JPS5913056A - Amorphous iron alloy with high strength and resistance to fatigue, general corrosion, pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlement - Google Patents
Amorphous iron alloy with high strength and resistance to fatigue, general corrosion, pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlementInfo
- Publication number
- JPS5913056A JPS5913056A JP9949683A JP9949683A JPS5913056A JP S5913056 A JPS5913056 A JP S5913056A JP 9949683 A JP9949683 A JP 9949683A JP 9949683 A JP9949683 A JP 9949683A JP S5913056 A JPS5913056 A JP S5913056A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- resistance
- alloy
- amorphous
- hydrogen embrittlement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 124
- 238000005260 corrosion Methods 0.000 title claims abstract description 124
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 27
- 239000001257 hydrogen Substances 0.000 title claims abstract description 27
- 238000005336 cracking Methods 0.000 title claims abstract description 25
- 229910000640 Fe alloy Inorganic materials 0.000 title claims abstract description 11
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 5
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 5
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 3
- 229910052718 tin Inorganic materials 0.000 claims abstract description 3
- 229910052732 germanium Inorganic materials 0.000 claims abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 229910052789 astatine Inorganic materials 0.000 claims description 3
- 229910052774 Proactinium Inorganic materials 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 5
- 229910052802 copper Inorganic materials 0.000 abstract description 4
- 229910052763 palladium Inorganic materials 0.000 abstract description 4
- 229910052796 boron Inorganic materials 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052737 gold Inorganic materials 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- 229910052793 cadmium Inorganic materials 0.000 abstract 1
- 229910052725 zinc Inorganic materials 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 46
- 239000000956 alloy Substances 0.000 description 46
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 12
- 125000004429 atom Chemical group 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 5
- 238000005275 alloying Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- 239000010963 304 stainless steel Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000144 sodium(I) superoxide Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明に、高強度、耐疲労、耐全面腐食、耐孔食、耐隙
間腐食、耐応力腐食割れ、耐水素脆性用アモルファス鉄
合金に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous iron alloy with high strength, fatigue resistance, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance.
通常の耐食性鉄合金すなわちステンレス合金、例えば/
3 %クロム鋼、/It−1ステンレス鋼(304を鋼
)、n−n−コjMoステンレ不鋼(3/l L鋼)に
耐候性、耐食性に優れており、化学反応容器やバイブ、
原子炉用冷却装置など大気中や腐食性の環境で多く使用
されている。しかし、長時間使用中に、孔食、応力腐食
割れ、隙間腐食、水素脆性などにより、突然破壊や損傷
が起こるため装置の使用が不可能になり、安全性や公害
などの点で重大な問題を引き起こしている。このため現
在多くの研究者がこれらの腐食にかかわる問題を解決す
べく研究中である。Ordinary corrosion-resistant iron alloys i.e. stainless steel alloys, e.g.
3% chromium steel, /It-1 stainless steel (304 steel), n-n-CojMo stainless steel (3/L L steel) have excellent weather resistance and corrosion resistance, and are suitable for chemical reaction vessels, vibrators,
It is often used in atmospheric or corrosive environments, such as in cooling equipment for nuclear reactors. However, during long-term use, pitting corrosion, stress corrosion cracking, crevice corrosion, hydrogen embrittlement, etc. can cause sudden destruction or damage, making the equipment unusable and causing serious problems in terms of safety and pollution. is causing. Therefore, many researchers are currently conducting research to solve these corrosion-related problems.
通常金属は固体状態では結晶状態にあるが、ある特殊な
条件(合金の組成、急冷凝固)下では、固体状態でも液
体に類似した、結晶構造をもたない原子構造が得られ、
このような金属、又は合金全アモルファス金属(又は非
晶質金属)と言っている。Normally, metals are in a crystalline state in the solid state, but under certain special conditions (alloy composition, rapid solidification), even in the solid state, an atomic structure similar to that of a liquid can be obtained without a crystalline structure.
Such metals or alloys are referred to as fully amorphous metals (or non-crystalline metals).
このアモルファス合金は従来の実用金属材料に比し、著
しく高い強度を保有する可能性があるが、反面耐食性に
劣る欠点がある。この原因はアモルファス金属では原子
の結合力が弱いためと考えられる。例えば、Fe−0−
P系およびIPa−B−P系アモルファス合金の塩水噴
霧による腐食減量は、普通の炭素鋼の約3倍である。一
方、実用金属として使用される場合には、常温だけでな
ぐ昇温状態でも使用されることがあり、アモルファス合
金はその組成に応じ・である温度で結晶性金属又は合金
に変化する結晶化温度をもっている。アモルファス合金
が結晶化すると、アモルファス合金としての特性が失わ
れることになる。従ってこのような昇温状態で使用され
る場合には出来る限りこの結晶化温度が高いことが必要
である。This amorphous alloy may have significantly higher strength than conventional practical metal materials, but has the disadvantage of poor corrosion resistance. This is thought to be due to the weak bonding force between atoms in amorphous metals. For example, Fe-0-
The corrosion weight loss of P-based and IPa-B-P-based amorphous alloys due to salt spray is about three times that of ordinary carbon steel. On the other hand, when used as a practical metal, it may be used not only at room temperature but also at elevated temperatures. have. When an amorphous alloy crystallizes, it loses its properties as an amorphous alloy. Therefore, when used under such elevated temperature conditions, it is necessary that the crystallization temperature is as high as possible.
本発明は、前記ステンレス合金の欠点である孔(3)
食、隙間腐食、応力腐食割れ、水素脆性なと腐食の関与
した材料の消耗や破壊を起さず、かつ高強度、耐疲労性
のあるアモルファス鉄合金を提供することを目的とする
ものである。The present invention eliminates the disadvantages of stainless steel alloys such as pit corrosion, crevice corrosion, stress corrosion cracking, hydrogen embrittlement, and wear and tear of materials involved in corrosion, and has high strength and fatigue resistance. The purpose is to provide an amorphous iron alloy.
本発明は原子係としてOr /〜Q%と、 P、0及
びBのうち何れか1種又Fi2種以上7〜33 %を主
成分として含み、かつ副成分として、(1) Ni及
び00の何れか1種又は2種00O7NqO係
(2)Mo 、 Zr 、 Ti 、 Si 、’Al
、 Pt 、 Mn及びlの何れか1種又は2種以上0
.0/ −20%(51V 、 mb 、 Ta 、
w 、 Ga及びBeの何れか1種又[J種以上 0.
01−10 elb(4) Au 、 Ou 、 Z
n 、 Od、 an 、 As 、 8b 、 Bi
及びSの例れかl檜又は2種以上 0,0/ −jチの
群のうちから選ばれた何れか1群又は2群以上を合計量
で0.0/〜7jチを含有し、残部は実質的にIPeの
組成からなる配合素材を急冷凝固させることにより得た
アモルファス鉄合金であって、高強度、耐疲労、耐全面
腐食、耐孔食、耐隙間腐食、(4!1
耐応力腐食割れ、耐水素脆性などの特性を有し、本発明
の目的を達成することができる。。The present invention contains as main components Or/~Q% and 7 to 33% of any one of P, 0, and B or two or more types of Fi, and as subcomponents (1) Ni and 00. Any one type or two types 00O7NqO (2) Mo, Zr, Ti, Si, 'Al
, Pt, Mn, and l, any one or two or more 0
.. 0/-20% (51V, mb, Ta,
w, any one of Ga and Be or [more than J type 0.
