition of reaction gas containing Al organic compound gas. CONSTITUTION:A GaAs substrate 17 to be processed is housed, while it is being supported by an SiC base 16, into a quartz reaction tube 14 allowing the winding of a high frequency coil 18 at the circumference, and a desired GaAlAs crystal is formed thereon by the vapor growth. For this purpose, H2 in the vessel 3 provided through the bubbler 1 accommodating AsH3, (CH3)3Al within the vessel 4 provided through the bubbler 2 accommodating H2S, (CH3)3Ga within the vessel 5 is supplied to the reaction tube 14 through the trap 9 and filter 13. At this time, a quartz reaction tube having a heater 8 at its circumference is disposed in the path of the gas mixing them. The metal Mg is prepared in such tube and thereby Mg of 1ppm or less can be supplied to the mixed reaction gas.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は化合物半導体層の気相成長方法、特にガリウム
・アルミニウム・砒素(GaA/As ) 、インジウ
ム・アルミニウム・燐(InA/P )等のアルミニウ
ム(A/)を含む化合物半導体の有機金属熱分解気相成
長方法(Metal Organic Chemica
lVapor Deposition ;以下MOCV
D法と略称する)の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for vapor phase growth of compound semiconductor layers, particularly gallium-aluminum-arsenic (GaA/As), indium-aluminum-phosphorus (InA/P), etc. Metal organic chemical vapor phase growth method for compound semiconductors containing aluminum (A/)
lVapor Deposition;hereinafter referred to as MOCV
(abbreviated as D method).

(b)  技術の背景 光応用計測制御、光通信その他の種々の産業。(b) Technology background Optical applied measurement control, optical communication and other various industries.

民生分野における光を情報信号媒体に用いる技術におい
て、半導体レーザ、発光ダイオード等の半導体発光装置
及びフォトダイオード等の半導体受光装置は最も重要で
基本的な泡成要素である。
In the technology of using light as an information signal medium in the consumer field, semiconductor light emitting devices such as semiconductor lasers and light emitting diodes, and semiconductor light receiving devices such as photodiodes are the most important and basic foam forming elements.

これらの半導体発光装置は主として化合物半導体によっ
て構成され、半導体受光装置についても例えば波長0.
7乃至l〔μm〕程度以上の帯域のために化合物半導体
受光装置の開発・実用化が推進されている。
These semiconductor light emitting devices are mainly composed of compound semiconductors, and the semiconductor light receiving devices are also made of, for example, wavelengths of 0.
The development and practical use of compound semiconductor photodetectors for a band of about 7 to 1 [μm] or more is being promoted.

他方、情報処理装置等の能力の一層の向上のために、シ
リコン(Sl)よりキャリアの移動度が遥に大きい化合
物半導体を用いて、半導体装置の高速化、低消費電力化
を推進する努力が重ねられている。
On the other hand, in order to further improve the performance of information processing devices, efforts are being made to promote higher speed and lower power consumption of semiconductor devices by using compound semiconductors, which have a much higher carrier mobility than silicon (Sl). They are stacked on top of each other.

以上述べたレーザ、フォトダイオード及びトランジスタ
等に用いられる化合物半導体は現在■−V族化合物が主
体をなし1例えばガリウム・砒素(GaAS)、インジ
ウム・燐(InP)等の二元化合物結晶及びガリウム・
アルミニウム・砒素(GaAAAs)、 インジウム・
ガリウム・砒素・惧(InGaAsP )等の三元以上
の化合物混晶なとである。
The compound semiconductors used in the lasers, photodiodes, transistors, etc. mentioned above are currently mainly composed of -V group compounds.
Aluminum/arsenic (GaAAAs), indium/
It is a mixed crystal of ternary or higher compounds such as gallium, arsenic, and (InGaAsP).

光半導体装置及び高電子移動度電界効果トランジスタ等
においては、一般に組成金界にしかつ結晶格子の整合が
可能な化合物半導体を選択してこれを化合物半導体基板
上に積層成長させ、これらの成長層に所要の機能を有す
る領域が形成されている。従ってこれらの化合物半導体
装置の特性及び信頼性は前記成長層に大きく依存してい
る。
In optical semiconductor devices and high electron mobility field effect transistors, etc., compound semiconductors that have a composition of gold fields and whose crystal lattice can be matched are generally selected and grown in layers on a compound semiconductor substrate. A region having the required function is formed. Therefore, the characteristics and reliability of these compound semiconductor devices largely depend on the growth layer.

