[go: up one dir, main page]

JPS59147467A - static induction transistor - Google Patents

static induction transistor

Info

Publication number
JPS59147467A
JPS59147467A JP58021817A JP2181783A JPS59147467A JP S59147467 A JPS59147467 A JP S59147467A JP 58021817 A JP58021817 A JP 58021817A JP 2181783 A JP2181783 A JP 2181783A JP S59147467 A JPS59147467 A JP S59147467A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
resistance semiconductor
electrode
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58021817A
Other languages
Japanese (ja)
Inventor
Bunji Hisamori
久森 文詞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd, Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP58021817A priority Critical patent/JPS59147467A/en
Publication of JPS59147467A publication Critical patent/JPS59147467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/202FETs having static field-induced regions, e.g. static-induction transistors [SIT] or permeable base transistors [PBT]

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、化合物半導体で成る絶縁性半導体基板の上に
同様の化合物半導体で能動領域を縦型に形成した静電銹
専トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrostatic charge transistor in which an active region is vertically formed using a compound semiconductor on an insulating semiconductor substrate made of a compound semiconductor.

静?h Ffi導トランジスタ(以下、SITと呼ぶ。Quiet? h Ffi conductive transistor (hereinafter referred to as SIT).

)ば、本質的に直列抵抗が小さい、寄生容量が小さい等
の優れた特性を持つため、バイポーラ・トランジスタや
電界効果トランジスタ等に比較して、高周波数化、高速
度化、大出力化、低雑音化等の面で大きな利点を持つ。
) have excellent characteristics such as inherently low series resistance and low parasitic capacitance, so compared to bipolar transistors and field effect transistors, they can be used for higher frequencies, higher speeds, higher outputs, and lower This has great advantages in terms of noise reduction, etc.

特にキャリアの移動速度の速いG8^S等の化合物半導
体を使用した微細構造のSITは、パリスティック・ト
ランジスタと呼ばれ、窮極の高速性を持つ素子として期
待されている。
In particular, an SIT with a fine structure using a compound semiconductor such as G8^S, which has a high carrier movement speed, is called a pallitic transistor, and is expected to be an element with the ultimate high speed.

また、この優れた特性を持つSド■゛を含むモノリシッ
ク集積回路(以後、SIT ICと呼ぶ。)も同様に期
待されている。
Furthermore, monolithic integrated circuits (hereinafter referred to as SIT ICs) including S-cards having these excellent characteristics are also expected to have similar properties.

ところが、従来のSITは第1図乃至第3図に代表的に
示すように低抵抗の半導体基板のLに形成されており、
このため下記するような問題があった・ 第1図乃至第3図において、1はN型の低抵抗の半導体
基板、2はN型の高抵抗半導体領域、3はP型の低抵抗
半導体領域、4はソース用のオーミ、り電極、5はゲー
ト用のオーミック電極、6はドレイン用のオーミック電
極、7はゲート用のショットキ電極、8は絶縁物である
However, conventional SITs are formed on the L of a low-resistance semiconductor substrate, as typically shown in FIGS.
For this reason, there were the following problems. In Figures 1 to 3, 1 is an N-type low-resistance semiconductor substrate, 2 is an N-type high-resistance semiconductor region, and 3 is a P-type low-resistance semiconductor region. , 4 is an ohmic electrode for the source, 5 is an ohmic electrode for the gate, 6 is an ohmic electrode for the drain, 7 is a Schottky electrode for the gate, and 8 is an insulator.

