[go: up one dir, main page]

JPS59116041A - High frequency transceiver circuit for nuclear magnetic resonance imaging equipment - Google Patents

High frequency transceiver circuit for nuclear magnetic resonance imaging equipment

Info

Publication number
JPS59116041A
JPS59116041A JP57230451A JP23045182A JPS59116041A JP S59116041 A JPS59116041 A JP S59116041A JP 57230451 A JP57230451 A JP 57230451A JP 23045182 A JP23045182 A JP 23045182A JP S59116041 A JPS59116041 A JP S59116041A
Authority
JP
Japan
Prior art keywords
circuit
magnetic resonance
nuclear magnetic
high frequency
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57230451A
Other languages
Japanese (ja)
Inventor
Hiromi Kawaguchi
川口 博巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57230451A priority Critical patent/JPS59116041A/en
Publication of JPS59116041A publication Critical patent/JPS59116041A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3614RF power amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)
  • Transceivers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、核磁気共鳴< N M R>映i装置用高
周波送受信回路に関し、特に、非送信時にJ3G:する
送信機ノイズを主発生源にて梢(や的に抑制したN〜I
R映像装置用高周波送受信回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high frequency transmitting/receiving circuit for nuclear magnetic resonance (NMR) imaging equipment, and in particular, to a high frequency transmitter/receiver circuit for a nuclear magnetic resonance <NMR> imaging device, in particular, the main source of transmitter noise during non-transmission is Suppressed N~I
The present invention relates to a high frequency transmitting/receiving circuit for an R video device.

一般にN M R映像装置用高周波送受信回路は、第1
図に要部を示すように構成され、高周波信号発生回路(
1)で発生した励起高周波パルス信号を電力増幅回路(
2)で大出力化してタイオード(3a)(3b)からな
るスイッチング回路(3)を介してアンテナタンクコイ
ル(4)より発信させ、これによってタンクコイル内に
均一性の良い高周波磁場を作るものである。
Generally, a high frequency transmitting/receiving circuit for an NMR video device has a first
The main parts are shown in the figure, and the high-frequency signal generation circuit (
The excitation high-frequency pulse signal generated in 1) is passed through a power amplifier circuit (
In step 2), the output is increased to a high level and transmitted from the antenna tank coil (4) via the switching circuit (3) consisting of diodes (3a) and (3b), thereby creating a highly uniform high-frequency magnetic field within the tank coil. be.

ところで、従来の電力増幅回路は、使用部品とくに半導
体部品の特性上の制約から多数の電力増幅器を並設した
分布増幅回路とされることが多く、かつ電力増幅器とし
ては、′(1級あるいはB級増幅器が用いられている。
By the way, conventional power amplifier circuits are often distributed amplifier circuits in which a large number of power amplifiers are arranged in parallel due to restrictions on the characteristics of the parts used, especially semiconductor parts. A class amplifier is used.

しかし、A級増幅器は、無人力信号時においても能動素
子がカット・オフにならず、B級増幅器においても零入
力時の対向回路の非平衡性により、高周波雑音電流を発
生ずる。この911音電流は、ダイオードの特性値(い
わゆる肩電圧)より小さい信−号であるが、ダイオード
・スイッチング回路を介1ノでアンテナ・コイルに伝わ
り、微弱な送信機ノイズとなる。ところが、NMR信号
が数nWから数mW程度の小さな信号であるため、NM
R信号に対してこの送信機ノイズは無視できないものと
なり、NMR信号の観測の妨害となる。
However, in a class A amplifier, the active elements do not cut off even when an unmanned signal is applied, and in a class B amplifier, high frequency noise current is generated due to the unbalanced nature of the opposing circuit at the time of zero input. Although this 911 sound current is a signal smaller than the characteristic value of the diode (so-called shoulder voltage), it is transmitted to the antenna coil via the diode switching circuit and becomes weak transmitter noise. However, since the NMR signal is a small signal ranging from several nW to several mW, the NM
This transmitter noise cannot be ignored for the R signal and interferes with the observation of the NMR signal.

この発明は、このような事情に鑑みてなされたもので、
端的にjホペれば、電力増幅器の構成を工夫することに
よって上記ノイズの発生を発生源にて抑制したNMR映
像装置用高周波送受信回路を提供するものである。
This invention was made in view of these circumstances,
In short, the present invention provides a high frequency transceiver circuit for an NMR imaging device in which the generation of the above noise is suppressed at the source by devising the configuration of the power amplifier.

以下、第2図〜第4図に示すこの発明の一実施例に基い
て、この発明を詳説する。ただし、これによりこの発明
が限定されるものではない。
Hereinafter, this invention will be explained in detail based on an embodiment of the invention shown in FIGS. 2 to 4. However, this invention is not limited thereby.