01-10 elb (4) Au, Ou, Z
n, Od, an, As, 8b, Bi
and S contains one or more groups selected from the group of cypress or two or more 0,0/-jchi in a total amount of 0.0/~7jchi, The remainder is an amorphous iron alloy obtained by rapidly cooling and solidifying a blended material consisting essentially of IPe, which has high strength, fatigue resistance, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, and (4!1) resistance. It has properties such as stress corrosion cracking and hydrogen embrittlement resistance, and can achieve the purpose of the present invention.
本発明において、前記組成の溶体から急冷凝固して得た
アモルファス組織は前記各元素が鉄を主体とした基地中
に不規則に固溶トた一相合金組織である。これに反し、
結晶金属中には普通多くの格子欠陥が存在し、これらは
腐食、孔食応力腐食割れ、水素脆性などの起点になるた
めに、金属表・面の損傷を防ぎ、応力腐食割れや水素脆
性を防ぐことが難かしい。従来、耐食性の改善にはクロ
ム、アルミニウムなどの合金元素を添加して耐食性被膜
を形成させてきた。しかし合金元素の添加による耐食性
の改善は、孔食、応力腐食割れなどを、、かえって促進
するという゛危険を伴いかつ耐食性、の改善にも限界が
ある。また耐食性を改善し得る元素の多量の添加は材質
の劣化や製造の困難性の上からおのずから制限される。In the present invention, the amorphous structure obtained by rapid solidification from a solution having the above composition is a single-phase alloy structure in which each of the above elements is irregularly dissolved in a solid solution in a matrix mainly composed of iron. On the contrary,
Many lattice defects normally exist in crystalline metals, and these become starting points for corrosion, pitting corrosion, stress corrosion cracking, hydrogen embrittlement, etc., so it is necessary to prevent damage to the metal surface and prevent stress corrosion cracking and hydrogen embrittlement. difficult to prevent. Conventionally, corrosion resistance has been improved by adding alloying elements such as chromium and aluminum to form a corrosion-resistant coating. However, improving corrosion resistance by adding alloying elements carries the risk of accelerating pitting corrosion, stress corrosion cracking, etc., and there are limits to the improvement of corrosion resistance. Further, addition of large amounts of elements that can improve corrosion resistance is naturally restricted due to deterioration of the material and difficulty in manufacturing.
これに対し、液体から急冷させたアモルファス合金は強
さと靭さを保ちながら耐食性元素を多量に均、−に添加
でき1.シかも全く腐食の起点となる欠陥を含まない。On the other hand, amorphous alloys that are rapidly cooled from liquid can have a large amount of corrosion-resistant elements uniformly added to them while maintaining strength and toughness.1. It does not contain any defects that can become a starting point for corrosion.
これが本合金が孔食、応力腐食割れ、水素脆性を起こさ
ず耐食性がきわめて高い理由である。This is why this alloy has extremely high corrosion resistance without causing pitting corrosion, stress corrosion cracking, or hydrogen embrittlement.
次に本発明のアモルファス合金を製造する方法について
図面により説明する。Next, a method for manufacturing the amorphous alloy of the present invention will be explained with reference to the drawings.
図は本発明のアモルファス合金を製造する装置の一例を
示す概略図である。図において、lは下方先端に水平方
向に噴出するノズルコを有する石英管で、その中には原
料金属3が装入され、溶解される。≠は原料金属3を加
熱するための加熱炉であり、jはモーター乙により高速
度、例えば3000 rpmで回転される回転ドラムで
、これは、ドラムの回転による遠心力負荷をできるだけ
小さくするため、軽量で熱伝導性の良い金属、例えばア
ルミニウム合金よりなり、内面には更に熱伝導性の良い
金属、例えば銅板7で内張すされているdtは石英管l
を支持して上下に移動するための王アビストンである。The figure is a schematic diagram showing an example of an apparatus for producing the amorphous alloy of the present invention. In the figure, l is a quartz tube having a nozzle at its lower end that ejects water in a horizontal direction, into which raw metal 3 is charged and melted. ≠ is a heating furnace for heating the raw material metal 3, and j is a rotating drum rotated at a high speed, for example, 3000 rpm, by a motor O. This is done in order to minimize the centrifugal force load due to the rotation of the drum. dt is a quartz tube made of a lightweight metal with good thermal conductivity, such as an aluminum alloy, and whose inner surface is lined with a metal with good thermal conductivity, such as a copper plate 7.
In support of moving up and down is King Aviston.
原料金属は、先ず石英管/の送入口/aより流体搬送等
によ転装入され加熱ケリの位置で加熱溶解され、次いで
エアピストンざによりノズルコが回転ドラムjの内面に
対向する如く石英管lが図に示す位置に下降され、次い
で上昇を開始するとほぼ同時に溶融金属3にガス圧が加
えられて、金属が回転ドラムの内面に向って噴流される
。石英管内部−\は金属3の酸化を防ぐため絶えず不活
性ガス、例えばアルゴンガスタを送入し不活性雰囲気と
しておくものとする。回転ドラム内面に噴流された金属
は高速回転による遠心力のため、回転ドラム内面に強く
接触せしめられふことによって、超高速冷却が与えられ
てアモルファス金属となる。The raw metal is first charged through the inlet port /a of the quartz tube by fluid conveyance, etc., heated and melted at the heating end position, and then transferred to the quartz tube by the air piston so that the nozzle faces the inner surface of the rotating drum j. 1 is lowered to the position shown in the figure, and then at about the same time as it begins to rise, gas pressure is applied to the molten metal 3, causing the metal to be jetted toward the inner surface of the rotating drum. In order to prevent the metal 3 from oxidizing, an inert gas such as argon gas is constantly fed into the inside of the quartz tube to create an inert atmosphere. The metal jetted onto the inner surface of the rotating drum is brought into strong contact with the inner surface of the rotating drum due to the centrifugal force caused by the high-speed rotation, and is cooled at an ultra-high speed to become an amorphous metal.
前記製造方法により、本発明のアモルファス鉄合金を、
例えば厚さ0.2闘、巾約/θmmの長いテープ状線と
して得ることができる。By the above manufacturing method, the amorphous iron alloy of the present invention,
For example, it can be obtained as a long tape-like wire with a thickness of 0.2mm and a width of /θmm.
本発明の研究において、第1表に示す組成のアモルファ
ス合金を図示の装置により、厚さ0.0j闘、巾/ a
mの条に作製した。In the research of the present invention, an amorphous alloy having the composition shown in Table 1 was prepared using the equipment shown in the figure to a thickness of 0.0 cm and a width/a.
It was fabricated in strips of m.
(7)
これらのアモルファス合金の機械的特性は第2表の如く
である。(7) The mechanical properties of these amorphous alloys are shown in Table 2.
