[go: up one dir, main page]

JPS59127691A - Higher level treatment method for secondary treated human waste water - Google Patents

Higher level treatment method for secondary treated human waste water

Info

Publication number
JPS59127691A
JPS59127691A JP4383A JP4383A JPS59127691A JP S59127691 A JPS59127691 A JP S59127691A JP 4383 A JP4383 A JP 4383A JP 4383 A JP4383 A JP 4383A JP S59127691 A JPS59127691 A JP S59127691A
Authority
JP
Japan
Prior art keywords
activated carbon
human waste
waste water
secondary treated
treated human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4383A
Other languages
Japanese (ja)
Other versions
JPS638835B2 (en
Inventor
Kenichi Nakamura
健一 中村
Hisamatsu Mizuno
久松 水野
Akira Ishikawa
明 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Engineering Co Ltd
Original Assignee
Showa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Engineering Co Ltd filed Critical Showa Engineering Co Ltd
Priority to JP4383A priority Critical patent/JPS59127691A/en
Publication of JPS59127691A publication Critical patent/JPS59127691A/en
Publication of JPS638835B2 publication Critical patent/JPS638835B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、複極活性炭充填電解法の複合システムによ
ってCOD (化学的酸素要求量)を目標水質レベルに
低減するし尿二次処理水の高次処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-level treatment method for secondary treated human waste water that reduces COD (chemical oxygen demand) to a target water quality level using a complex system of bipolar activated carbon-filled electrolysis.

し尿処理施設よりの放流水排出基準は、わが国の廃棄物
の処理および清掃に関する法律施行規則によってBOD
−88及び大腸菌数の3項目が規定さ31、ている。一
方、水質汚濁防止法はし尿処理施設を特定施設に指定し
、放流先の利水状況によっては上のせ基準も適用さイt
て生活環境に係る環境基準によって放流先が湖沼や海域
の場合にはBODに代ってCOD規制となり、水域の総
量規制はCOD値で規制されている。
Emission standards for effluent from human waste treatment facilities are set by BOD according to Japan's Waste Disposal and Cleaning Law Enforcement Regulations.
-88 and the number of E. coli bacteria are specified. On the other hand, the Water Pollution Control Act designates human waste treatment facilities as specified facilities, and higher standards may be applied depending on the water usage situation at the destination.
According to environmental standards related to the living environment, if the discharge destination is a lake or sea area, COD regulations will be applied instead of BOD, and the total amount in water bodies will be regulated by the COD value.

上記抽出基準は標準希釈(20倍)を伴った状態で確保
されるのか原則であるが、希釈水の確保の困難さや大量
の放流水の抽出に伴う障害等のためできるだけ低い希釈
率で排出基準を満足することが必要になって来ている。
In principle, the above extraction standard can be secured with standard dilution (20 times), but due to the difficulty of securing dilution water and the obstacles associated with extracting a large amount of effluent water, the discharge standard is set at the lowest possible dilution rate. It has become necessary to satisfy the following.

し尿処理施設を建設する際に省資源、立地条件により装
置の小型化、低希釈等の要望が強く、一方放流先関係住
民の公害意識等から切実に低希釈率によるし尿の高次処
理方法の出現か望まイtでいる実情?こある。
When constructing human waste treatment facilities, there are strong demands for resource conservation, downsizing of equipment, and low dilution due to location conditions.On the other hand, due to the pollution awareness of the residents involved in the discharge destination, there is an urgent need for advanced processing methods for human waste using low dilution rates. Is it the actual situation that you want to appear? There it is.

本発明者らは、上記実情に対処すべく低希釈率によるし
尿二次処理水のCOD低減方法に就いて研究を行なった
結果、公知のオゾン酸化方法、活性炭吸着方法もしくは
オゾン酸化方法と活性炭吸着方法との併用の何ずれより
も経済的かっこ才tら方法では到達し得ないCOD低減
方法を完成するに到った。
In order to cope with the above-mentioned situation, the present inventors conducted research on a method for reducing COD of secondary treated human waste water using a low dilution rate. We have completed a COD reduction method that is more economical than any other method and that cannot be achieved with other methods.