第2図に示す04)は、この発明のN M R映像装置
用高周波送受信回路の一実施例であり、外部トリガー(
パルス入力信号)により起動する高周波信号発生回路(
6)、後記、電力増幅回路(8)およびフィルタ回路(
9)で生じる歪をあらかじめを逆補正しておくための歪
発生回路(7)、電力増幅回路(8)、フィルタ回路(
9)、スイッチング回路(101(121、RF均一磁
界を発生せしめるアンテナタンクコイル(Ill J5
よびN M R信号を効率よく増幅4−るための前置増
幅器03)からなっている。
04) shown in FIG. 2 is an embodiment of the high frequency transmitting/receiving circuit for an NMR video device according to the present invention, and the external trigger (
A high-frequency signal generation circuit (pulse input signal) activated by a
6), Postscript, power amplifier circuit (8) and filter circuit (
9), a distortion generation circuit (7), a power amplifier circuit (8), and a filter circuit (
9), switching circuit (101 (121), antenna tank coil (Ill J5) that generates an RF uniform magnetic field
and a preamplifier 03) for efficiently amplifying the NMR signal.

高周波信号発生回路(6)、スイッチング回路+lot
 (+2+ 。
High frequency signal generation circuit (6), switching circuit +lot
(+2+.

アンテナタンクコイルt11) 、およびNMR信号前
置回路03)は、従来と同様の構成である。
The antenna tank coil t11) and the NMR signal pre-circuit 03) have the same configuration as the conventional one.

歪発生回路(7)は、次に説明する電力増幅回路(8)
がC級増幅であることから発生づる信号歪をキャンセル
するために予めその歪を逆補正づるような歪を入力信号
に加える回路である。この回路はアナログ的にも構成で
きるが、デジタル的に構成してもよい。
The distortion generation circuit (7) is a power amplifier circuit (8) which will be explained next.
This is a circuit that adds distortion to the input signal in advance so as to inversely correct the distortion in order to cancel the signal distortion that occurs because it is a class C amplification. This circuit can be constructed analogously, but may also be constructed digitally.

電力増幅回路(8)は、第3図に示1ように、電力増幅
器(17)を多数用いた分布増幅回路である。それら電
力増幅器a力は、C級増幅器としてバイアスされた2個
のトランジスタ[+51 、 (161にてプッシュプ
ル増幅器を構成したものである。バイアスの深さは、第
4図のように1−ランジスタ(15) 、 (16)が
無信号人ツノ時に完全にカット・オフになることおよ6
微小ノイズ入力に対してもカッ1−・オフであることを
条件としてなるべくB級に近く設定される。膜言づれば
、実際の使用にあたり適宜定まる範囲の微小入力に対し
無出力で、それを越えて定格人力までの入力に対し線型
どなるJ:うにバイアスがあたえられる。そこで第3図
の電力増幅器(17+の場合、EBBの値をたとえばO
としてもよい場合がある。
The power amplifier circuit (8) is a distributed amplifier circuit using a large number of power amplifiers (17), as shown in FIG. These power amplifiers are configured as push-pull amplifiers with two transistors [+51, (161) biased as class C amplifiers. (15) and (16) may be completely cut off when there is no signal.
It is set as close to class B as possible on the condition that it is cut-off even in response to minute noise input. In other words, there is no output for small inputs within a range that is appropriately determined in actual use, and a linear bias is applied for inputs beyond this range up to the rated human power. Therefore, in the case of the power amplifier shown in Fig. 3 (17+), the value of EBB is set to 0, for example.
In some cases, it may be possible to do so.

なんとなれば、トランジスタ05)、 (161のベー
ス電流は、ある稈度以上の入力電圧がな(プれば流れな
いから、EBB=Oでも上記条件を満たすことがあるか
らである。
This is because the base current of transistors 05) and 161 will not flow if the input voltage is higher than a certain culm, so the above condition may be satisfied even when EBB=O.

フィルタ回路(9)は、通常のバンドパス・フィルタで
ある。上記したJζうに電力増幅器(17)はC級プッ
シュプル回路であるから、出ツノ信号に歪を生じる。フ
ィルタ回路(9)は、その歪を吸収するもので、換言す
れば、実質的に核スピンを励起する周波数成分のみを通
過させて高周波成分を除去するものであり、NMR映像
法としての高周波強度の変調時直線性をも保持uしめる
ものである。
The filter circuit (9) is a normal bandpass filter. Since the Jζ power amplifier (17) described above is a class C push-pull circuit, distortion occurs in the output signal. The filter circuit (9) absorbs the distortion. In other words, it passes only the frequency components that substantially excite nuclear spins and removes the high frequency components. This also maintains linearity during modulation.

