JPS59112643A - Complementary MOS semiconductor integrated circuit device - Google Patents
Complementary MOS semiconductor integrated circuit deviceInfo
- Publication number
- JPS59112643A JPS59112643A JP58184986A JP18498683A JPS59112643A JP S59112643 A JPS59112643 A JP S59112643A JP 58184986 A JP58184986 A JP 58184986A JP 18498683 A JP18498683 A JP 18498683A JP S59112643 A JPS59112643 A JP S59112643A
- Authority
- JP
- Japan
- Prior art keywords
- film
- high resistance
- layer
- type
- type layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は相補型MQ8半導体装置(以下CMO8と略
称する)に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a complementary MQ8 semiconductor device (hereinafter abbreviated as CMO8).
従来のCMQS製造法では、一つの半導体基板上にpチ
ャネル及びnチャネルのソース・ドレイン領域をそれぞ
れ形成するためにp型拡散用マスクとn型拡散用のマス
クを交互に使用して、互いに異なる領域へのドープ時に
kXCVD法(気相化学析出法)による5to2(二酸
化シリコン)膜の上記マスクな被着することで異なる不
純物が他の領域の半導体基板にドープされるのを防止す
る方法がとられている。この方法によればポリシリコン
・ゲートと共に形成した他のポリシリコン配線は、ソー
ス・ドレイン部拡散と同時に不純物ドープが行なわれる
ため不純物が高濃度にドープされ、低抵抗の導体部とし
て利用される。ところで、MQSICにおいては回路構
成の一部として高抵抗素子を必要とする場合、この高抵
抗素子のために従来は不純物ドープのないポリシリコン
形成工程を別に用意するため工程数が増加することにな
った。In the conventional CMQS manufacturing method, in order to form p-channel and n-channel source/drain regions on one semiconductor substrate, p-type diffusion masks and n-type diffusion masks are alternately used, and different A method of preventing different impurities from being doped into the semiconductor substrate in other regions is to deposit a 5to2 (silicon dioxide) film using the above-mentioned mask using the kXCVD method (vapor phase chemical deposition method) when doping the region. It is being According to this method, the other polysilicon wiring formed together with the polysilicon gate is doped with impurities at the same time as the source/drain region diffusion, so that it is doped with impurities at a high concentration and is used as a low-resistance conductor. By the way, in MQSIC, when a high resistance element is required as part of the circuit configuration, conventionally, a separate polysilicon formation process without impurity doping is required for this high resistance element, which increases the number of steps. Ta.
本発明においては前記p型及びn型拡散用のマスクを積
極的に利用し、どちらの不純物もドープされないポリシ
リコン領域をつくり、それを高抵抗素子として利用しよ
うとするものである。The present invention actively utilizes the masks for p-type and n-type diffusion to create a polysilicon region that is not doped with either impurity, and uses it as a high-resistance element.
したがって、本発明の目的はCMO8’ICに適合した
スタティック・ランダム・アクセス・メモIJ(SRA
Mと略称)を提供することにある。Therefore, an object of the present invention is to develop a static random access memory IJ (SRA) compatible with CMO8'IC.
(abbreviated as M).
上記目的を達成するために、本発明は周辺CMQSのメ
モリ・セルNMO8構成のS RAMにおいて、メモリ
セルの負荷である高抵抗ポIJ S iの両端をN型に
ハイトープされたポリシリコン配線にて構成したもので
ある。In order to achieve the above object, the present invention provides an SRAM with a peripheral CMQS memory cell NMO8 configuration, in which both ends of a high resistance point IJSi, which is a load of a memory cell, are connected to an N-type high-topped polysilicon wiring. It is composed of
以下、本発明を実施例にそって具体的に説明する。The present invention will be specifically described below with reference to Examples.
第1図(a)〜(j)はn型Si基板上にpチャネルM
QSFETとnチャネルMQsFETを形成し、一部に
高抵抗回路を有するCMQSIC5例えばメモリセルの
製造に本発明を適用した場合の工程図を示す。Figures 1(a) to (j) show a p-channel M on an n-type Si substrate.
A process diagram is shown in which the present invention is applied to the manufacture of a CMQSIC5, such as a memory cell, in which a QSFET and an n-channel MQsFET are formed and a portion thereof has a high resistance circuit.