(C)  従来技術と問題点 化合物半導体の結晶成長方法としては、液相成長法、化
学気相成長法(化学輸送法;以下CVD法と略称する)
、有機金属熱分解気相成長法(MOCVD法)及び分子
線成長法などが既に行なわれている。
(C) Conventional technology and problems Crystal growth methods for compound semiconductors include liquid phase growth method and chemical vapor deposition method (chemical transport method; hereinafter abbreviated as CVD method).
, metal organic pyrolysis vapor deposition (MOCVD), and molecular beam growth have already been used.

成長させる化合物半導体の組成にアルミニウム(Alり
が含まれる場合には、従来行なわれている前記各成長方
法は何れも困難が伴なっている。
When aluminum is included in the composition of the compound semiconductor to be grown, each of the conventional growth methods described above is accompanied by difficulties.

QaAs−GaAlAs系の半導体レーザ及び発光ダイ
オード等の光半導体装置のGaAAAs nの成長には
従来液相成長法が最も多く行なわれている。
Conventionally, the liquid phase growth method has been most commonly used to grow GaAAASn for optical semiconductor devices such as QaAs-GaAlAs semiconductor lasers and light emitting diodes.

しかしながら成長溶液組成のうちAI濃度は特に希薄な
ために、結晶成長中に成長層近傍で溶液のAl濃度不足
を生じる。これは溶液中のAlの自己拡散と対流によっ
て補われるが、成長速度が太きいとき、又は成長層を厚
く形成するときには成長層のA1組成比の減少が避けら
れない。
However, since the Al concentration in the growth solution composition is particularly dilute, an insufficient Al concentration in the solution occurs near the growth layer during crystal growth. This is compensated for by self-diffusion and convection of Al in the solution, but when the growth rate is high or the growth layer is formed thick, a decrease in the Al composition ratio of the growth layer is unavoidable.

また塩素((J)化合物が原料とされるCVD法によっ
てGaAlAsを成長させることを試みるならば、 A
lが石英反応管に析出するなどして制御良く良質のGa
AIAS結晶を得ることは不可能である。
Furthermore, if we attempt to grow GaAlAs by the CVD method using chlorine ((J) compounds as raw materials, A
Good quality Ga is produced in a well-controlled manner, such as by precipitation of l in a quartz reaction tube.
It is not possible to obtain AIAS crystals.

このCVD法に対して、 rvio CVD法において
は例えばトリメチルガリウム((CH3)5Ga)、 
 トリメチルアルミニウム((CH3)3Al)などの
有機金属材料とハイドライドアルシン(ASI(3)と
を水素(H2)をキャリアとして適量混合して反応管に
送υ、結晶を成長させる基板近傍において加熱分解する
ことによってGaAJAs結晶の成長を可能にしている
In contrast to this CVD method, in the rvio CVD method, for example, trimethyl gallium ((CH3)5Ga),
An appropriate amount of organometallic material such as trimethylaluminum ((CH3)3Al) and hydride arsine (ASI(3)) are mixed together using hydrogen (H2) as a carrier, sent to a reaction tube, and thermally decomposed near the substrate where crystals are grown. This makes it possible to grow GaAJAs crystals.

しかしながら従来のMOCVD法で成長させだGaAn
AS結晶を用いる半導体レーザ等の光半導体装置は、液
相成長法で成長させたGaAlAS 結晶を用いる光半
導体装置に比較して発光効率が大幅に低く、かつMOC
VD法によるGaA6AS結晶はキャリアの濃度及び移
動度が液相成長結晶に比較して大幅に低下していること
が知られている。
However, GaAn grown by conventional MOCVD method
Optical semiconductor devices such as semiconductor lasers that use AS crystals have significantly lower luminous efficiency than optical semiconductor devices that use GaAlAS crystals grown by liquid phase growth, and are
It is known that the carrier concentration and mobility of GaA6AS crystals produced by the VD method are significantly lower than those of liquid phase grown crystals.

これらの特性劣化は、 MOCVD  法において有機
金属材料やA8H3等のキャリアとして多量に用いられ
る水素(H2)ガス等に含まれ、或いは装置内に残留す
る酸素(02)、水蒸気(H2O)或いは酸化炭素(C
O)等によってA7が酸化されて。
These characteristic deteriorations are caused by hydrogen (H2) gas, which is used in large quantities as a carrier for organometallic materials and A8H3 in the MOCVD method, or by oxygen (02), water vapor (H2O), or carbon oxides remaining in the device. (C
A7 is oxidized by O) etc.