ずなわら、第1図および第2図に示すように単体のS 
I ′1−を構成する場合はともかくとして、第3図に
示すように複数個のS ] Tを含むS I T −I
Cを構成する場合は、第1にトレイン電極6が各単位S
 I ’rに一ついて共通であるので、各単位SI′r
のトレインを独立に配線することができず、第2にドレ
イン電極は基板1の裏側にあるので、これと反対側にあ
る各単位S I Tのソースやゲートとの接続が困難で
あり、第3に単位Sl′rを形成した同一基板上におい
てICの11旧洛定数および相互配線を絶縁膜−にに形
成する場合に、これりと低抵抗基4fy、との間の容量
が大きくならざるをl/ないという問題がある。
As shown in Figures 1 and 2, the single S
Regardless of the case where S I '1- is constructed, as shown in FIG.
When composing a unit S, the train electrode 6 is first connected to each unit S.
Since there is one in common for I'r, each unit SI'r
Secondly, since the drain electrode is on the back side of the substrate 1, it is difficult to connect it to the source and gate of each unit S I T on the opposite side. When forming the IC's 11 old Raku constants and mutual wiring in an insulating film on the same substrate on which the unit Sl'r is formed in 3, the capacitance between this and the low resistance group 4fy will inevitably become large. There is a problem that there is no l/l.

従って、SI′T”−ICの自由な設計ができず、また
弔イーγSITの前記した利点を生かしたSl′F−I
Cの実現が不可能となる。
Therefore, it is not possible to freely design the SI'T"-IC, and the SI'F-I which takes advantage of the above-mentioned advantages of the
It becomes impossible to realize C.

本発明は斯かる点に鑑みて成されたもので、そのl」的
は、基板を化合物半導体で成る絶縁性の基板としてその
片面に縦型の能′動領域を持つsr’rを形成し、以っ
て片面側からのみ各電極を取り出すことができ、しかも
複数のSITを相互に分離し”ζ形成することができる
ようにすることである。
The present invention has been made in view of the above, and its objective is to form an sr'r having a vertical active region on one side of an insulating substrate made of a compound semiconductor. Therefore, each electrode can be taken out only from one side, and a plurality of SITs can be separated from each other to form "ζ".

以下、本発明の詳細な説明する。本実施例では、半導体
として、化合物半導体、例えばGaAsを使用する。第
4図において、9ばその化合物半導体で成る絶縁性半導
体基板で、その比抵抗は106Ω■以上である。10は
ドレイン領域を形成するN型の低抵抗半導体領域、11
はチャンネル領域を形成するN型の高抵抗半導体領域、
12はソース領域を形成するN型の低抵抗半導体領域、
13はゲート領域を形成するP型の低抵抗半導体領域で
あり、これらによる能動領域はエピタキシ中ル成長によ
り縦型に積層して形成されている。14はドレイン用の
オーミック電極、15はケート用のオーミック電極、1
6はソース用のオーミック電極であり、17は電極14
と電極15を分離するための絶縁物、18は電極15と
電極1Gを分離するための糸色練物である。
The present invention will be explained in detail below. In this embodiment, a compound semiconductor such as GaAs is used as the semiconductor. In FIG. 4, numeral 9 is an insulating semiconductor substrate made of a compound semiconductor, and its specific resistance is 10 6 Ω or more. 10 is an N-type low resistance semiconductor region forming a drain region; 11
is an N-type high resistance semiconductor region forming a channel region,
12 is an N-type low resistance semiconductor region forming a source region;
Reference numeral 13 denotes a P-type low resistance semiconductor region forming a gate region, and an active region formed by these semiconductor regions is formed by vertically stacking layers by medium epitaxial growth. 14 is an ohmic electrode for the drain, 15 is an ohmic electrode for the gate, 1
6 is an ohmic electrode for the source, 17 is the electrode 14
18 is an insulating material for separating the electrode 15 from the electrode 1G.

r)1体のS I ′Vは、ごのように絶縁性半導体基
板9の片面の上に縦型で構成されるので、その絶縁性半
導体基板9の片面からのみ]゛レイン、ゲートおよびソ
ースの各電極を引き出すことができる。
r) Since one S I'V is vertically constructed on one side of the insulating semiconductor substrate 9 as shown in the figure, it can be seen only from one side of the insulating semiconductor substrate 9]. Each electrode can be pulled out.