(al n−一部Si基板1を用意し、全面にp(リ
ン)イオンの打込みを行う。次いで表面酸化膜(S i
02)2を形成し、ホトレジスト3によるウェル窓開
し、B(ボロン)イオン打込みを行う。(al n-A partial Si substrate 1 is prepared, and p (phosphorous) ions are implanted into the entire surface. Then, a surface oxide film (Si
02) 2 is formed, a well window is opened using photoresist 3, and B (boron) ions are implanted.
(b)ウェル拡散のための熱処理を行い、基板表面層に
n一層4とp−ウェル5を形成する。(b) Heat treatment for well diffusion is performed to form an n-layer 4 and a p-well 5 on the substrate surface layer.
(C)酸化膜2を全面除去し、洗浄後、新たに薄い酸化
膜6を形成し、次いでSi3N4膜7をデボジショ/し
、ホトレジスト8によりSi3N4膜を部分的に除去す
る。(C) After removing the entire surface of the oxide film 2 and cleaning, a new thin oxide film 6 is formed, then a Si3N4 film 7 is deposited, and the Si3N4 film is partially removed using a photoresist 8.
(d)全面にCVD膜9を形成し、ホトレジスト処理ニ
ヨリp−ウェル側のCVDを取除いた後、Bイオン打込
みを行う。(d) After forming a CVD film 9 on the entire surface and removing the CVD film on the p-well side after photoresist treatment, B ions are implanted.
(e)CVD膜9を取除いてn−基板側を露出すると同
時にp−ウェル側を新たなCVD膜10で覆い、pイオ
ン打込みを行う。(e) Remove the CVD film 9 to expose the n-substrate side, simultaneously cover the p-well side with a new CVD film 10, and perform p ion implantation.
(fl 前記Si、N、膜をマスクとしてフィルド部
に選択酸化膜11を形成すると同時に、この酸化膜11
の下にp領域12及びn領域13を拡散する。このあと
両面エッチを行ってSi3N、膜7及び薄い酸化膜6を
除去する。(fl At the same time, a selective oxide film 11 is formed in the filled part using the Si, N, and film as a mask.
A p region 12 and an n region 13 are diffused below. Thereafter, double-sided etching is performed to remove Si3N, film 7, and thin oxide film 6.
(g) ゲート酸化膜15を生成し、次いで、ポリS
i層16をデポジションし、ホトレジスト処理によりソ
ース・ドレイン部を窓開する。このあとポリSi層16
に対し低濃度不純物イオン打込みを、かるく行う。(g) Generate gate oxide film 15, then polyS
The i-layer 16 is deposited and the source/drain portions are opened by photoresist processing. After this, poly-Si layer 16
Low-concentration impurity ion implantation is performed lightly.
(hlcVD酸化膜を形成し、ホトレジスト処理により
n−基板側を露出するp+マスク17となし、高濃度B
拡散によりp+ソース、ドレイン18を形成する。(A hlcVD oxide film is formed, a p+ mask 17 is formed to expose the n- substrate side by photoresist processing, and a high concentration B
A p+ source and drain 18 are formed by diffusion.
(i) p+マスク17を取除き、p−ウェル側を露
出するn+マスク19を形成、高濃度p拡散によりn+
ソース、ドレイン20を形成する。これらの工程におい
て、第2図に示すようにボIJ S i層の一部にn+
マスク(CVD酸化膜)19aが残るようなパターンの
ホトマスクm、、m2を使用し、このn マスク19a
によってボIJ S i層の一部は高抵抗部21となっ
て残り、マスク19aで覆われない部分16は高濃度不
純物ドープにより低折抗部となる。(i) Remove the p+ mask 17 and form the n+ mask 19 that exposes the p- well side, and by high concentration p diffusion, the n+
A source and drain 20 are formed. In these steps, as shown in FIG.
Using photomasks m, m2 with a pattern that leaves the mask (CVD oxide film) 19a, this n mask 19a
As a result, a part of the IJ Si layer remains as a high resistance part 21, and a part 16 not covered with the mask 19a becomes a low fold part due to high concentration impurity doping.