この発明の基本的構成は、し尿二次処理水をオゾン酸化
した後、陰陽両極間に粒状活性炭を充填した複極活性炭
充填電解装置に通水、通電して有機物を吸蔵・吸着し電
解酸化させることにある。かかる方法によってし尿二次
処理水中(7) C0I)起因物質を目標水質レベルに
的確に低減除去することかできる効果をもたらすdこの
発明の方法によってもたらす効果を発現させる理由は、
前段において亜硝酸イオン(NOi)が存在するとき、
オゾンの注入接触により硝酸イオ7 (NOE)化と脱
色および殺菌を行ない、前段で除去し得なかったCOD
の残分を後段の複極活性炭充填電解装置(以下、ACE
と呼ぶ)で処理する。即ち、オゾン処理水は直流通電さ
れた活性炭を充填した電解装置に導か3″1.水電解に
よって発生した水素と酸素の気泡で浮上する浮上帯域を
通じてスカムを浮上分離し、分離水は支持電極間に粒状
活性炭を充填した電解帯域に通し、溶存イオン、は複極
化した活性炭の細孔内に吸蔵さ3t、有機性コロイド物
質は活性炭の細孔表面に吸着されて濃縮さ眉、る。−力
水電解により発生した酸素は細孔内にとりこまれた有機
物質を酸化分解し、才だ活性炭表面へ吸着濃縮すること
により分解速度を速めるものと考えらaする。
The basic structure of this invention is that after secondary treated human waste water is oxidized with ozone, water and electricity are passed through a bipolar activated carbon-filled electrolyzer filled with granular activated carbon between the positive and negative electrodes to occlude and adsorb organic matter and electrolytically oxidize it. There is a particular thing. This method brings about the effect of accurately reducing and removing substances originating from the secondary human waste treatment water (7) COI) to the target water quality level.D The reason why the method of this invention brings about the effect is as follows.
When nitrite ions (NOi) are present in the previous stage,
By injecting and contacting ozone, the COD that could not be removed in the previous stage is converted into nitric acid 7 (NOE), decolorized, and sterilized.
The remainder of
). That is, the ozonated water is led to an electrolyzer filled with activated carbon that is energized with direct current, and the scum is floated and separated through a flotation zone that floats with hydrogen and oxygen bubbles generated by water electrolysis, and the separated water is separated between the supporting electrodes. The dissolved ions are absorbed into the pores of the bipolar activated carbon, and the organic colloidal substances are adsorbed to the pore surface of the activated carbon and concentrated. It is thought that the oxygen generated by hydroelectrolysis oxidizes and decomposes the organic substances trapped in the pores, and accelerates the rate of decomposition by adsorbing and concentrating them on the surface of the activated carbon.

ACEて複極化が起こるには、活性炭粒子同志が直接接
触して電子伝導が行なわ、7%ると電極反応が起こらな
いので、これを避けるために接触抵抗の大きい細孔をも
つ吸着能のある活性炭を採用する必要があり、かつこの
ものか複極性となるためには充填粒状活性炭に較べて処
理水内に十分な電位勾配が生じなけれはならす、印加電
圧は十分大であることが必要である。即ち、活性炭側の
電気抵抗〈処理水側の電気抵抗換言すれは、 活性炭側の見掛けの電導度l<1〉処理水側の電導度に
、2 であることか必要である。
In order for bipolarization to occur in ACE, electron conduction occurs when activated carbon particles come into direct contact with each other, and at 7%, no electrode reaction occurs, so in order to avoid this, an adsorption capacity with pores with high contact resistance is used. It is necessary to use a certain activated carbon, and in order for this activated carbon to become bipolar, a sufficient potential gradient must occur in the treated water compared to packed granular activated carbon, and the applied voltage must be sufficiently large. It is. That is, the electrical resistance on the activated carbon side (in other words, the electrical resistance on the treated water side) is as follows: Apparent conductivity on the activated carbon side l<1>The electrical conductivity on the treated water side must be 2.