GaAlAs 結晶中に多量の深いキャリア捕獲率位が
6入されることに起因すると考えられる。このAl酸化
に対処するために、既にMOCVD装置要望されている
This is thought to be due to the large number of deep carrier trapping sites in the GaAlAs crystal. In order to deal with this Al oxidation, MOCVD equipment is already in demand.

(d)  発明の目的 本発明は、有機金属熱分解気相成長方法(MOCVD法
)によって成長させたアルミニウム(A4)を含む化合
物半導体結晶内のアルミニウム(A4)酸化物等による
キャリア捕獲単位の形成を阻止してその特性を改善する
ことを目的とする。
(d) Purpose of the Invention The present invention relates to the formation of carrier trapping units by aluminum (A4) oxide, etc. in a compound semiconductor crystal containing aluminum (A4) grown by a metal organic pyrolysis vapor deposition method (MOCVD method). The purpose is to prevent this and improve its characteristics.

(e)  発明の構成 本発明の前記目的は、アルミニウムを含む化合物半導体
層を、アルミニウム有機化合物ガスを含む反応ガスの熱
分解によって被処理基板上に生成する方法において、前
記反応ガス中に酸素との反応速度がアルミニウムよりも
大なるマグネシウムを1(ppm)以下添加することに
より達成される。
(e) Structure of the Invention The object of the present invention is to provide a method for producing a compound semiconductor layer containing aluminum on a substrate to be processed by thermal decomposition of a reaction gas containing an aluminum organic compound gas. This can be achieved by adding 1 (ppm) or less of magnesium, which has a higher reaction rate than aluminum.

Alを含む化合物半導体結晶例えばGaA/As結晶の
成長において反応ガス中の微量の酸素及び酸素化合物が
大きい障害要因となるのは、Alが例えばQaに比較し
て化学的に甚だ活発であって容易に酸化さnるためであ
る。−!たGaAlAs結晶内にAA酸化物によってギ
ヤリア捕獲単位が形成されるのは、酸素が微量であるた
めにAlの酸化がA40等の不飽和酸化物の生成状態に
止まることによると考えられる。
The reason why trace amounts of oxygen and oxygen compounds in the reaction gas become a major hindrance in the growth of compound semiconductor crystals containing Al, such as GaA/As crystals, is because Al is chemically extremely active compared to, for example, Qa. This is because it is oxidized to n. -! The reason why gearia capture units are formed by AA oxides in the GaAlAs crystals is thought to be because the oxidation of Al remains in the state of producing unsaturated oxides such as A40 due to the trace amount of oxygen.

本発明においては、酸素との結合エネルギーがAAより
大きい2価金属であるマグネシウム(Mg )を反応カ
ス中に導入することによってA 7 酸化物の生成が阻
止され、かつこれに代って生成される酸化マグネシウム
(MgO)は電子的に2 皿した化合物であり、GaA
lAs等の半導体結晶内に混入した場合にも′屯気的に
不活性であるためにキャリア捕獲準位が形成されない。
In the present invention, by introducing magnesium (Mg), which is a divalent metal whose bonding energy with oxygen is larger than that of AA, into the reaction residue, the production of A 7 oxide is inhibited, and the A 7 oxide is produced in its place. Magnesium oxide (MgO) is an electronically double compound, and GaA
Even when mixed into a semiconductor crystal such as lAs, carrier trapping levels are not formed because it is generally inactive.

キャリア捕獲準位の形成を阻止するためのマグネシウム
(Mg)の反応ガスへの添加量は1(ppml以下例え
ば10(ppb)乃至数100 (ppb)程度の微量
にて足りる。
The amount of magnesium (Mg) added to the reaction gas to prevent the formation of carrier trapping levels may be as small as 1 ppml or less, for example, about 10 ppb to several 100 ppb.

しかしながら形成されるAlを含む半導体結晶にp型の
導電性を与えることが必要である場合には、添加量を適
量に増加してMgをアクセプタ不純物とすることが容易
に可能である。
However, if it is necessary to impart p-type conductivity to the formed semiconductor crystal containing Al, it is easily possible to appropriately increase the amount of addition and use Mg as an acceptor impurity.

また反対に形成されるAIJ’e含む半導体結晶にn型
の導気型を与えることが必要である場合には。
Conversely, if it is necessary to provide n-type conductivity to the semiconductor crystal containing AIJ'e formed.