同表において判る如く、硬さくHv)は6りO〜/ O
jOの範囲にあり、また破壊強さはλりO〜3りOkg
/−の範囲にあり、従来の鋼における最大強さを持つピ
アノ線に匹敵する。一方伸びはほとんどないが、いわゆ
る脆性体とは異なり、アモルファス特有の局部的粘性破
断を示す。疲労限は/10〜tso kg)7b2の範
囲にあり、例えばO0j係0炭素鋼3りj4kg/mu
2.1g−gステンレス鋼の32.!臀−2、/7−/
ステンレス鋼の夕/。6kv/−に比し疲労限は著しく
大である。As seen in the same table, the hardness Hv) is 6ri O~/O
It is in the range of jO, and the breaking strength is λriO to 3riOkg.
/- and is comparable to piano wire, which has the highest strength among conventional steels. On the other hand, it has almost no elongation, but unlike so-called brittle materials, it exhibits localized viscous rupture characteristic of amorphous materials. The fatigue limit is in the range of /10~tso kg)7b2, for example, O0j ratio 0 carbon steel 3j4kg/mu
2.1 g-g stainless steel 32. ! Buttocks-2, /7-/
Stainless Steel Evening/. The fatigue limit is significantly higher than that of 6kv/-.
前記の如く、実用の金属材料に比し、機械的特性がいづ
れも著しく異っていることは、本発明の合金の組織がア
モルファス(非晶質)組織であることによるもので、ま
た先に本発明の発明者が発明した多種の金属を含有しな
いアモルファス鉄合金に比しさらに有利な機械特性を有
することを知見した。As mentioned above, the fact that the mechanical properties are significantly different from those of practical metal materials is due to the fact that the structure of the alloy of the present invention is an amorphous structure. It has been found that the present inventors have more advantageous mechanical properties than the amorphous iron alloy that does not contain various metals.
これらの条よりそれぞれ試料を取り出し、各種の腐食試
験を行なった。結果は第6表の如くで、また比較のため
に市販のクロム鋼、 tg−gステンレス鋼(30グ曲
、/7−/II −2,3Moステンレス鋼(3/l、
L鋼)についても同様の試験を行なった。Samples were taken from each of these strips and various corrosion tests were conducted. The results are shown in Table 6. For comparison, commercially available chromium steel, TG-G stainless steel (30g curve, /7-/II-2,3Mo stainless steel (3/L,
A similar test was also conducted on L steel.
腐食試験は30℃における/N Napl水溶液、/M
H2Sa4水溶液、および各濃度の塩酸水溶液中に16
g時間浸漬して、単位面積当りの重量減少で求めた。Corrosion tests were carried out using /N Napl aqueous solution, /M at 30°C.
16 in H2Sa4 aqueous solution and hydrochloric acid aqueous solution at various concentrations.
It was determined by the weight loss per unit area after immersion for g hours.
孔食試験は語℃およびJ℃のlθ4yθ023・6H2
0溶液中に16g時間浸漬し、試料の表面観察と重量減
少で比較することにより行なった。壕だ一層この点を明
確にするために30℃の/N Na0L水溶液およびノ
M H2So4+ 0./Ii Na0t水溶液中でア
ノード分極による孔食型5位の発生の有無を調べた。Pitting corrosion test is 1θ4yθ023・6H2 at word ℃ and J℃
The test was carried out by immersing the sample in 0 solution for 16g for 16 hours and comparing the surface observation and weight loss of the sample. To further clarify this point, a 30°C /N Na0L aqueous solution and a 30°C H2So4+ 0. /Ii The presence or absence of pitting corrosion type 5 position due to anodic polarization in the Na0t aqueous solution was investigated.
応力腐食割れおよび水素脆性に対する感受性は定速引張
試験において、破断時の試料の伸び量により調べた。腐
食液中の伸びをεとし、同温度、での空気中での伸びを
ε。とすると、割れの感受性工はε。−ε/6oで表わ
される。Susceptibility to stress corrosion cracking and hydrogen embrittlement was investigated by the amount of elongation of the sample at break in a constant speed tensile test. The elongation in the corrosive liquid is ε, and the elongation in air at the same temperature is ε. Then, the susceptibility to cracking is ε. −ε/6o.
応力腐食割れ試験はl≠3℃沸騰す2%ug、at2水
溶液中で、引張速度および電位を変化させて行りつた。Stress corrosion cracking tests were carried out in a 2% UG, AT2 aqueous solution boiling at l≠3° C. while varying the tensile rate and potential.
一方、水素脆性試験はH2Sを加えた0、I NOH0
OONa + 0./H0H3000H(PH!j7
)液中で行なった。On the other hand, in the hydrogen embrittlement test, H2S was added to 0, I NOH0
OONa+0. /H0H3000H(PH!j7
) conducted in liquid.
(73)
第3表 腐食試験結果
lMH2804中の耐食試験では本発明合金は第3表に
みられるように全く腐食しない。また/N NaO2水
溶液中における耐食試験でも、本発明合金は腐食による
重量変化が全く検出されない。さらに、塩酸水溶液中で
の試験結果(第4表)からも判るように、本発明合金は
/IJ時間後でも全面腐食および孔食が全く起こらない
が、一方、30≠鋼は3時間ですでに著しい全面腐食と
孔食が起こっている。孔食試験に普通に用いられる卯℃
の10 ’A I!eOLs・6H20溶液中における
結果および更に液の温度を&℃まであげた結果を第5表
に示す。比較例に限らず現用ステンレス鋼のすべてに孔
食が発生する&’Cにおいても、本発明合金には全く孔
食が発生せず、重量減少も検出されない。(73) Table 3 Corrosion test results In the corrosion resistance test in MH2804, the alloy of the present invention did not corrode at all as shown in Table 3. Also, in the corrosion resistance test in /N NaO2 aqueous solution, no weight change due to corrosion was detected in the alloy of the present invention. Furthermore, as can be seen from the test results in an aqueous hydrochloric acid solution (Table 4), the alloy of the present invention does not undergo any general corrosion or pitting corrosion even after /IJ hours, whereas 30≠steel does not undergo any corrosion after 3 hours. Significant general corrosion and pitting have occurred. Rabbit temperature commonly used for pitting corrosion tests
10 'A I! Table 5 shows the results in the eOLs/6H20 solution and the results when the temperature of the solution was raised to +°C. Even in &'C, where pitting corrosion occurs not only in comparative examples but in all stainless steels currently in use, pitting corrosion does not occur in the alloy of the present invention at all, and no weight loss is detected.
at””jk含む溶液中でのアノード分極の結果を第6
空に示す。現用ステンレス鋼はいずれも孔食を生じて孔
食電位を示すが、本発明合金は全く孔食が認められず、
また孔食電位を示さずに完全に不働態化し、腐食減量も
検出されない。The results of anodic polarization in a solution containing at""jk are shown in the sixth section.
Shown in the sky. All of the stainless steels in use today undergo pitting corrosion and exhibit a pitting corrosion potential, but the alloy of the present invention shows no pitting corrosion at all.