さて、このNMR映像装置用高周波送受信回路(14)
によれば、電力増幅回路(8)の電力増幅器(17)が
C級増幅であるから、無人力信号時にはトランジスタf
15+ 、 +16) 、が完全にカッ1〜・オフとな
り出力電流を流さない。そこで熱雑音なとのノイズの発
生が抑制され、NMR信号を好適に観測できることとな
る。
Now, this high frequency transmitting/receiving circuit (14) for NMR imaging equipment
According to , since the power amplifier (17) of the power amplifier circuit (8) is a class C amplification, the transistor f is
15+, +16) are completely turned off and no output current flows. Therefore, the generation of noise such as thermal noise is suppressed, and the NMR signal can be observed suitably.

他の実施例としては、電力増幅回路にミノj増幅機を単
独で用いて分布増幅回路としないもの、電力増幅回路の
出力に同調回路を用いてフィルタ回路の機能をもたせた
もの、ダーリントン接続した2個のトランジスタを一対
用いてC級プッシュプル電力増幅回路を構成し人出力化
したものなどが挙げられる。
Other examples include one in which a Mino J amplifier is used alone in the power amplifier circuit without making it into a distributed amplifier circuit, one in which a tuning circuit is used for the output of the power amplifier circuit to provide the function of a filter circuit, and one in which a Darlington connection is used. For example, a class C push-pull power amplifier circuit is configured using a pair of two transistors to produce human output.

以上の説明から理解されるように、この発明は、NMR
映1!!!装置用高周波送受信回路において、C級増幅
としてバイアスを加えた一対の能動素子でプッシュプル
増幅器を構成し、これを電力増幅回路に用い、さらにそ
の回路の入出力特性に実質的に直線性をもたせたことを
特徴とするものであり、これによって非送信時のノイズ
がカットされるから、S/N比が改善されて、好適にN
 M R信号を観測できるようになる。すなわち、通常
の分析用N M R装置ではさほど問題にならない送信
機ノイズがNMR映像装置にJ5いて問題となっていた
点を改良できる。
As understood from the above explanation, the present invention is applicable to NMR
Movie 1! ! ! In high-frequency transmitter/receiver circuits for equipment, a push-pull amplifier is configured with a pair of biased active elements as a class C amplifier, and this is used in a power amplifier circuit, and the input/output characteristics of the circuit are made substantially linear. This is characterized by the fact that the noise during non-transmission is cut, the S/N ratio is improved, and the N
You will be able to observe MR signals. That is, it is possible to improve the problem that transmitter noise, which is not a problem in ordinary NMR apparatuses for analysis, is present in NMR imaging apparatuses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNMR映像装四川高用波送受信回路の一般的な
構成説明図、第2図はこの発明のN fvl R映像装
置用高周波送受信回路の一実施例の構成説明図、第3図
は第2図に示す回路における電力増幅回路の一例の回路
図である。第4図は第3図に示す回路におりるトランジ
スタの動作特性図である。 [11(61・・・高周波信号発生回路、[21(8)
・・・電ツノ増幅回路、 +31001021・・・ダイオード・スイッチング回
路、(41(111・・・アンテナタンクコイル、(5
1(14)・・・NMR映像装置用高周波送受信回路、
(15] (161・・・トランジスタ、(17)・・
・電力増幅器、 EBB・・・バイアス電源。
FIG. 1 is an explanatory diagram of the general configuration of a Sichuan high frequency transmitting and receiving circuit for NMR imaging equipment, FIG. 2 is an explanatory diagram of the configuration of an embodiment of the high frequency transmitting and receiving circuit for Nfvl R imaging equipment of the present invention, and FIG. 3 is a circuit diagram of an example of a power amplifier circuit in the circuit shown in FIG. 2. FIG. FIG. 4 is a diagram showing the operating characteristics of the transistor included in the circuit shown in FIG. 3. [11 (61...high frequency signal generation circuit, [21 (8)
... Electric horn amplifier circuit, +31001021 ... Diode switching circuit, (41 (111 ... Antenna tank coil, (5
1 (14)...High frequency transmitting and receiving circuit for NMR imaging equipment,
(15) (161...transistor, (17)...
・Power amplifier, EBB...bias power supply.