かかる観点に立脚して本発明者らは複極活性炭充填電解
装置 炭に関する性状・性能を鋭意考究し、上記f(1/J(
2をパラメークさしてCo1)低減に要する電力原単位
、通電時間に対する活性炭の消耗量等に就いて試験を行
なった結果、A、CBに充填する導電性粒子として、(
1)粒径5〜7 mmの多孔性粒状活性炭であり、かつ
通常のし尿二次処理水の電導度に2に対しては、(+1
)粒状活性炭の見掛けの電導度に1= 1.5〜35m
fi/(Iである多孔性粒状活性炭を用いることが有効
であるこ吉を見出しな多孔性粒状活性炭の形態は、球状
のほか円柱状のものであってもよい。また未吸着の多孔
性粒状活性炭のほか吸着済みのものでも使用することが
出来る。吸着済みの粒状活性炭は電解帯域で複極して表
面電解か起り、し尿二次処理水中の有機物の酸化分解を
促進するので活性炭側から観イtは自己再生をしている
ことであり、従って充填した粒状活性炭は活性炭吸着法
における再生のための交換・入替の必要かなく、補充の
みで足りる特筆すべき特長を有する。
Based on this viewpoint, the present inventors have diligently studied the properties and performance of bipolar activated carbon-filled electrolyzer carbon, and have determined that the above f(1/J(
As a result of conducting tests on the consumption of activated carbon with respect to the electric power consumption rate and the current application time, etc., it was found that (
1) It is porous granular activated carbon with a particle size of 5 to 7 mm, and has an electrical conductivity of (+1
) The apparent conductivity of granular activated carbon is 1 = 1.5 to 35 m.
Kokichi found that it is effective to use porous granular activated carbon with fi/(I).The porous granular activated carbon may have a cylindrical shape as well as a spherical shape. In addition, adsorbed activated carbon can also be used. Adsorbed granular activated carbon becomes bipolar in the electrolytic zone and surface electrolysis occurs, promoting the oxidative decomposition of organic matter in the secondary human waste treatment water, so it is easy to see from the activated carbon side. t is self-regenerating, and therefore, the filled granular activated carbon has the remarkable feature that it is not necessary to replace or replace it for regeneration in the activated carbon adsorption method, and only replenishment is sufficient.

ACEに関しては、−特開昭52−9/1651号公報
また特公昭49−38138号公報及び特開昭55−1
16488号公報等に報告さ2tており、し尿二次処理
水の高次処理について経済的で実用に供し得るには、上
記(11及び(n1項で述べらI’Lる条件を満す活性
炭が不可欠であり、効果的に複極化する乙とによって実
効を1υ]することが出来る。
Regarding ACE, - JP-A-52-9/1651, JP-A-49-38138 and JP-A-55-1
16488, etc., and in order to make it economical and practical for high-level treatment of secondary treated human waste water, activated carbon that satisfies the conditions I'L stated in (11) and (n1) above must be used. is indispensable, and the effectiveness can be increased by effectively bipolarity.

第1図は、この発明の方法を実施する装置の概略図であ
って、同図を参照しながら具体的に説明する。1は原液
タンクを示し、このタンクに給水管2を通してし尿処理
水が供給される。
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, and will be specifically explained with reference to the same figure. Reference numeral 1 indicates a stock solution tank, and human waste treated water is supplied to this tank through a water supply pipe 2.