In addition, it becomes completely passivated without exhibiting any pitting corrosion potential, and no corrosion loss is detected.
(/j )
(/7 )
・itノ
次に典型的な応力腐食割れ試験液である/413℃沸騰
&2 % MgO12液中での結果を第7表に示す。一
般に応力腐食割れ感受性は引張速度が小さいほど大きく
、また自然電極電位よりアノードにするほど太きくなる
。3011鋼では明瞭に応力腐食割れが生じることを示
すが、一方、本発明合金では全く起こさない。また、典
型的な水素脆性試験液であるH2Sを含む0./N 0
H600ONa +0./N OH,0OOH(PH4
j。67)液を用いて水素脆性試験を行なった結果、第
8表に見るように、水素脆性を起こし難い軟鋼でもこの
溶液中で定速引張試験を行なうと水素脆性を起こす。一
般に水素脆性感受性は引張速度が小さいほど大きくなり
、自然・電極電位よりカソードにするほど大きくなる。(/j) (/7) Table 7 shows the results in /413°C boiling & 2% MgO12 liquid, which is a typical stress corrosion cracking test liquid. In general, stress corrosion cracking susceptibility increases as the tensile rate decreases, and increases as the anode becomes lower than the natural electrode potential. 3011 steel clearly shows stress corrosion cracking, whereas the alloy of the present invention does not exhibit this at all. In addition, 0.00% containing H2S, which is a typical hydrogen embrittlement test liquid, was used. /N 0
H600ONa +0. /N OH,0OOH(PH4
j. 67) As shown in Table 8, hydrogen embrittlement tests were conducted using the solution, and as shown in Table 8, even mild steel, which does not easily cause hydrogen embrittlement, becomes hydrogen embrittlement when subjected to a constant speed tensile test in this solution. In general, hydrogen embrittlement susceptibility increases as the tensile speed decreases, and increases as the cathode becomes lower than the natural/electrode potential.
しかし、これらの条件下でも本発明合金は全く変化がな
い。However, even under these conditions, the alloy of the present invention does not change at all.
(lヂ )
本発明の合金において、Orの添加により耐孔食、耐隙
間腐食、耐応力腐食割れ、耐水素脆性が極端に改善され
、現用ステンレス鋼と比較を絶する優れた性能を有する
。この性能は本合金特有の原子構造に由来するものであ
る。本合金において前記多種金属を添加することにより
アモルファス基地自体の機械的特性を左右することがで
きると共に、例えば前記製造方法において、アモルファ
ス組織となすための急冷条件を変化させることができる
。(lji) In the alloy of the present invention, the pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance are extremely improved by the addition of Or, and the alloy has excellent performance that is incomparable to current stainless steels. This performance is derived from the atomic structure unique to this alloy. By adding the above various metals to the present alloy, the mechanical properties of the amorphous base itself can be influenced, and, for example, in the above manufacturing method, the quenching conditions for forming an amorphous structure can be changed.
本発明のアモルファス合金において、前記副成分たる合
金元素の効果は次のようである。In the amorphous alloy of the present invention, the effects of the alloying elements as the subcomponents are as follows.
1)これら副成分合金元素は、すべて合金組織のアモル
ファス化を害せず、かつ耐食性を向上させる。1) All of these subcomponent alloying elements do not impair the amorphization of the alloy structure and improve corrosion resistance.
2)〈なかでも)モルファス構造を安定する元素は、N
l 、 Oo 、Mo 、 81 、At
、Pt 、Pd 、 Go 、Be。2) The element that stabilizes the amorphous structure (among others) is N.
l, Oo, Mo, 81, At
, Pt, Pd, Go, Be.
Au 、 As 、 Sb 、 Bi 、 8であり、
3)耐全面腐食、耐孔食、耐隙間腐食、耐応力腐食割れ
、耐水素脆性を向上させる元素はNi 。Au, As, Sb, Bi, 8,
3) The element that improves general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance is Ni.
Mo 、 Zr 、 Ti 、 Si 、
kl 、 Pt 、 車\鷲\Pd 、V
、Nb 、Ta 、W 、Au、、Ou 、
Zn 、0(1゜”As 、 Sbであり、
4)高強度、耐疲労性を向上させる元素はMo 。Mo, Zr, Ti, Si,
kl, Pt, car\eagle\Pd, V
,Nb,Ta,W,Au,,Ou,
Zn, 0 (1°" As, Sb); 4) Mo is an element that improves high strength and fatigue resistance.
Zr 、 Ti 、 ’Si 、 ’kt 、 Mn
、 V 、 Nb 、 Ta’ 、 W、(i(L”1
3e 、 Snである。Zr, Ti, 'Si, 'kt, Mn
, V, Nb, Ta', W, (i(L"1
3e, Sn.
次に本発明における各成分の含有量を限定する理由を説
明する。Next, the reason for limiting the content of each component in the present invention will be explained.
Orについては、これをl原子チ柔満にすると、耐全面
腐食、耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆
性が劣化し、またψ原子係を越え石とアモルファス組織
とすることが困難であるので、I−%原子チの範囲内に
することが必要であり、j〜3S原子チ原子器が好適で
ある。Regarding Or, if it is made l-atom soft, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance deteriorate, and it also exceeds the ψ atomic ratio and becomes a stone and amorphous structure. Since it is difficult to do so, it is necessary to keep it within the range of I-% atoms, and a range of j to 3S atoms is preferable.
p、o及びBはアモルファス組織とすることを助成する
元素であるが、これらのうち少くとも7種の含有量が7
原子チ未満になると、アモルファス合金の製造が困難に
なり、 3s原子係を越えると、同様にアモルファス合
金の製造が困難にかり、ふつ合金を脆化するので7〜3
s原子係の範囲とし、約〃原子係とすることがアモルフ
ァス合金を製造する上では最も良い。P, O, and B are elements that help form an amorphous structure, and the content of at least seven of these is 7.
If it is less than 3s atoms, it will be difficult to manufacture an amorphous alloy, and if it exceeds 3s atoms, it will be difficult to manufacture an amorphous alloy as well, and the alloy will become brittle.
In manufacturing an amorphous alloy, it is best to set it in the range of the s atomic range, and about the atomic range.
Ni、0oFiそれぞれp原子係以下とし、Ni 。Ni and 0oFi are each less than the p-atom ratio, and Ni.
00を共に含有する場合その合計ヲ語原子係以下とする
理由はQ原子係を越えても前記諸物件の向上が期待され
ないからである。When 00 is included, the reason why the total value should be less than the W atomic ratio is that even if it exceeds the Q atomic ratio, no improvement in the above-mentioned properties is expected.
Mo 、 Zr 、 Ti 、 Si 、 At、 P
t 、 Mn 、 P(lそれぞれを〃原子係以下とし
、これらの2種以上の合計を〃原子係以下とする理由は
、I原子qbを越えるとアモルファス合金の製造が困難
になるからである。Mo, Zr, Ti, Si, At, P
The reason why each of t, Mn, and P(l is set to be below the atomic ratio, and the sum of two or more of these is set to be below the atomic ratio is that it becomes difficult to manufacture an amorphous alloy if the I atom exceeds qb.