(j)全面にPSG(リン・シリケート・ガラス)膜2
2を形成し、N2アニールの後、コンタクト部ホトエツ
チングを行い、次いでAg蒸着、配線パターンマスクに
よるホトエツチングを行ってM配線23を完成する。(j) PSG (phosphorus silicate glass) film 2 on the entire surface
After N2 annealing, photoetching of the contact portion is performed, followed by Ag evaporation and photoetching using a wiring pattern mask to complete the M wiring 23.
第3図はこの発明の第4図の回路に対応するメモリセル
の平面形状を示す。同図において、斜線ハツチングを施
した部分がポIJ S i層16からなる配線でその一
部をMC8FET(Q+ 、Q2 。FIG. 3 shows a planar shape of a memory cell corresponding to the circuit of FIG. 4 of the present invention. In the figure, the hatched portion is the wiring made of the POIJSi layer 16, and part of it is connected to the MC8FET (Q+, Q2).
Q3 、Q4 )の各ゲートを構成する。又、破線でハ
ンチングを施した部分は高抵抗部(R1,R2)である
。このR,、R2は第5図に示すよりなp+拡散マスク
m、とn+拡散マスクm2とを使用し、これらのマスク
の重複する部分mR,,mR2によって不純物のドープ
されない高抵抗部をつくるものである。Q3, Q4) are configured. Furthermore, the portions hatched with broken lines are high resistance portions (R1, R2). These R, , R2 use p+ diffusion masks m, and n+ diffusion masks m2 shown in FIG. 5, and the overlapping portions of these masks mR, , mR2 create a high resistance part that is not doped with impurities. It is.
上記実施例で明らかなように上記例によればマスクパタ
ーンの一部を変更するのみで、新たな工程を付加するこ
となく6MO8に高抵抗素子を形成することができる。As is clear from the above embodiment, according to the above embodiment, a high resistance element can be formed in 6MO8 by only changing a part of the mask pattern and without adding any new process.
この発明&’! CM OSを用いた半導体装置で、高
抵抗素子を必要とするすべての場合に適用できる。This invention &'! It can be applied to any semiconductor device using CMOS that requires a high resistance element.
第1図(a)〜(jlはこの発明の一実施例の工程図、
第2図はこの発明の原理説明のための断面図、第3図は
この発明を応用したメモリセルの平面図、第4図は第3
図に等価の回路図、第5図は第3図のメモリセル装置の
際にp+拡散及びn+拡散に使用するマスクの形状を示
す平面図である。
1・・・n−型81基板、2・・・表面酸化膜、3・・
・ホトレジスト、4・・・n−i、5・・・p−ウェル
、6・・・酸化膜、7・・・Si、、N4膜、8・・・
ホトレジスト、9・・・CVD膜、10・・・CVD膜
、11・・・選択酸化膜、12・・・n領域、13・・
・n領域、15・・・ゲート酸化膜、16・・・ポリS
i層、17・・・p マスク、18・・・p ソース、
ドレイン、19・・・n マスク、20・・・n ソー
ス、ドレイン、21・・・高抵抗部、22・・・PSG
膜、23・・・A4配線。
第 1 図
第 1 図
第 2 図
7D
I
第 4 図 第 5 図第 3
図FIG. 1(a) to (jl are process diagrams of one embodiment of this invention,
FIG. 2 is a cross-sectional view for explaining the principle of this invention, FIG. 3 is a plan view of a memory cell to which this invention is applied, and FIG.
The figure is an equivalent circuit diagram, and FIG. 5 is a plan view showing the shape of a mask used for p+ diffusion and n+ diffusion in the memory cell device of FIG. 3. 1... N-type 81 substrate, 2... Surface oxide film, 3...
・Photoresist, 4... n-i, 5... p-well, 6... oxide film, 7... Si, N4 film, 8...
Photoresist, 9...CVD film, 10...CVD film, 11...selective oxide film, 12...n region, 13...
・N region, 15... Gate oxide film, 16... Poly S
i layer, 17...p mask, 18...p source,
Drain, 19...n Mask, 20...n Source, drain, 21...High resistance part, 22...PSG
Membrane, 23...A4 wiring. Figure 1 Figure 1 Figure 2 Figure 7D I Figure 4 Figure 5 Figure 3
figure
Claims (1)
負荷となるべきポリシリコン高抵抗を有し、前記高抵抗
の両端は直接N型に高濃度ドープされたポリシリコン配
線に接続され、P型ウェル領域を有する相補型MIS半
導体集積回路装置。 2゜上記特許請求の範囲第1項の記載の相補型MIS半
導体集積回路装置においで、上記高抵抗の一端は、N型
に高濃度ドープされたポリシリコン配線を介してN型の
ソースまたθニドレイン領域に接続されてなることを特
徴とする相補型MI8半導体集積回路装置。[Claims] l・゛ It has a polysilicon high resistance to serve as a memory load, and both ends of the high resistance are directly connected to an N-type heavily doped polysilicon wiring, and a P-type well region is connected to the polysilicon wiring. A complementary MIS semiconductor integrated circuit device having: 2. In the complementary MIS semiconductor integrated circuit device according to claim 1, the one end of the high resistance is connected to the N-type source or θ via the N-type heavily doped polysilicon wiring. 1. A complementary MI8 semiconductor integrated circuit device, characterized in that the MI8 semiconductor integrated circuit device is connected to a dorain region.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58184986A JPS59112643A (en) | 1983-10-05 | 1983-10-05 | Complementary MOS semiconductor integrated circuit device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58184986A JPS59112643A (en) | 1983-10-05 | 1983-10-05 | Complementary MOS semiconductor integrated circuit device |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2022177A Division JPS53105990A (en) | 1977-02-28 | 1977-02-28 | Manufacture of mos semiconductor device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS59112643A true JPS59112643A (en) | 1984-06-29 |
| JPH0248142B2 JPH0248142B2 (en) | 1990-10-24 |
Family
ID=16162794
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP58184986A Granted JPS59112643A (en) | 1983-10-05 | 1983-10-05 | Complementary MOS semiconductor integrated circuit device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS59112643A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02128465A (en) * | 1988-11-08 | 1990-05-16 | Yamaha Corp | Manufacture of integrated circuit device |
-
1983
- 1983-10-05 JP JP58184986A patent/JPS59112643A/en active Granted
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02128465A (en) * | 1988-11-08 | 1990-05-16 | Yamaha Corp | Manufacture of integrated circuit device |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0248142B2 (en) | 1990-10-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4727045A (en) | Plugged poly silicon resistor load for static random access memory cells | |
| JPH08130246A (en) | Semiconductor device and manufacturing method thereof | |
| JP2596117B2 (en) | Method for manufacturing semiconductor integrated circuit | |
| JPS6146065B2 (en) | ||
| JPS59112643A (en) | Complementary MOS semiconductor integrated circuit device | |
| JPS6115595B2 (en) | ||
| US6077746A (en) | Using p-type halo implant as ROM cell isolation in flat-cell mask ROM process | |
| JP2000208638A (en) | Method for forming double gate of semiconductor device | |
| JPH09321233A (en) | Manufacturing semiconductor device | |
| JPS59210659A (en) | Manufacture of metal oxide semiconductor device | |
| JPH06224379A (en) | Manufacture of semiconductor device | |
| JPH08227936A (en) | Semiconductor device and fabrication thereof | |
| JPH0479336A (en) | Production of semiconductor device | |
| JPS6142171A (en) | Manufacture of nonvolatile semiconductor memory device | |
| JPH0786195A (en) | Fabrication of semiconductor device | |
| JPH03136348A (en) | Manufacture of non-volatile memory element | |
| JPH0582784A (en) | Manufacture of mis-type semiconductor device | |
| JPH05291530A (en) | Semiconductor device and manufacture thereof | |
| JPS63306671A (en) | Nonvolatile semiconductor memory | |
| JPH08222646A (en) | Mask ROM and manufacturing method thereof | |
| JPH0714988A (en) | Method for manufacturing semiconductor device | |
| JP2000349173A (en) | Manufacturing method of flat cell type semiconductor memory device | |
| JPH0575071A (en) | Manufacture of semiconductor device | |
| JPH06163854A (en) | Manufacture of mask rom | |
| JPS61207056A (en) | Semiconductor device |