Claims (1)

【特許請求の範囲】 1、C級増幅としてバイアスを加えた一対の能動素子で
プッシュプル増幅器を構成してこれを電力増幅回路に用
いると共に、その電力増幅回路の後段にC級増幅回路に
J3ける増幅素子切換え電圧ト14近にて発生する高調
波成分を取りのぞくためのフィルタ回路を設け、これに
よってパルスNMR法における非送信時の微少な送信機
ノイズを積極的に制御し、核磁気共鳴信号を良好に取り
出し可能としたことを特徴とする核磁気共鳴映像装置用
高周波送受信回路。 2、ミノj増幅回路の前段に、C級増幅回路による信号
歪をあらかじめ逆補正させるための歪発生回路が設けら
れてなる特許請求の範囲第1項記載の核磁気共鳴映像装
置用高周波送受信回路。
[Claims] 1. A push-pull amplifier is configured with a pair of biased active elements as a class C amplifier, and this is used in a power amplifier circuit. A filter circuit is provided to remove harmonic components generated near the amplification element switching voltage t14, which actively controls minute transmitter noise during non-transmission in the pulsed NMR method, and improves nuclear magnetic resonance. A high-frequency transceiver circuit for a nuclear magnetic resonance imaging apparatus, characterized in that a signal can be extracted satisfactorily. 2. The high-frequency transmitting/receiving circuit for a nuclear magnetic resonance imaging apparatus according to claim 1, wherein a distortion generation circuit for reversely correcting signal distortion caused by the class C amplifier circuit is provided in advance of the Mino J amplifier circuit. .
JP57230451A 1982-12-23 1982-12-23 High frequency transceiver circuit for nuclear magnetic resonance imaging equipment Pending JPS59116041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230451A JPS59116041A (en) 1982-12-23 1982-12-23 High frequency transceiver circuit for nuclear magnetic resonance imaging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230451A JPS59116041A (en) 1982-12-23 1982-12-23 High frequency transceiver circuit for nuclear magnetic resonance imaging equipment

Publications (1)

Publication Number Publication Date
JPS59116041A true JPS59116041A (en) 1984-07-04

Family

ID=16908079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230451A Pending JPS59116041A (en) 1982-12-23 1982-12-23 High frequency transceiver circuit for nuclear magnetic resonance imaging equipment

Country Status (1)

Country Link
JP (1) JPS59116041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298102A (en) * 2007-05-29 2008-12-11 Jasco Corp Pressure leak device
US12370333B2 (en) 2018-05-13 2025-07-29 Ventec Life Systems, Inc. Portable medical ventilator system using portable oxygen concentrators
US12440634B2 (en) 2021-12-21 2025-10-14 Ventec Life Systems, Inc. Ventilator systems with integrated oxygen delivery, and associated devices and methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298102A (en) * 2007-05-29 2008-12-11 Jasco Corp Pressure leak device
US12370333B2 (en) 2018-05-13 2025-07-29 Ventec Life Systems, Inc. Portable medical ventilator system using portable oxygen concentrators
US12434026B2 (en) 2018-05-13 2025-10-07 Ventec Life Systems, Inc. Portable medical ventilator system using portable oxygen concentrators
US12440634B2 (en) 2021-12-21 2025-10-14 Ventec Life Systems, Inc. Ventilator systems with integrated oxygen delivery, and associated devices and methods

Similar Documents

Publication Publication Date Title
JPH04352507A (en) Amplifier
US4039981A (en) Variable impedance circuit
US4403347A (en) Antenna tuning circuit for AM radio receiver
US4225827A (en) Stabilization circuit for transistor RF power amplifiers
US2870267A (en) Arrangement for scanning and reproducing magnetic fields
JPS59116041A (en) High frequency transceiver circuit for nuclear magnetic resonance imaging equipment
US6586994B2 (en) Variable gain and low noise amplifier for received signals in imaging apparata
EP0140430B1 (en) Frequency multiplying circuit
JPH06188643A (en) High-frequency low-noise amplifier
US3258695A (en) Reflex receiver
JPH08289171A (en) CATV converter
JPS63270036A (en) magnetic resonance imaging device
CA1086385A (en) Audio frequency amplifiers
US3383611A (en) Amplifier with high input impedance
EP4387110A1 (en) Electric circuit fragment with transmit/receive switch topology
EP2647123A1 (en) Bias point setting for third order linearity optimization of class a amplifier
Stern et al. Transistor broadcast receivers
JPH11317629A (en) System using class D amplifier
JPS60191525A (en) common mode noise attenuator
JP2001094362A (en) Transmission amplifier
GB1039407A (en) Improvements in transistorized ultra high frequency receivers
JPS6119205A (en) Amplifier circuit
Locanthi Operational Amplifier Circuit for Hi-Fi
CN119652263A (en) A nuclear magnetic resonance preamplifier circuit
Bishop Amplifiers