3はオノ゛ン接触槽てあって、原液タンク1に設けた1
ノ1出管1aからし尿処理水が流入さイする。オノ゛ナ
イ→ノー−4で発生したオゾンは導管4aを通り、槽3
内のし尿処理水中に吹込まJlで気−液接触させる。オ
ゾン酸化したし尿処理水はオーバーフロー管3aよりそ
の受入貯槽5に流入さ2する。6は複極活性炭充填電解
装置(A、CE )であって、電解帯域6aとスカム浮
上帯域61)力)らなり、電解帯域は、陰極7と陽極8
間に粒状活性炭9が定められた充填密度と充填高さに充
填さV%、両極に直流電路10が接続さ2%る。この人
CEo″)頂部と処理水受入貯檀5にわたってポンプP
を備えた揚水管11が設けら、nると共にA、CEの頂
部?こ、粒状活性炭9の再生用薬液タンク12に設けた
給液管12aが連結さ2する。ACEの下側部位に途中
を且状に折曲さ2tた排水管13か連結さ2する。この
管の折曲部の頂部はA、CBのスカム浮上帯域6bのオ
ーバーフロー管14の取付位置線」二に位置するように
採られる。この排水管13にACEの運転休止時にA、
CE内の溜水を抜出す管13aが設けられる。
3 is an onion contact tank, and 1 is installed in the stock solution tank 1.
No. 1 Human waste treated water flows in from the outlet pipe 1a. Ozone generated in Ononai→No-4 passes through conduit 4a and passes through tank 3.
Inject it into the human waste treated water in the tank and bring it into gas-liquid contact with Jl. The ozonized human waste water flows into the receiving storage tank 5 from the overflow pipe 3a. 6 is a bipolar activated carbon-filled electrolyzer (A, CE) consisting of an electrolytic zone 6a and a scum floating zone 61);
In between, granular activated carbon 9 is filled to a predetermined packing density and filling height of V%, and a DC current line 10 is connected to both poles of 2%. Pump P across the top and treated water receiving reservoir 5
A lift pipe 11 is provided, and the tops of A and CE are provided. This is connected to a liquid supply pipe 12a provided in a chemical liquid tank 12 for regenerating the granular activated carbon 9. A drain pipe 13 with a 2-t bent part in the middle is connected to the lower part of the ACE. The top of the bent portion of this pipe is positioned at the mounting position line ``2'' of the overflow pipe 14 of the scum floating zone 6b of A and CB. A to this drain pipe 13 when the ACE is out of operation.
A pipe 13a is provided to drain the water stored in the CE.

同図に見ら′I″1.るように、前段工程にオゾン酸化
法か後段工程にACEが設けら21.ており、し尿二次
処理水にNO玉イオンか存在するときは、CODのP 
を分の03を注入してNOiイオンへの酸化と着色成分
の脱色を完了し、同時に有機物の低分子化を促し一部有
機酸まで酸化することによって有機物は親水性を帯びる
に至り、一部イオンtこまで解離してぐるもの吉思ゎ2
′Lる。また複極活性炭充填電解法はパ活性炭吸着法”
′よりも高能率であり、イオン化さ石7た親水性有機物
は酸化分解するlこ当り積俊的tこ活性炭の細孔内に吸
蔵さ、nる。吸蔵・濃縮さイtた粒状活性炭表面上の有
機物は電解酸化反応(ことっては効果的でありξオゾン
酸化では期待し得ない。水電解によって発生した酸素に
よる酸化反応、処理水中ζこ含有さイする塩素イオンか
電解さ71で生ずる有効塩素ζこよる酸化反応及び電子
の授受?こよる酸化反応等か電解反応の際dこ生じ、複
極活性炭充填電解法による酸化力はオゾンによる酸化力
よりも強力となり、゛オゾン酸化法“では除去し得なか
った有機物を酸化分解し得るものと思料さイする。
As shown in the figure, if the ozone oxidation method is used in the first step or the ACE is used in the second step, and NO ball ions are present in the secondary treated human waste water, the COD P
By injecting 0.3 minute amount of CO2 to complete the oxidation to NOi ions and decolorization of the colored components, at the same time, it promotes the reduction of the organic matter to low molecular weight and oxidizes some organic acids, so that the organic matter becomes hydrophilic, and some of the organic matter becomes hydrophilic. Ion is dissociated to this extent and I feel lucky 2
'Lru. In addition, the bipolar activated carbon filling electrolysis method is the activated carbon adsorption method.
It has a higher efficiency than the ionized carbon, and the hydrophilic organic matter that is ionized is oxidized and decomposed, but is instead occluded in the pores of the activated carbon. The occluded and concentrated organic matter on the surface of the granular activated carbon undergoes an electrolytic oxidation reaction (this is effective and cannot be expected with ozone oxidation.The oxidation reaction due to oxygen generated by water electrolysis, and the presence of ζ in the treated water) The oxidation reaction and transfer of electrons due to the effective chlorine ζ produced in the electrolytic process 71 occur during the electrolytic reaction, and the oxidizing power of the bipolar activated carbon filling electrolysis method is due to the oxidation due to ozone. It is thought that it is more powerful than physical force and can oxidize and decompose organic matter that could not be removed by the ozone oxidation method.