また複数のSITによりS ] T−I Cを構成する
場合でも、絶縁性基板9の片面に同様に形成することが
でき、この場合各ti’を位のSITは絶縁性半導体基
板9によって相互に絶縁・分−1tされ、しがもその片
面において容易に任怠の電極の相互接続を行うことがで
きる。第5図はその−・例であり、左側のS I Tの
ドレイン用のオーミック電極14が、右側のS I T
のゲート用のオーミック電極15にオーミック接続され
ている。
In addition, even when a plurality of SITs constitute S]TIC, they can be formed in the same way on one side of the insulating substrate 9, and in this case, the SITs at positions ti' are mutually interconnected by the insulating semiconductor substrate 9. It is insulated and can easily interconnect electrodes on one side. FIG. 5 is an example of this, in which the ohmic electrode 14 for the drain of the SIT on the left is connected to the ohmic electrode 14 for the drain of the SIT on the right.
It is ohmically connected to the ohmic electrode 15 for the gate.

また、絶縁性半導体基板9の−ににic化に必要な他の
インダクタンス、キャパシタンス等の回路定数および相
互配線を形成した場合でも、これらの1・部には絶縁性
半導体基板9が存在するので、余分のキャパシタンスを
大幅に減少させることが−(きる。
In addition, even if other circuit constants such as inductance and capacitance necessary for IC conversion and interconnections are formed on the side of the insulating semiconductor substrate 9, the insulating semiconductor substrate 9 is present in these parts. , it is possible to significantly reduce the extra capacitance.

なお、ドレイン領域1oとソース領域12はこれを逆に
使用することできることば勿論であり、また絶縁性半導
体基板9の上に絶縁性の保護膜を形成し°ζ、その上の
一部を覆うようにオーミック電極14を形成することも
できる。
It should be noted that the drain region 1o and the source region 12 can of course be used in the opposite manner, and an insulating protective film is formed on the insulating semiconductor substrate 9 to cover a portion thereof. The ohmic electrode 14 can also be formed in this manner.

次に第4図に示したSITの製造方法について説明する
。まず、低抵抗半導体領域10を絶縁性半導体基板9の
上にエビクギシャル成長で形成し、次に高抵抗半導体領
域11を同様にエビタギシャル成長で形成し、次に低抵
抗半導体領域12を同様にエビクキシャル成長で形成し
、これらによりドレイン領域、チャンネル領域、JGよ
びソース領域で成る縦型に積層された能動領域を形成す
る。
Next, a method for manufacturing the SIT shown in FIG. 4 will be explained. First, a low-resistance semiconductor region 10 is formed on an insulating semiconductor substrate 9 by eviximal growth, then a high-resistance semiconductor region 11 is similarly formed by eviximal growth, and then a low-resistance semiconductor region 12 is similarly grown by eviximal growth. These form a vertically laminated active region consisting of a drain region, a channel region, a JG, and a source region.

次にフメト・エツチングにより、上記能動領域の部分を
残しで、他の部分を除去する。このとき、エツチング液
としては、例えば112 SO4: I(202:I−
(20糸のものを使用する。
Then, by fumetetching, parts of the active area are left and other parts are removed. At this time, the etching solution is, for example, 112 SO4:I (202:I-
(Use 20 threads.

次に絶縁性半導体基板9の上に電極14を蒸着により形
成して低抵抗半導体領域1oにオーミック接合し、次に
その電極14の」二に絶縁物17を形成する。この絶縁
物17ば、例えばNOとSi11 、の酸化膜あるいは
Nll3、Δrおよび5itl+の窒化膜を、200°
Cの雰囲気中でプラズマCV°1.)法により形成する
Next, an electrode 14 is formed on the insulating semiconductor substrate 9 by vapor deposition to make an ohmic contact with the low resistance semiconductor region 1o, and then an insulator 17 is formed on the second side of the electrode 14. This insulator 17 is made of, for example, an oxide film of NO and Si11, or a nitride film of Nll3, Δr and 5itl+, at a temperature of 20°.
Plasma CV°1. ) Formed by law.