ドナー不純物とともに微量のMgを反応ガス中に添加す
ることによって、キャリア捕獲準位の形成が阻止された
n型半啓体結晶が形成される。
By adding a small amount of Mg to the reaction gas together with a donor impurity, an n-type half-envelope crystal in which the formation of carrier trapping levels is prevented is formed.

(【)発明の実施例 以下本発明を実施例により図面全参照して具体的に説明
する。
([) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to all the drawings.

図はGaAs基板上にGaAAAs結晶を成長せしめる
本発明の実施状況を模式的に示す。図において、1は(
CH31+Alを収容したバブラー、2は(C’H3)
3Ga 全収容したバブラー、収容容器3にH2+収容
容器4にASH3、収容容器5に)I2Sがそれぞれ収
容される。6は金属マグネシウム。
The figure schematically shows the implementation of the present invention in which a GaAAAs crystal is grown on a GaAs substrate. In the figure, 1 is (
Bubbler containing CH31+Al, 2 is (C'H3)
A fully accommodated 3Ga bubbler, H2 in the container 3, ASH3 in the container 4, and I2S in the container 5 are stored, respectively. 6 is metallic magnesium.

7は石英反応管、8はヒーター、9はトラップ。7 is a quartz reaction tube, 8 is a heater, and 9 is a trap.

10は例えばパラジウム(Pd)拡散膜を用いたH2精
製装置、11は流量制仙I装置?Ni、12はパルプ。
For example, 10 is an H2 purification device using a palladium (Pd) diffusion membrane, and 11 is a flow rate control I device? Ni, 12 is pulp.

13はフィルタ、14は石英反応管、15はその排気孔
、16は例えば炭化群X(SiC)によって形成された
基台、17はGaAlAs結晶を成長させる被処理Ga
As基板、18は高周波コイルを示す。なお、金属マグ
ネシウム6、石英反応管7゜ヒーター8及びトラップ9
が本実施例において従来技術によるrllo CVD 
法に新たに付加された部分である。づ・た本装置のリー
クばI X i O= [の−3/ atmrIn ”
〕以下と充分に高い気密度にされている。
13 is a filter, 14 is a quartz reaction tube, 15 is an exhaust hole thereof, 16 is a base made of, for example, carbon group X (SiC), and 17 is a Ga to be treated for growing a GaAlAs crystal
As substrate, 18 indicates a high frequency coil. In addition, metal magnesium 6, quartz reaction tube 7° heater 8 and trap 9
In this example, rllo CVD according to the prior art
This is a new part of the law. If there is a leak in this device,
] The airtightness is sufficiently high as below.

このような気相成長装賢を用い、収容容器5からのi■
2s”X停止してノンドープ状態のC,a O,7AA
0.3As結晶をG a A s基板17上に成長さ−
IJ’−る本発明(7)’JIMa例ニhいて、従来技
術と同様にトリメデルガリウム((CH3)3Ga)、
 )リメチルアルミニウム((CH3) 3AA )及
びASH3とキャリアとしてI−I 2300(’(、
〕に加熱された純度99.9999(2)以上の金属マ
グネシウム(Mg)6に接触させることによって1反応
ガス中にtoo(ppb)程度にマグネシウム(Mg)
蒸気を含有させて石英反応管14に導き、成長温度約7
30〔℃〕としてQaO,7AlO,3A s結晶を成
長させる。このMg蒸気の含有率は反応ガス中の酸素(
02)の含有率のほぼ2倍に相当する。
Using such a vapor phase growth system, i■
2s”X stopped and non-doped C, a O, 7AA
A 0.3As crystal is grown on the GaAs substrate 17.
According to the present invention (7)'JIMa example, trimedergallium ((CH3)3Ga),
) remethylaluminum ((CH3) 3AA) and ASH3 and I-I 2300('(,
] Magnesium (Mg) is added to about too (ppb) in one reaction gas by contacting with metallic magnesium (Mg) 6 of purity 99.9999 (2) or higher heated to
Steam is introduced into the quartz reaction tube 14, and the growth temperature is about 7.
QaO, 7AlO, 3As crystals are grown at 30[° C.]. The content of this Mg vapor is determined by the oxygen (
This corresponds to approximately twice the content rate of 02).

ここに得られたGa O,7Alj 0.3As結晶は
、正孔濃度約lXl0  [m  :]l移動度350
乃至400Ccm”/V sea:) テアル。
The GaO,7Alj0.3As crystal obtained here has a hole concentration of about lXl0 [m:]l mobility of 350
〜400Ccm''/V sea:) Theal.