スカムは処理水の電解の際に発生する■■2と02の気
泡に吸着さ旧7て浮」ニし、オーバーフロー管14から
抽出さ3″l、る。
The scum is adsorbed by the bubbles of 2 and 02 generated during electrolysis of the treated water and floats to the surface, and is extracted from the overflow pipe 14.

電解帯域6a内に充填された粒状活性炭は、」二連のよ
うに溶存イオンや有機物を1吸蔵・吸着しているので、
これを脱離させて活性能を再生する必要かある。そのた
めに再生薬液として塩化ナトリウム、塩化カルシウム、
硫酸すl゛リウムようなアルカリ金属、アルカリ土類金
属の電解質溶液を薬液タンク12に設けた給i<=管1
2aを通して供給することによって、再生薬液は粒状活
性炭の細孔内に流入して吸蔵・吸着物質を拡散溶出させ
て粒状活性炭を再生することができる。再生薬液の濃度
、散液密度(l/m2)、滴流量などは、実験的に定め
らi%る。
The granular activated carbon filled in the electrolytic zone 6a absorbs and absorbs dissolved ions and organic substances in a double-layered manner.
It is necessary to remove this to regenerate the activity. For this purpose, sodium chloride, calcium chloride,
A supply i<=pipe 1 provided with an electrolyte solution of an alkali metal or alkaline earth metal such as sulfuric acid in a chemical tank 12
By supplying through 2a, the regenerating chemical solution can flow into the pores of the granular activated carbon, diffuse and elute the occluded/adsorbed substances, and regenerate the granular activated carbon. The concentration of the regenerating chemical solution, the liquid dispersion density (l/m2), the droplet flow rate, etc. are determined experimentally by i%.

この発明の目的と利益は次の試験例によって明確になる
であろう。
The purpose and benefits of this invention will be made clear by the following test examples.

試験例 (1)試験条件 粒状活性炭の充填量350g、陰極(ステンレス鋼材で
15 X 18cm)、陽極(フェライト材で15 x
 33cm) −ii流密度0.2 A / d m2
、電圧7.5V、供試処理水31 / I−I (CC
)I) IV+、、、22 InL?/ l )(2)
試験方法 第2図に示すように、本発明の方法と従来の方法とを比
較状1験した。
Test example (1) Test conditions Filling amount of granular activated carbon 350g, cathode (15 x 18 cm made of stainless steel material), anode (15 x 18 cm made of ferrite material)
33cm) -ii Flow density 0.2 A/d m2
, voltage 7.5V, sample treated water 31/I-I (CC
)I) IV+,,,22 InL? /l)(2)
Test Method As shown in FIG. 2, a comparative test was conducted between the method of the present invention and the conventional method.

03の吹込Aiは処理水11に対して7Qnip○3と
した。
The blowing Ai of 03 was 7Qnip○3 for 11 treated water.

CODは100Cにおりる過マンガン酸カリウム法によ
る。
COD is based on the potassium permanganate method at 100C.

(3)試験結果 第2図及び第3図に示した。(3) Test results It is shown in FIGS. 2 and 3.

(4)考察 し尿二次処理水に対する粒状活性炭の吸着能については
、縦軸をCOD処理到達レヘし、横軸を除去C0I)重
量当りの消費電力量(使用電力量+活性炭の消耗費およ
び再生費を電力費に見做し電力量に換算した値)とした
第2図に示さ3するように、単に粒状活性炭に吸着させ
た方法(符号■)よりもA、CEによる方法(符号■)
の方か、C0J)の低減について優l′V、てい5る。
(4) Consideration Regarding the adsorption capacity of granular activated carbon for secondary treated human urine water, the vertical axis shows the COD treatment level, and the horizontal axis shows the removed C0I) Energy consumption per weight (energy consumption + activated carbon consumption cost and regeneration) As shown in Figure 2 (3), the method using A and CE (symbol ■) is superior to the method of simply adsorbing it on granular activated carbon (symbol ■).
In terms of the reduction of C0J), there is an excellent reduction in l'V.

オゾン法との比較に就いては、オゾン法単独(符号n)
では、COJ〕を22m9/lまで低減させることかで
きた。才たACEで処理した後、オゾン法を併用した方
法(符号IV )では、オゾン法単独(n)の場合と有
意差のない結果か得ら2′V、た。
For comparison with the ozone method, the ozone method alone (symbol n)
In this case, we were able to reduce COJ to 22 m9/l. The method in which the ozone method was used in combination after treatment with ACE (symbol IV) yielded results that were not significantly different from those obtained using the ozone method alone (n).

オゾン法で処理した後、’ A−CEて処理を併用した
本発明の方法(符号I)によるさ、CODは著しく低減
した。またオゾン法で処理した後、粒状活性炭吸着法を
併用した方法(符−弓■)では、オゾン法単独(n)の
処理と有意差は無い。この試1験結果が示すように、こ
の発明の方法によ31゜は、顕著なC0I)の低減か図
らnることか確認された。
After the treatment with the ozone method, the COD was significantly reduced by the method of the present invention (symbol I) in which the treatment was combined with the 'A-CE treatment. Furthermore, in the case of a method in which a granular activated carbon adsorption method is used in combination after treatment with an ozone method (mark-arrow ■), there is no significant difference from treatment using the ozone method alone (n). As shown in the results of this first test, it was confirmed that the method of the present invention resulted in a significant reduction in C0I) of 31°.

次に、いくつかの粒状活性炭の電導塵に対するC0I)
到達レベルとの試験を行ない、その結果を第3図に示し
た。
Next, C0I) for conductive dust of some granular activated carbon
A test was conducted on the achieved level, and the results are shown in Figure 3.

使用した原液はオソン処理後の処理水(CODMn =
 22ff19/ l )  である。
The stock solution used was treated water after Oson treatment (CODMn =
22ff19/l).

使用した粒状活性炭(AC)の粒径は、1.5 mm(
比較例)と粒径5〜7 mmのものである。
The particle size of the granular activated carbon (AC) used was 1.5 mm (
Comparative Example) and those with a particle size of 5 to 7 mm.

同図か示すように、活性炭層の見掛型導度、〔m?f/
σ〕か15〜35の範囲において、粒径5〜7mm0)
J〜Cは良好なCOD到達レベルを発現した。
As shown in the figure, the apparent conductivity of the activated carbon layer, [m? f/
[σ] or in the range of 15 to 35, particle size 5 to 7 mm0)
JC exhibited good COD attainment levels.

この発明の方法に従えは、公知のオゾン酸化法、活性炭
吸着法もしくはこイtらの併用においては、低希釈率処
理水でCOD 30〜20m9/lが得ら孔るが、本発
明はこイtら公知の方法では到達し得ないC0I)の低
減か図ら21、当該分野において要望さ21.でいるC
OD 1.0〜L5m!7/lを達成することかできる
According to the method of this invention, COD of 30 to 20 m9/l can be obtained with low dilution rate treated water using the known ozone oxidation method, activated carbon adsorption method, or a combination of these methods. It is desired in the field to reduce COI which cannot be achieved by the known methods21. C
OD 1.0~L5m! It is possible to achieve 7/l.