次にその絶縁物17の上にZnドープトS i O2を
熱分解法で堆積し、5[)0〜600℃で熱処理により
高抵抗半導体領域11内にZ nを拡散して、■)型の
半導体領域13を形成する。この後、Z nドープトS
iO2は除去する。
Next, Zn-doped SiO2 is deposited on the insulator 17 by a thermal decomposition method, and Zn is diffused into the high-resistance semiconductor region 11 by heat treatment at 5[)0 to 600°C to form a A semiconductor region 13 is formed. After this, Z n doped S
iO2 is removed.

次に絶縁物17の上に電極15を蒸着により形成し゛(
I)型の半導体領域13とオーミック接合し、丈にその
電極15の上に絶縁物18を一上記絶縁物I7の場合と
同様に形成し、最後に低1](抗生導体ff+域12と
絶縁物1Bの−にに電極16を蒸着により形成し”C1
その低抵抗半導体領域12にオーミック接合する。
Next, the electrode 15 is formed on the insulator 17 by vapor deposition.
I) type semiconductor region 13 and the insulator 18 is formed on the electrode 15 in the same manner as the above insulator I7, and finally the low 1] (antibiotic conductor ff+ region 12 and insulated An electrode 16 is formed on the negative side of object 1B by vapor deposition.
An ohmic contact is made to the low resistance semiconductor region 12.

なお、上記SITは能動領域にゲート領域としての1)
型の半導体領域13を形成し、N型のli’:l抵抗半
導体領域11との間にPN接合を形成しているが、ゲー
ト用の電極15をショットキ・メタル(△I、T’1X
Pt、、Mo、、W等)に置換ずれは、そのショットキ
・メタルとN型高抵抗半導体領域11との接合部にショ
ットキ・バリアが形成されるので、P型半導体領域13
は形成する必要がない。
Note that the above SIT has 1) as a gate region in the active region.
type semiconductor region 13 is formed, and a PN junction is formed between it and the N-type li':l resistive semiconductor region 11. However, the gate electrode 15 is made of Schottky metal (ΔI, T'1X
Pt, Mo, W, etc.), a Schottky barrier is formed at the junction between the Schottky metal and the N-type high resistance semiconductor region 11.
does not need to be formed.

また、以上のP型、N型の半導体は、これを反対導電型
のものにすることができることは勿論である。
Furthermore, it goes without saying that the above-mentioned P-type and N-type semiconductors can be made of opposite conductivity types.

以上から、本発明によれば、化合物半導体で成る絶縁性
半導体基板の」二に同一の化合物半導体でイ1シ動領域
を縦型に形成してS I Tを形成しているので、同様
のSITを共通の絶縁性半導体基板の上に複数個形成し
ても、その屯位s i ”r間の分δ11は問題がなく
、しかも同一面から全゛この電極を取り出すことができ
るので、5IT−10の設計が容易であり、また他の回
1/8素子や相7,7配線を施した場合でも余分のキャ
パシタンスを大1陥に減少させることができる。
From the above, according to the present invention, since the SIT is formed by vertically forming the active regions of the same compound semiconductor on the second and second sides of the insulating semiconductor substrate made of the compound semiconductor, the same Even if a plurality of SITs are formed on a common insulating semiconductor substrate, there is no problem with the difference δ11 between the heights s i ``r, and all the electrodes can be taken out from the same surface. -10 is easy to design, and even if other phase 1/8 elements or phase 7 and 7 wiring are provided, the extra capacitance can be reduced to a large one.

また、従来では絶縁性基板の上にトランジスタを構成し
たものとして、SO8があったが、これはサファイヤの
上にトランジスタを形成するものであり、能動領域と基
板が別材質となるので、その接合部の界面に不整合が生
じ易く、よって複数(IfIlのトランジスタをそのサ
ファイヤの上に形成してIC化する場合、各トランジス
タ毎のバラツキが問題となる。
In addition, SO8 was previously used to form a transistor on an insulating substrate, but in this case, the transistor is formed on sapphire, and the active region and the substrate are made of different materials, so the bonding is difficult. Therefore, when a plurality of IfIl transistors are formed on the sapphire and integrated into an IC, variations among the transistors become a problem.

この点、本発明のS I Tは、基板および能動領域に
同一の化合物半導体を使用するので、界面におりる不整
合が生じにクク、欠陥も少なく、よって結晶性の良いI
Cを(4するごとかでき、バラツキも小さく、特性が良
好で、動作寿命も長くなるという特徴がある。
In this regard, since the SIT of the present invention uses the same compound semiconductor for the substrate and the active region, there is no mismatch at the interface, there are few defects, and the SIT has good crystallinity.
It has the characteristics of being able to perform C every 4 times, with small variations, good characteristics, and a long operating life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来のS I i”の断面図、第4
図は本発明の一実施例のS I ′Fの断面図、第5図
は別の実施例のs+’r−+cの断面し1であイ〕。 9・・・絶縁性半導体基板、lO・・・N型の低抵抗半
導体領域、11・・・N型の高抵抗半導体領域、12・
・・N型の低抵抗半導体領域、13・・・P型の半導体
領域、14・・・lレイン用の電極、15・・・ゲート
用の電極、16・・・ソース用の電極、17.Ill・
・・絶縁物。 特許出1卯人 新日本無線株式会社 代 理 人 弁理士  しjこ富明 第3図 第4図
Figures 1 to 3 are cross-sectional views of the conventional S I i'';
The figure is a sectional view of SI'F in one embodiment of the present invention, and FIG. 5 is a sectional view of s+'r-+c in another embodiment]. 9... Insulating semiconductor substrate, lO... N-type low resistance semiconductor region, 11... N-type high resistance semiconductor region, 12.
. . . N type low resistance semiconductor region, 13 . . . P type semiconductor region, 14 . Ill・
··Insulator. Patent Issue 1 Uto New Japan Radio Co., Ltd. Agent Patent Attorney Shijko Tomiaki Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (I)、化合物半導体で成る絶縁性半導体基板の表面に
、該化合物半導体と同種の化合物」を導体の低抵抗半導
体領域が形成され、該低抵抗半導体領域の上面に該低抵
抗半導体領域と間部電型の高抵抗半導体領域が形成され
、該高抵抗半導体領域の上面に上記導電型の低抵抗半導
体領域が形成され、−上記1111抵抗半導体領域の少
なくとも一部を囲むようにゲートが形成され、且つ該ゲ
ートおよび上記両低抵抗半導体領域から相互絶縁を保っ
て各々の電極が引き出されていることを特徴とする静電
誘導(・ランジスタ。
(I) A low-resistance semiconductor region is formed on the surface of an insulating semiconductor substrate made of a compound semiconductor, the conductor is a compound of the same type as the compound semiconductor, and the upper surface of the low-resistance semiconductor region is connected to the low-resistance semiconductor region. a high resistance semiconductor region of a conductivity type is formed, a low resistance semiconductor region of the conductivity type is formed on an upper surface of the high resistance semiconductor region, and a gate is formed to surround at least a portion of the 1111 resistance semiconductor region; An electrostatic induction transistor characterized in that each electrode is drawn out from the gate and both low resistance semiconductor regions while maintaining mutual insulation.
JP58021817A 1983-02-12 1983-02-12 static induction transistor Pending JPS59147467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58021817A JPS59147467A (en) 1983-02-12 1983-02-12 static induction transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58021817A JPS59147467A (en) 1983-02-12 1983-02-12 static induction transistor

Publications (1)

Publication Number Publication Date
JPS59147467A true JPS59147467A (en) 1984-08-23

Family

ID=12065607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58021817A Pending JPS59147467A (en) 1983-02-12 1983-02-12 static induction transistor

Country Status (1)