V 、 Wb 、 Ta 、 W 、 Go 、 Be
のそれぞれを、10原子係以下とし、・これらの2種以
上の合計を70原子係以下とする理由は、10原子係を
越えるとアモルファス合金の製造が困難になるためであ
る。 IAu、 、 Ou 、 Zn 、 06 、
Sn 、 As 、 Sb 、 Bi 、 Sのそれぞ
れをj原子チ以下とし、これらの2種以上の合計をj原
子係以下とする理由は、j原子係を越えるとアモルファ
ス合金の製造が困難であるからである。V, Wb, Ta, W, Go, Be
The reason why each of these is set to be 10 atomic units or less, and the total of these two or more types is set to 70 atomic units or less is that if the number exceeds 10 atomic units, it becomes difficult to manufacture an amorphous alloy. IAu, , Ou, Zn, 06,
The reason why each of Sn, As, Sb, Bi, and S is set to be less than j atoms, and the sum of two or more of these is set to be less than j atoms, is that it is difficult to manufacture an amorphous alloy when the number exceeds j atoms. It is.
本発明の合金を実施例について説明する。Examples of the alloy of the present invention will be described.
i釦り一、4
CrlO原子%、P1313原子107原子%、Ni’
10原子%、Mar原子%、Nb]原子%、Cu、2原
子%残部Peよりなる配合素材を、図示の装置と前竺己
方法によって加熱・溶解後超高轡冷却、してアモルファ
ス合金(試料A31)を得た。このアモルフ、アス合金
は組成的に非常に製造し易く、かつ亭2〜t、表に示す
諸試験においても優れた特性のある。ことが判り、73
%Or鋼、304鋼、616L鋼に比べ比較にならぬ程
優れた耐孔食、耐隙間腐食、耐応力腐食割れを示すと共
に軟鋼に比、べても比較にならぬ程優れた耐水素脆性を
有することが判った〇さらに機械的緒特性も前記諸鋼種
に比べて著しく優秀である◎
Or 20原子%、P10原子%lC7原子%、Ni1
0原子%、Mol原子%、As2原子%残部Feよりな
る配合素材を図示の装置と前記方法によって加熱、溶解
後超高速冷却してアモルファス合金19.試料A34)
を得た。i Button 1, 4 CrlO atom%, P1313 atom 107 atom%, Ni'
A blended material consisting of 10 atomic %, Mar atomic %, Nb] atomic %, Cu, and 2 atomic % balance Pe was heated, melted, and cooled at an ultra-high temperature using the equipment and pre-smelting method shown in the figure to obtain an amorphous alloy (sample A31) was obtained. These amorphous and as-alloys are very easy to manufacture in terms of composition, and have excellent properties in the various tests shown in Table 2-t. It turns out that 73
It exhibits pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance that is incomparably superior to that of %Or steel, 304 steel, and 616L steel, and incomparably superior hydrogen embrittlement resistance compared to mild steel. It was found to have the following properties: 〇Furthermore, the mechanical properties are also significantly superior compared to the above-mentioned steel types◎Or 20 at%, P10 at%, C7 at%, Ni1
A blended material consisting of 0 atomic % Mol, 2 atomic % As and the balance Fe was heated using the illustrated apparatus and the method described above, and then cooled at an ultra-high speed after melting to form an amorphous alloy 19. Sample A34)
I got it.
、このアモルファス合金は組成的に非常に製造し易く、
かつ実施例1の試料A81と同様に耐食性、機竺特性に
おいて極めて優秀であった。, this amorphous alloy is compositionally very easy to manufacture;
Also, like Sample A81 of Example 1, it was extremely excellent in corrosion resistance and mechanical properties.
実施例 8
0r 8原子%、PIG原子%、B7原子%、Ni2O
原子%、No 5原子%、W8原子%、残部Feよりな
るアモルファス合金(試料A35)を実施例1および2
と同一方法により製造した。この合金は組成的に非常に
製造し易く、かつ実施例1および2の合金A 81 、
A 84と同様に耐食性、機械特性において極めて優秀
であった。Example 8 0r 8 atomic%, PIG atomic%, B7 atomic%, Ni2O
Examples 1 and 2 were prepared using an amorphous alloy (sample A35) consisting of 5 atomic % No, 8 atomic % W, and the balance Fe.
Manufactured by the same method as. This alloy is compositionally very easy to manufacture, and alloy A 81 of Examples 1 and 2,
Like A84, it had excellent corrosion resistance and mechanical properties.
実施例 4
Fe−1ar−xMo−15PL5(3、Fe−acr
−xMo−14P−50、Fe−5Cr−xMFe−5
Cr−x合金および比較例としてFe −xor −1
8P −70合金(各元素の前の数字はそれぞれの元素
含量を原子%であられしたものでありXは変数、残部は
鉄である)を図示の゛装置と前記の方法によって加熱y
溶融後超高速冷却してアモルファス合金を得た。これら
の合金についてI N Hej中で腐食試験を行った。Example 4 Fe-1ar-xMo-15PL5 (3, Fe-acr
-xMo-14P-50, Fe-5Cr-xMFe-5
Cr-x alloy and Fe-xor-1 as a comparative example
8P-70 alloy (the number before each element indicates the content of each element in atomic percent, X is a variable, and the remainder is iron) was heated by the apparatus shown in the figure and the method described above.
After melting, an amorphous alloy was obtained by ultra-high-speed cooling. Corrosion tests were conducted on these alloys in IN Hej.
結果を第2図に示す。いずれの合金系もNo含量の増大
と共に腐食速度は低下する。The results are shown in Figure 2. In both alloy systems, the corrosion rate decreases as the No content increases.
またこれらの合金はアノード分極しても孔食溶解を全く
受けず、更に、これらの合金を2枚のテフロン板にはさ
み高電位にアノード分極しても隙間腐食によるアノード
電流の上昇は認められない。Furthermore, these alloys do not suffer from pitting corrosion and dissolution at all even when anodic polarization occurs, and furthermore, even when these alloys are sandwiched between two Teflon plates and anodic polarized to a high potential, no increase in anode current due to crevice corrosion is observed. .
なお、例えば現用304ステンレス鋼は1(27ン
N Hel中に浸漬するだけで激しい孔食を受け、平均
腐食速度は20吟乍に及ぶ。又一方、本発明の合金を種
々の太さのガラス俸に巻きつけ、異なる一定応力(ひず
み)を負荷したまま、pH3のI N NaO7俗液に
3ケ月浸漬を行なったが、応力腐食割れおよび水素脆性
による破壊はおこらなかった。For example, current 304 stainless steel undergoes severe pitting corrosion just by being immersed in 1 (27 N Hel), with an average corrosion rate of 20 N Hel. The material was wrapped around a bar and immersed in a pH 3 I N NaO7 solution for 3 months while being subjected to different constant stress (strain), but stress corrosion cracking and hydrogen embrittlement failure did not occur.