この発明の方法は、し尿二次処理水の含有成分の分離、
除去及び酸化分解の過程、それを実行分担する固有の単
一技術の組合せ手順は標準希釈率し尿二次処理水に対し
ても容易に実施することができる。
The method of this invention includes separation of components contained in secondary treated human waste water,
The removal and oxidative decomposition process, a unique single technology combination procedure that performs it, can be easily carried out even on standard dilution urine secondary treated water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の概略図、第2図
は試験結果を示す図表、第3図は粒状活性炭の電導塵の
変化に対するCOD到達レヘしを示す試験結果の図表で
ある。 符号の説明 3 オゾン接触槽、6・複極活性炭充填電解装置、12
・再生用薬液タンク。
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, FIG. 2 is a chart showing test results, and FIG. 3 is a chart showing test results showing the COD attainment level with respect to changes in conductive dust of granular activated carbon. . Explanation of symbols 3 Ozone contact tank, 6/Bipolar activated carbon filled electrolyzer, 12
- Regeneration chemical tank.

Claims (1)

【特許請求の範囲】 1 し尿二次処理水をオゾン酸化した後、陰陽両極間に
粒状活性炭を充填した複極活性炭充填電解装置に通水、
通電して活性炭に有機物を吸蔵・吸着させて電解酸化さ
せることにより、し尿二次処理水中のCODを低減する
ことを特徴とするし尿二次処理水の高次処理方法2 粒
状活性炭の粒子径が5〜7 mmの多孔性粒状活性炭で
あり、見掛けの電導度が15〜35171σ/aである
特許請求の範囲第1項記載のし尿二次処理水の高次処理
方法。 3 粒状活性炭充填層に電解質溶液を流通して粒状活性
炭を再生する特許請求の範囲第1項記載のし尿二次処理
水の高次処理方法。
[Claims] 1. After the secondary treated human waste water is oxidized with ozone, the water is passed through a bipolar activated carbon-filled electrolyzer filled with granular activated carbon between the positive and negative electrodes,
High level treatment method 2 for secondary treated human waste water characterized by reducing COD in secondary treated human waste water by applying electricity to occlude and adsorb organic matter on activated carbon and electrolytically oxidizing it. The method for higher-level treatment of secondary treated human waste water according to claim 1, which is porous granular activated carbon with a diameter of 5 to 7 mm and an apparent electrical conductivity of 15 to 35171σ/a. 3. The method for higher-level treatment of secondary treated human waste water according to claim 1, wherein the granular activated carbon is regenerated by passing an electrolyte solution through the granular activated carbon packed bed.
JP4383A 1983-01-05 1983-01-05 Higher level treatment method for secondary treated human waste water Granted JPS59127691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4383A JPS59127691A (en) 1983-01-05 1983-01-05 Higher level treatment method for secondary treated human waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4383A JPS59127691A (en) 1983-01-05 1983-01-05 Higher level treatment method for secondary treated human waste water

Publications (2)

Publication Number Publication Date
JPS59127691A true JPS59127691A (en) 1984-07-23
JPS638835B2 JPS638835B2 (en) 1988-02-24

Family

ID=11463264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4383A Granted JPS59127691A (en) 1983-01-05 1983-01-05 Higher level treatment method for secondary treated human waste water

Country Status (1)

Country Link
JP (1) JPS59127691A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083819A (en) * 1999-08-13 1999-12-06 김기준 Inorganic chemical treatment of waste water
KR20030084526A (en) * 2002-04-24 2003-11-01 윤철종 The removal of nitrogen compounds by electrolytic cell packed activated carbon
EP1997782A2 (en) 2007-04-09 2008-12-03 Hitachi, Ltd. An apparatus, a system and a treatment method for organic compounds included in waste water
JP2014504205A (en) * 2010-12-06 2014-02-20 カウンシル・オヴ・サイエンティフィック・アンド・インダストリアル・リサーチ Carbon bed electrolyzer for waste liquid treatment and its process
RU168719U1 (en) * 2016-04-18 2017-02-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) ELECTROFLOTOMEMBRANE DEVICE WITH CORRECTION OF ACID ACID FOR THE WATER TREATMENT FROM COMPOUNDS OF HEAVY METALS
KR20190014236A (en) * 2017-07-31 2019-02-12 장성만 Laver waste water treatment apparatus
EP4183751A1 (en) * 2021-11-17 2023-05-24 SK Hynix Inc. Device and method for selectively removing perfluorinated compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL248410B2 (en) 2014-04-21 2023-11-01 Becton Dickinson & Co Ltd A system for the closed transfer of liquids