Country Link
JP (1) JPS59147467A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060337A2 (en) 2004-12-01 2006-06-08 Semisouth Laboratories, Inc. Normally-off integrated jfet power switches in wide bandgap semiconductors and methods of making
JP2006186336A (en) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd Field effect transistor and manufacturing method thereof
EP1825522A4 (en) * 2004-12-01 2009-04-01 Semisouth Lab Inc SIDE PITCH FIELD EFFECT TRANSISTORS IN HABITAT MATERIALS WITH WIDE BAND DISTANCE, METHOD OF MANUFACTURING THEM AND INTEGRATED CIRCUITS WITH THE TRANSISTORS
WO2010005288A1 (en) * 2008-07-09 2010-01-14 Polymer Vision Limited Electronic device comprising static induction transistor and thin film transistor, method of manufacturing an electronic device and display panel
US8017981B2 (en) 2004-07-08 2011-09-13 Semisouth Laboratories, Inc. Normally-off integrated JFET power switches in wide bandgap semiconductors and methods of making

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111282A (en) * 1977-01-12 1978-09-28 Handotai Kenkyu Shinkokai Semiconductor ic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111282A (en) * 1977-01-12 1978-09-28 Handotai Kenkyu Shinkokai Semiconductor ic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017981B2 (en) 2004-07-08 2011-09-13 Semisouth Laboratories, Inc. Normally-off integrated JFET power switches in wide bandgap semiconductors and methods of making
JP2006186336A (en) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd Field effect transistor and manufacturing method thereof
WO2006060337A2 (en) 2004-12-01 2006-06-08 Semisouth Laboratories, Inc. Normally-off integrated jfet power switches in wide bandgap semiconductors and methods of making
EP1825522A4 (en) * 2004-12-01 2009-04-01 Semisouth Lab Inc SIDE PITCH FIELD EFFECT TRANSISTORS IN HABITAT MATERIALS WITH WIDE BAND DISTANCE, METHOD OF MANUFACTURING THEM AND INTEGRATED CIRCUITS WITH THE TRANSISTORS
EP1829113A4 (en) * 2004-12-01 2011-06-15 Semisouth Lab Inc NORMALLY DISCONNECTED INTEGRATED JFET POWER SWITCHES IN SEMICONDUCTORS WITH HIGH BANDWIDTH PROHIBITED AND METHODS OF MAKING SAME
US8502282B2 (en) 2004-12-01 2013-08-06 Power Integrations, Inc. Normally-off integrated JFET power switches in wide bandgap semiconductors and methods of making
WO2010005288A1 (en) * 2008-07-09 2010-01-14 Polymer Vision Limited Electronic device comprising static induction transistor and thin film transistor, method of manufacturing an electronic device and display panel
US9024316B2 (en) 2008-07-09 2015-05-05 Creator Technology B.V. Electronic device comprising static induction transistor and thin film transistor, method of manufacturing an electronic device and display panel

Similar Documents

Publication Publication Date Title
US11031327B2 (en) Through vias and methods of formation thereof
US3341755A (en) Switching transistor structure and method of making the same
US5175597A (en) Semiconductor component with schottky junction for microwave amplification and fast logic circuits
US11276690B2 (en) Integrated semiconductor device and electronic apparatus
US10566247B2 (en) Local wiring in between stacked devices
US4916508A (en) CMOS type integrated circuit and a method of producing same
US3335341A (en) Diode structure in semiconductor integrated circuit and method of making the same
US5073810A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS6365641A (en) Semiconductor integrated circuit
JPS59147467A (en) static induction transistor
WO2024256095A1 (en) Stacked transistors with metal vias
CN112074953A (en) Integrated circuit device and method for manufacturing the same
JPH08264762A (en) Compound semiconductor device and manufacturing method thereof
CN109256421B (en) A high Early voltage bipolar device and method of making the same
JP7636435B2 (en) Barrier layer for electrical contact area
US20250079349A1 (en) Antenna diode integration with backside back end of the line network
US20240128191A1 (en) Power distribution network with backside power rail
US20240322022A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2518929B2 (en) Bipolar semiconductor integrated circuit
US20190305128A1 (en) Semiconductor structure and method for forming the same
JPS5914650A (en) Semiconductor integrated circuit device
JPH02257653A (en) Semiconductor integrated circuit
JPH03132076A (en) Semiconductor devices and semiconductor integrated circuit devices
JPS62185370A (en) Hetero junction bipolar transistor
JPH01143253A (en) Semiconductor device and manufacture thereof