実施例 5
V 、 Nb 、 W 、 Taの濃度X′fi:lO
原子%以下の範囲で変えたFe−1Or−xV−13P
−70゜Fe −3Or −xNb −18P −70
、Fe −5Cr −XW −]]3P−20−8B−
23i、Fe5Or−XTa−18P−30−5B合金
(谷元素の前の数字は原子%であられしたそれぞれの元
素の濃度)を図ボの装置で加熱、溶解後超高速冷却して
アモルファス合金を得た。これらの合金についてINH
C7中で行ったj−食試験結果を第3図に示す。Example 5 Concentrations of V, Nb, W, and Ta X'fi: lO
Fe-1Or-xV-13P changed within the range of atomic% or less
-70°Fe -3Or -xNb -18P -70
, Fe-5Cr-XW-]3P-20-8B-
23i, Fe5Or-XTa-18P-30-5B alloy (the number before the valley element is the concentration of each element in atomic %) was heated in the equipment shown in the figure, melted, and then cooled at an ultra-high speed to obtain an amorphous alloy. Ta. For these alloys INH
The results of the j-meal test conducted in C7 are shown in FIG.
V 、 Nb 、 W 、 Taいずれの添加も腐食速
度を低下させる。Addition of any of V, Nb, W, and Ta reduces the corrosion rate.
また、これらの合金はアノード分極しても(28)
孔食溶解を全く受けず、更に、これらの合金を2枚のテ
フロン板にはさみ高電位にアノード分極しても隙間腐食
によるアノード電流の上昇は認められない。なお、例え
ば現用304ステンレス鋼はI N Hel中に浸漬す
るだけで激しい孔食を受け、平均腐食速度は20吟年に
及ぶ。In addition, even when these alloys are anodic polarized (28), they do not undergo any pitting corrosion dissolution, and furthermore, even when these alloys are sandwiched between two Teflon plates and anode polarized to a high potential, the anodic current increases due to crevice corrosion. It is not allowed. For example, current 304 stainless steel undergoes severe pitting corrosion just by being immersed in IN Hel, and the average corrosion rate is over 20 years.
一方、本発明の合金を種々の太さのガラス俸に巻きつけ
、異なる一定応力(ひずみ)を負荷したまま、pH8の
I N Na0z溶液に8ケ月浸漬を行なったが応力腐
食割れおよび水素脆性による破壊はおこらなかった。On the other hand, the alloy of the present invention was wrapped around glass pellets of various thicknesses and immersed in an I N NaOz solution of pH 8 for 8 months while being loaded with different constant stresses (strains). No destruction occurred.
実施例 6
COおよびN1の濃度Xを40原子%以下の範囲で変え
たFe−1Or−XOO−14P−6B。Example 6 Fe-1Or-XOO-14P-6B in which the concentration X of CO and N1 was varied within a range of 40 atomic % or less.
Fe −a cr −xco −15P −7B I
Fe −1cr −xNi −14P −6B 、 F
e −8Or −xNi −15P −5B合金(各元
素の前の数字は原子%であられしたそれぞれの元素の濃
度であり残部はFe)を図示の装置と前記の方法で加熱
、溶解後超高速冷却してアモルファス合金を得た。これ
らの合金についてI N Hel中で行った腐食試験結
果を第4図に示す。FeをCOあるいはN1で置換する
と耐食性が向上している。Fe -a cr -xco -15P -7B I
Fe-1cr-xNi-14P-6B, F
e -8Or -xNi -15P -5B alloy (the number in front of each element is the concentration of each element in atomic %; the remainder is Fe) was heated using the device shown in the figure and the method described above, and after melting was cooled at an ultra-high speed. An amorphous alloy was obtained. The results of corrosion tests conducted on these alloys in IN Hel are shown in FIG. Corrosion resistance is improved when Fe is replaced with CO or N1.
また、これらの合金はアノード分極しても孔食溶解を全
く受けず、更に、これらの合金を2枚のテフロン板には
さみ高電位にアノード分極しても隙間腐食によるアノー
ド電流の上昇は認められない。なお、例えば現用304
ステンレス鋼はI N Hel中に浸漬するだけで激し
い孔食を受け、平均腐食速度は20 mny’j4に及
ぶ。In addition, these alloys do not suffer from pitting corrosion and dissolution at all even when anode polarized, and furthermore, even when these alloys are sandwiched between two Teflon plates and anode polarized to a high potential, no increase in anode current due to crevice corrosion is observed. do not have. In addition, for example, the current use 304
Stainless steel undergoes severe pitting corrosion simply by immersion in IN Hel, with average corrosion rates up to 20 mny'j4.
一方、不発明の合金を種々の太さのガラス俸に巻きつけ
、興なる一定応力(ひずみ)を負荷したままpH3のI
N HaC7溶液に3ケ月浸漬を行なったか、応力1
m食沖]れおよび水素脆性による破壊はおこらなかった
。On the other hand, an uninvented alloy was wrapped around glass pellets of various thicknesses, and a constant stress (strain) was applied to the I.
Immersed in NHaC7 solution for 3 months, stress 1
Fracture due to hydrogen embrittlement and hydrogen embrittlement did not occur.
実施例 7
20原子%以下のPd 、 Pt 、 ZrあるいはT
iを含むFe −I Cr −40Ni −xPd −
15P −50。Example 7 20 atomic % or less of Pd, Pt, Zr or T
Fe containing i -I Cr -40Ni -xPd -
15P-50.
ve−1Or−4ONi−XPt−14F−2B 、F
e−1cr−40Ni −xZr −16P −30、
Fe −10r −40Ni −xTi−12P−2B
−ISi合金および5原子%以下ノCuあるいはIuを
含むFe −1(3r −20Ni −XOu−15P
、Fe−10r−2ONi−xAu−13P合金(各元
素の前の数字は原子%であられしたそれぞれの元素の濃
度であり、残部はFe )を図示の装置と前記の方法で
加熱、溶解後超高速冷却してアモルファス合金を得た。ve-1Or-4ONi-XPt-14F-2B,F
e-1cr-40Ni-xZr-16P-30,
Fe-10r-40Ni-xTi-12P-2B
-ISi alloy and Fe-1(3r-20Ni-XOu-15P) containing Cu or Iu at 5 atomic % or less
, Fe-10r-2ONi-xAu-13P alloy (the number before each element is the concentration of each element in atomic %, the remainder is Fe) was heated using the equipment shown in the figure and the method described above, and after melting An amorphous alloy was obtained by rapid cooling.
これらの合金についてI N Hej中で行った腐食試
験結果を第5図に示す。Ti 、 Zr 、 Pt 、
Pcl。The results of corrosion tests conducted on these alloys in IN Hej are shown in FIG. Ti, Zr, Pt,
Pcl.
Ou 、 Auの添加は耐食性の向上に有効であること
を示している。It has been shown that the addition of Ou and Au is effective in improving corrosion resistance.