比較試料として1本実施例の特つとする金属マグネシウ
ム6に反応ガスを接触させることなく。
A comparative sample was prepared without contacting the metal magnesium 6, which is a special feature of this example, with a reactive gas.

従来技術によって一同一温度で成長さぜたQao、7A
10.3As結晶は抵抗率107乃至109 〔Ω・副
〕を示して、正孔濃度、移動度を前記実施例と同様に測
定することは不可能である。
Qao, 7A grown at the same temperature by conventional technology
The 10.3As crystal exhibits a resistivity of 107 to 109 [Ω·sub], making it impossible to measure the hole concentration and mobility in the same manner as in the previous example.

寸た第二の比較試料として前記比較試料の成長温度を7
90 C’C)に高めた場合にも、抵抗率10 乃至1
0 〔Ω・副〕程度、正孔儂度約lXl0  (副 〕
、移動[100乃至200(crl / V−see)
のGa0.7AIjO,3As結晶が得られるに止まり
、この比較試料と前記本発明の実施例とについてホトル
ミネセンス強度を比較するならば。
As a second comparative sample, the growth temperature of the comparative sample was set to 7.
Even when the resistivity is increased to 90 C'C), the resistivity is 10 to 1.
0 [Ω・minor] degree, hole intensity approximately lXl0 (minor)
, movement [100 to 200 (crl/V-see)
However, if we compare the photoluminescence intensity of this comparative sample and the example of the present invention.

前記実施例は約100倍以上の強度を示して両者の間に
は大幅な差がある。
The strength of the above example is approximately 100 times higher, and there is a large difference between the two.

前記本発明の実施例について得られたQa AS結晶の
正孔濃度及び移動v1を、同一装置によって成長させた
iを含有しないGaAs  結晶の正孔ざ′i度約1X
l0  (cm  lt移動度約4o occrl/V
 、 sea ’)と比較したところ2本発明によれば
、 Al酸化物によるキャリア捕獲準位の形成が充分に
阻止され、かつP、1g e化物によってAI3酸化物
に代る障害も発生しかい。
The hole concentration and migration v1 of the Qa AS crystal obtained in the example of the present invention are compared with the hole concentration and migration v1 of the i-free GaAs crystal grown by the same apparatus, about 1X.
l0 (cm lt mobility approximately 4o occrl/V
, sea'), according to the present invention, the formation of carrier trapping levels by Al oxide is sufficiently prevented, and the P, 1ge oxide does not cause any disturbance in place of the Al3 oxide.

また前記実施例は本発明を明確にするためにGaAlA
s結晶をノンドープ状襲としているが。
In addition, the above embodiments are based on GaAlA in order to clarify the present invention.
Although the s crystal is treated as non-doped.

先に述べた如くマグネシウム(Mg )をp型不純物と
し、或いはn型不純物と共にMgヲ用いてそれぞれp型
或いはn型の酸素による特性省化力■1止された良質の
An’を含む化合物半導体結晶を得ることができる。
As mentioned above, by using magnesium (Mg) as a p-type impurity or by using Mg together with an n-type impurity, a compound semiconductor containing high-quality An' with reduced characteristics due to p-type or n-type oxygen is produced. Crystals can be obtained.

更に前記実施例はGaAlAs結晶を形成しているが1
本発明は例えばInA/As、InAIP等のGa又は
As以外の組成を含むAd化化合物等導体結晶成長に適
用して同様の効果を得ることができる。
Furthermore, although the above embodiment forms a GaAlAs crystal, 1
The present invention can be applied to the growth of conductor crystals such as Ad compounds containing compositions other than Ga or As, such as InA/As and InAIP, to obtain similar effects.

(g)  発明の効果 以上説明した如く本発明によれば、有機金屓熱分解気相
成長法によって、従来重大な問題であった酸素の影響が
阻止されて光半導体装置等に適する良質のアルミニウム
(A7)を含む化合物半導体結晶を成長させることがで
きる。
(g) Effects of the Invention As explained above, according to the present invention, the influence of oxygen, which has been a serious problem in the past, is prevented by the organic metal pyrolysis vapor phase growth method, and high quality aluminum suitable for optical semiconductor devices, etc. can be produced. A compound semiconductor crystal containing (A7) can be grown.

またキャリアガスを増加することが可能となり成長する
結晶の均質性が向上する等の効果を有し
It also has the effect of increasing the amount of carrier gas and improving the homogeneity of the growing crystal.