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083819A (en) * 1999-08-13 1999-12-06 김기준 Inorganic chemical treatment of waste water
KR20030084526A (en) * 2002-04-24 2003-11-01 윤철종 The removal of nitrogen compounds by electrolytic cell packed activated carbon
EP1997782A2 (en) 2007-04-09 2008-12-03 Hitachi, Ltd. An apparatus, a system and a treatment method for organic compounds included in waste water
US7722773B2 (en) 2007-04-09 2010-05-25 Hitachi, Ltd. Method of treating organic compounds in wastewater
US7993529B2 (en) 2007-04-09 2011-08-09 Hitachi, Ltd. Treatment apparatus of organic compounds included in waste water, and a treatment system of organic compounds included in waste water
JP2014504205A (en) * 2010-12-06 2014-02-20 カウンシル・オヴ・サイエンティフィック・アンド・インダストリアル・リサーチ Carbon bed electrolyzer for waste liquid treatment and its process
RU168719U1 (en) * 2016-04-18 2017-02-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) ELECTROFLOTOMEMBRANE DEVICE WITH CORRECTION OF ACID ACID FOR THE WATER TREATMENT FROM COMPOUNDS OF HEAVY METALS
KR20190014236A (en) * 2017-07-31 2019-02-12 장성만 Laver waste water treatment apparatus
EP4183751A1 (en) * 2021-11-17 2023-05-24 SK Hynix Inc. Device and method for selectively removing perfluorinated compound

Also Published As

Publication number Publication date
JPS638835B2 (en) 1988-02-24

Similar Documents

Publication Publication Date Title
AU2008200884B2 (en) A treatment method of organic compounds included in waste water, a treatment apparatus of organic compounds included in waste water, a treatment system of organic compounds included in waste water, and a bitumen collecting system
CN103342405B (en) Method for degrading organic pollutants in water through electrochemical cathodic activation of persulfate
CN106044965B (en) A device for recovering heavy metals in electroplating wastewater and a recovery method thereof
CN111517428B (en) Treatment process and system for removing heavy metal ions in PTA wastewater
CN105016431A (en) Method and apparatus for removal and recovering of heavy metal ions from wastewater
CN105601002B (en) A kind of processing system and method for purification of organic waste water
CN114873694B (en) Method and device for treating PFASs wastewater by zinc-based electroflocculation and electrocatalytic oxidation
CN104556494A (en) Advanced sewage treatment technology
JPS59127691A (en) Higher level treatment method for secondary treated human waste water
JPS6097089A (en) Method of electrochemically removing contamination of water
JP3227921B2 (en) Apparatus and method for treating wastewater containing oil composed of ester
CN101362610A (en) A method for electrolytic removal of methane chloride in water or waste water
CN108439540B (en) A kind of reverse osmosis concentrated saline water treatment device of cold rolling wastewater and method
CN1247466C (en) Technique for treating water using magnetic absorbent
JP2923108B2 (en) Method for removing impurities from printed circuit board washing wastewater
CN106809920A (en) A kind of Fe C light electrolysis Fenton processes for advanced treating agricultural chemicals waste water
RU2087423C1 (en) Method of cleaning water streams
JPS6244995B2 (en)
CN115010224A (en) Electrochemical reaction device for cooperatively removing water hardness, alkalinity, turbidity and microorganisms
CN115520939B (en) Repolarization type electric control coupling ozone gas floating water treatment device
JPS637117B2 (en)
CN212669432U (en) Device for treating sulfur-containing wastewater of oil and gas field
JPH05185072A (en) Energizing regeneration type waste liquid treatment and equipment therefor
JPS6195295A (en) Nuclear plant water treatment equipment
JP2002018443A (en) Method and apparatus for water treatment