またこれらの合金はアノード分極しても孔食俗解を全く
受けず、更に、これらの合金を2枚のテフロン板にはさ
み高電位にアノード分極しても隙間腐食によるアノード
電流の上昇は認められない。なお、例えば現用804ス
テンレス鋼はl N HOJ!!中に浸漬するだけで激
しい孔食を受け、平均腐食速度は20IIwfif−に
′及ぶ。Furthermore, these alloys do not suffer from pitting corrosion at all even when anode polarized, and furthermore, even when these alloys are sandwiched between two Teflon plates and anode polarized to a high potential, no increase in anode current due to crevice corrosion is observed. . For example, the current 804 stainless steel is l N HOJ! ! Just by being immersed in it, it undergoes severe pitting corrosion, with an average corrosion rate of up to 20 IIwf.
一方、本発明の合金を種々の太さのガラス俸に巻きつけ
、異なる一定応力(ひずみ)を負荷したままpH8のI
N NaO7溶液に3ケ月浸漬を行なったが、反力腐
食割れおよび水素脆性による破壊はおこらなかった。On the other hand, the alloy of the present invention was wrapped around glass pellets of various thicknesses, and while different constant stresses (strains) were applied, I
Although it was immersed in a N 2 NaO 7 solution for 3 months, no reaction corrosion cracking or hydrogen embrittlement failure occurred.
本発明のアモルファス合金は、細い条、博板として製造
可能であり、従来の実用金属材料では得られない高い強
度と耐食性を有する。The amorphous alloy of the present invention can be manufactured as thin strips or wide plates, and has high strength and corrosion resistance that cannot be obtained with conventional practical metal materials.
従って本発明のアモルファス合金は、耐海水、1原子炉
、化学プラントなどあるいは複合材料や部品材料として
利用できる。例えは、大気、海水あるいは淡水中で使用
される装置、水力、火力、原子力その他各檎エネルギー
グランド、化学工業用プラントなどの特に耐全面腐食、
耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆性の要
求される部分あるいは車輛用タイヤ、ベルトなどのゴム
、プラスチック製品に埋込まれる補強用コード、コンク
リート埋込み用コードなどに適し、またフィルタースク
リーン、繊維との混紡用フィラメントなどの構台材料と
しての用途に適するものである。Therefore, the amorphous alloy of the present invention can be used for seawater resistance, nuclear reactors, chemical plants, etc., or as composite materials and component materials. For example, equipment used in the atmosphere, seawater or freshwater, hydraulic power, thermal power, nuclear power and other types of energy glands, chemical industrial plants, etc. that are particularly resistant to general corrosion,
Suitable for parts that require pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance, rubber for vehicle tires and belts, reinforcing cords embedded in plastic products, cords embedded in concrete, etc. It is suitable for use as a gantry material for filter screens, filaments for blending with fibers, etc.
第1図は本発明のアモルファス合金を製造する装置の一
例を示す概略図、第2図乃至第5図は本発明の合金及び
これに各種副成分元素を添加した場合の添加合金元素量
と腐食速度との関係を示す特性曲線図である。
1・・・石英管、2・・・ノズル、8・・・原料金属、
、4・・・加熱炉、5・・・回転ドラム、6.・・モ
ーター、7・・・銅板、8・・・エヤピストン、9・・
・アルゴンガス。Fig. 1 is a schematic diagram showing an example of an apparatus for manufacturing the amorphous alloy of the present invention, and Figs. 2 to 5 show the alloy of the present invention and the amount of added alloying elements and corrosion when various subcomponent elements are added thereto. It is a characteristic curve diagram showing the relationship with speed. 1... Quartz tube, 2... Nozzle, 8... Raw metal,
, 4... Heating furnace, 5... Rotating drum, 6. ...Motor, 7...Copper plate, 8...Air piston, 9...
・Argon gas.
Claims (1)
れか7種又は2種以上7〜35%を主成分として含み、
かつ副成分として、 (1) ml及びGoの何れか1種又は2種。、0/
〜俊チ、 (2) Mo 、 Zr 、 Ti 、 Si 、
At、 Pt 、 Mn及びPaの何れか7種又は2種
以上0.0/〜20 q6、(5) V 、 Nb
、 Ta 、 W 、 Ge及びBeの何れか7種又は
2種以上0.0/〜70%、 (4) Au 、 Ou +’ Zn 、 Od、
Sn 、 As 、 Sb 、 Bi及びSの何れか1
種又は2種以上。、0/〜!チの群のうちから選ばれた
何れか7群またはコ群以上を合計量でo、oi〜7!%
を含有し、残部は実質的にFeの組成からなる高強度、
耐疲労、耐全面’/ フ 腐食、耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆
性用アモルファス鉄合金。[Claims] Contains as a main component 7 to 35% of any seven or two or more of Or/-ψ, p, a, and B as atomic absorption,
and as subcomponents: (1) one or two of ml and Go; ,0/
~Shunchi, (2) Mo, Zr, Ti, Si,
Any 7 or 2 or more of At, Pt, Mn, and Pa 0.0/~20 q6, (5) V, Nb
, any 7 or 2 or more of Ta, W, Ge, and Be 0.0/~70%, (4) Au, Ou +' Zn, Od,
Any one of Sn, As, Sb, Bi and S
A species or two or more species. , 0/~! O, oi~7 in total amount of any 7 or more groups selected from the group A! %
with high strength, the remainder being substantially composed of Fe,
Amorphous iron alloy with fatigue resistance, full surface resistance, corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9949683A JPS5913056A (en) | 1983-06-06 | 1983-06-06 | Amorphous iron alloy with high strength and resistance to fatigue, general corrosion, pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlement |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9949683A JPS5913056A (en) | 1983-06-06 | 1983-06-06 | Amorphous iron alloy with high strength and resistance to fatigue, general corrosion, pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlement |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP49074246A Division JPS5940900B2 (en) | 1974-07-01 | 1974-07-01 | Amorphous iron alloy for high strength, fatigue resistance, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5913056A true JPS5913056A (en) | 1984-01-23 |
| JPS6140302B2 JPS6140302B2 (en) | 1986-09-08 |
Family
ID=14248899
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9949683A Granted JPS5913056A (en) | 1983-06-06 | 1983-06-06 | Amorphous iron alloy with high strength and resistance to fatigue, general corrosion, pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlement |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5913056A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01145158A (en) * | 1987-12-01 | 1989-06-07 | Canon Inc | Liquid jet recording head and substrate for the head |
| JPH01145157A (en) * | 1987-12-01 | 1989-06-07 | Canon Inc | Liquid jet recording head and substrate for the head |
| WO2004083472A3 (en) * | 2003-03-18 | 2004-10-28 | Liquidmetal Technologies Inc | Current collector plates of bulk-solidifying amorphous alloys |
| JP2009024256A (en) * | 2007-06-21 | 2009-02-05 | Topy Ind Ltd | High corrosion resistance Fe-Cr based metallic glass |
| US7575040B2 (en) | 2003-04-14 | 2009-08-18 | Liquidmetal Technologies, Inc. | Continuous casting of bulk solidifying amorphous alloys |
| CN100545294C (en) | 2004-06-10 | 2009-09-30 | Ykk株式会社 | Amorphous alloy with excellent fatigue strength |
| EP1848837A4 (en) * | 2005-02-11 | 2010-02-24 | Nanosteel Co | Improved glass stability, glass forming ability, and microstructural refinement |
| US7935198B2 (en) | 2005-02-11 | 2011-05-03 | The Nanosteel Company, Inc. | Glass stability, glass forming ability, and microstructural refinement |