【図面の簡単な説明】[Brief explanation of drawings]

図はGaAAAs  結晶成長の実施例を示す模式図で
ある。 1:lにおいて、1は(CH3)3AAを収容したバブ
ラー+  2 +i (CH3) 3 G aを収容し
たバブラー、3i”t: H2M、容容器、4はA S
 f(3収容容器、5はH2S収容容器、6は金属Mg
、7は石英反応管、8はヒーター、9はトラップ、io
はH2精製装置。 11は流量制御装置、14は石英反応管、16は基台+
 17 II Ga’As 基板を示す。
The figure is a schematic diagram showing an example of GaAAAs crystal growth. In 1:l, 1 is a bubbler containing (CH3)3AA + 2 +i (CH3)3G a bubbler, 3i"t: H2M, container, 4 is A S
f (3 storage container, 5 is H2S storage container, 6 is metal Mg
, 7 is a quartz reaction tube, 8 is a heater, 9 is a trap, io
is an H2 purification device. 11 is a flow rate control device, 14 is a quartz reaction tube, 16 is a base +
17 II Ga'As substrate is shown.

Claims (1)

【特許請求の範囲】[Claims] アルミニウムを含む化合物半導体層を、アルミニウム有
機化合物ガスを含む反応ガスの熱分解によって被処理基
板上に生成する方法にかいて、前記反応ガス中に、マグ
ネシウムを1 (ppm)以下添加することを特徴とす
る化合物半導体層の気相成長方法。
A method for producing a compound semiconductor layer containing aluminum on a substrate to be processed by thermal decomposition of a reaction gas containing an aluminum organic compound gas, characterized in that 1 (ppm) or less of magnesium is added to the reaction gas. A method for vapor phase growth of a compound semiconductor layer.
JP21277082A 1982-12-06 1982-12-06 Vapor growth of compound semiconductor layer Pending JPS59103329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21277082A JPS59103329A (en) 1982-12-06 1982-12-06 Vapor growth of compound semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21277082A JPS59103329A (en) 1982-12-06 1982-12-06 Vapor growth of compound semiconductor layer

Publications (1)

Publication Number Publication Date
JPS59103329A true JPS59103329A (en) 1984-06-14

Family

ID=16628106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21277082A Pending JPS59103329A (en) 1982-12-06 1982-12-06 Vapor growth of compound semiconductor layer

Country Status (1)

Country Link
JP (1) JPS59103329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866198A (en) * 1992-06-17 1999-02-02 Kabushiki Kaisha Toshiba Method of fabricating a compound semiconductor having a plurality of layers using a flow compensation technique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPAN J.APPL PHYS *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866198A (en) * 1992-06-17 1999-02-02 Kabushiki Kaisha Toshiba Method of fabricating a compound semiconductor having a plurality of layers using a flow compensation technique

Similar Documents

Publication Publication Date Title
EP0881666B1 (en) P-type nitrogen compound semiconductor and method of manufacturing same
Tietjen et al. The preparation and properties of vapor‐deposited epitaxial GaAs1− x P x using arsine and phosphine
US3931631A (en) Gallium phosphide light-emitting diodes
Stutius Nitrogen as shallow acceptor in ZnSe grown by organometallic chemical vapor deposition
JPH0573252B2 (en)
US7255742B2 (en) Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
KR100433039B1 (en) Epitaxial wafer and manufacturing method thereof
Scholz MOVPE of Group‐III Heterostructures for Optoelectronic Applications
JPS59103329A (en) Vapor growth of compound semiconductor layer
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JP3598593B2 (en) Nitrogen-containing semiconductor devices
JPS61247686A (en) Manufacturing method of semiconductor single crystal
Hayafuji et al. Atomic layer epitaxy of device quality AlGaAs and AlAs
TW451505B (en) Epitaxial wafer for luminous semiconductor element and luminous semiconductor element
JPH0620042B2 (en) Method for doping group III compound semiconductor crystal
JPH05335621A (en) Gallium Phosphorus Green Light Emitting Diode
JP3900653B2 (en) Compound semiconductor crystal growth method
JPH01100976A (en) Method for manufacturing semiconductor devices
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer
JPS6134987A (en) Manufacturing method of semiconductor laser
JPS58115818A (en) Growing method of silicon carbide epitaxial film
JPH065789B2 (en) Semiconductor crystal growth method
JPS63288027A (en) Method for growing Group 2-6 compound semiconductor thin film
JPS60236221A (en) Liquid phase epitaxial growth method