| US8063843B2 (en) | 2005-02-17 | 2011-11-22 | Crucible Intellectual Property, Llc | Antenna structures made of bulk-solidifying amorphous alloys |
| US8704134B2 (en) | 2005-02-11 | 2014-04-22 | The Nanosteel Company, Inc. | High hardness/high wear resistant iron based weld overlay materials |
| US9782242B2 (en) | 2002-08-05 | 2017-10-10 | Crucible Intellectual Propery, LLC | Objects made of bulk-solidifying amorphous alloys and method of making same |
| CN112695247A (en) * | 2020-12-08 | 2021-04-23 | 北京科技大学 | Stress corrosion resistant low-alloy high-strength steel for ocean engineering and preparation method thereof |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2364131A1 (en) * | 1972-12-26 | 1974-06-27 | Allied Chem | AMORPH METAL ALLOY AND THEIR USE |
-
1983
- 1983-06-06 JP JP9949683A patent/JPS5913056A/en active Granted
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2364131A1 (en) * | 1972-12-26 | 1974-06-27 | Allied Chem | AMORPH METAL ALLOY AND THEIR USE |
| JPS4991014A (en) * | 1972-12-26 | 1974-08-30 |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01145157A (en) * | 1987-12-01 | 1989-06-07 | Canon Inc | Liquid jet recording head and substrate for the head |
| JPH01145158A (en) * | 1987-12-01 | 1989-06-07 | Canon Inc | Liquid jet recording head and substrate for the head |
| US9782242B2 (en) | 2002-08-05 | 2017-10-10 | Crucible Intellectual Propery, LLC | Objects made of bulk-solidifying amorphous alloys and method of making same |
| US8927176B2 (en) | 2003-03-18 | 2015-01-06 | Crucible Intellectual Property, Llc | Current collector plates of bulk-solidifying amorphous alloys |
| WO2004083472A3 (en) * | 2003-03-18 | 2004-10-28 | Liquidmetal Technologies Inc | Current collector plates of bulk-solidifying amorphous alloys |
| US8445161B2 (en) | 2003-03-18 | 2013-05-21 | Crucible Intellectual Property, Llc | Current collector plates of bulk-solidifying amorphous alloys |
| US8431288B2 (en) | 2003-03-18 | 2013-04-30 | Crucible Intellectual Property, Llc | Current collector plates of bulk-solidifying amorphous alloys |
| US7862957B2 (en) | 2003-03-18 | 2011-01-04 | Apple Inc. | Current collector plates of bulk-solidifying amorphous alloys |
| USRE45414E1 (en) | 2003-04-14 | 2015-03-17 | Crucible Intellectual Property, Llc | Continuous casting of bulk solidifying amorphous alloys |
| US7575040B2 (en) | 2003-04-14 | 2009-08-18 | Liquidmetal Technologies, Inc. | Continuous casting of bulk solidifying amorphous alloys |
| USRE44425E1 (en) | 2003-04-14 | 2013-08-13 | Crucible Intellectual Property, Llc | Continuous casting of bulk solidifying amorphous alloys |
| CN100545294C (en) | 2004-06-10 | 2009-09-30 | Ykk株式会社 | Amorphous alloy with excellent fatigue strength |
| US7935198B2 (en) | 2005-02-11 | 2011-05-03 | The Nanosteel Company, Inc. | Glass stability, glass forming ability, and microstructural refinement |
| EP1848837A4 (en) * | 2005-02-11 | 2010-02-24 | Nanosteel Co | Improved glass stability, glass forming ability, and microstructural refinement |
| US8704134B2 (en) | 2005-02-11 | 2014-04-22 | The Nanosteel Company, Inc. | High hardness/high wear resistant iron based weld overlay materials |
| US8325100B2 (en) | 2005-02-17 | 2012-12-04 | Crucible Intellectual Property, Llc | Antenna structures made of bulk-solidifying amorphous alloys |
| US8830134B2 (en) | 2005-02-17 | 2014-09-09 | Crucible Intellectual Property, Llc | Antenna structures made of bulk-solidifying amorphous alloys |
| US8063843B2 (en) | 2005-02-17 | 2011-11-22 | Crucible Intellectual Property, Llc | Antenna structures made of bulk-solidifying amorphous alloys |
| JP2009024256A (en) * | 2007-06-21 | 2009-02-05 | Topy Ind Ltd | High corrosion resistance Fe-Cr based metallic glass |
| CN112695247A (en) * | 2020-12-08 | 2021-04-23 | 北京科技大学 | Stress corrosion resistant low-alloy high-strength steel for ocean engineering and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS6140302B2 (en) | 1986-09-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2042363C (en) | Iron aluminide alloys with improved properties for high temperature applications | |
| JPS5940900B2 (en) | Amorphous iron alloy for high strength, fatigue resistance, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance | |
| JP6076472B2 (en) | Nickel-chromium-aluminum alloy with good workability, creep strength and corrosion resistance | |
| EP0648850A1 (en) | Nickel-based alloy | |
| EP0520464B1 (en) | Nickel-base heat-resistant alloys | |
| EP0088599B1 (en) | Ni-cr type alloy material | |
| JPS6134498B2 (en) | ||
| EP0392484A1 (en) | Corrosion-resistant nickel-chromium-molybdenum alloys | |
| EP0338574B1 (en) | Nickel based alloys resistant to sulphidation and oxidation | |
| JPS5913056A (en) | Amorphous iron alloy with high strength and resistance to fatigue, general corrosion, pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlement | |
| JPH06500361A (en) | Controlled thermal expansion alloys and products made therefrom | |
| EP0396821B1 (en) | Zirconium alloy having improved corrosion resistance in nitric acid and good creep strength | |
| JPS5948929B2 (en) | Manufacturing method for steel materials with high strength and excellent resistance to hydrogen-induced cracking | |
| WO2000034540A1 (en) | Alloys for high temperature service in aggressive environments | |
| JPS61163238A (en) | Heat and corrosion resistant alloy for turbine | |
| US5089223A (en) | Fe-cr-ni-al ferritic alloys | |
| US5360592A (en) | Abrasion and corrosion resistant alloys | |
| WO1987003305A1 (en) | Corrosion-resistant copper alloy | |
| US5725691A (en) | Nickel aluminide alloy suitable for structural applications | |
| JPS6116420B2 (en) | ||
| JPS59193248A (en) | High strength, fatigue resistant, entire surface corrosion resistant, pitting corrosion resistant, gap corrosion resistant, stress corrosion cracking resistant and hydrogen brittleness resistant amorphous iron alloy | |
| JPS60187652A (en) | High-elasticity alloy | |
| JPH0713252B2 (en) | Method for producing high strength austenitic stainless steel with excellent seawater resistance | |
| JPS62274037A (en) | Precipitation curable nickel base alloy having improved stress corrosion cracking resistance | |
| JPS5891157A (en) | Amorphous iron alloy with resistance to pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlement |