[go: up one dir, main page]

JPS59148857A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS59148857A
JPS59148857A JP58021992A JP2199283A JPS59148857A JP S59148857 A JPS59148857 A JP S59148857A JP 58021992 A JP58021992 A JP 58021992A JP 2199283 A JP2199283 A JP 2199283A JP S59148857 A JPS59148857 A JP S59148857A
Authority
JP
Japan
Prior art keywords
electrode
reference electrode
oxygen
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58021992A
Other languages
Japanese (ja)
Inventor
Masayuki Toda
正之 任田
Masaaki Uchida
正明 内田
Koichi Nemoto
好一 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58021992A priority Critical patent/JPS59148857A/en
Publication of JPS59148857A publication Critical patent/JPS59148857A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To perform measurement nearly at a theoretical air-fuel ratio with good accuracy and to measure the concn. of O2 without influence of the temp. in the atmosphere to be measured by dividing the measuring electrode of a sensor to a measuring side current conducting electrode and a reference electrode, providing a diffusion layer on at least the current conducting electrode and enabling the drawing out of the potential between the reference electrode and a standard electrode. CONSTITUTION:An oxygen sensor 10 is constituted by forming successively a standard electrode 12, an oxygen ion conductive solid electrolyte 23 on a base plate 11 having a heating element 12, then dividing a measuring electrode to a measuring side current conducting electrode 24 and a reference electrode 25 and forming the same on the electrolyte 23. A diffusion layer 26 is then formed to cover only the electrode 24 or the reference electrode 25 as well and thereafter a protective layer 27 is provided. A power source conducts between the electrode 24 and a standard electrode 22, and a standard partial oxygen pressure is controlled to enable the drawing out of the potential between the electrode 25 and the electrode 22 to a differential amplifier 34. An oxygen sensor 10 which can detect an air-fuel ratio with good accuracy in a range of 450+ or -150 deg.C by decreasing the influence of the change in the temp. of the atmosphere to be measured at near around air-fuel ratio lambda=1.6 and can control the air-fuel ratio from the voltages of the electrode 25 and the electrode 22 at near lambda=1 by controlling the air-fuel ratio on the rich side at a high speed or accelerating is thus obtd. A considerable improvement in the fuel cost is made possible.

Description

【発明の詳細な説明】 この発明は、被測定雰囲気中の酸素濃度を検出するのに
適した酸素センサに関し、特に燃焼排ガス中の酸素濃度
を検出することにより空気と燃料との比(以下、「空燃
比」とする)を制御するの′に適した酸素センサに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen sensor suitable for detecting the oxygen concentration in an atmosphere to be measured, and in particular, the present invention relates to an oxygen sensor suitable for detecting the oxygen concentration in an atmosphere to be measured. This invention relates to an oxygen sensor suitable for controlling the air-fuel ratio.

従来、この種の酸素センサとしては、例えば第1図に示
す構造のものがあった。この酸素センサlは、発熱体2
を内蔵した基板3の上に基準極4、酸素イオン伝導性固
体電解質5.測定極6゜拡散層7を順次積層したもので
ある。そして、この酸素センサlによって被測定雰囲気
中の酸素濃度を検出するに際しては、第22図に示すよ
うに、基準極4と測定極6との間に外部電源8を接続し
て固体電解質5内で酸素イオンの移動を生じさせること
により基準極4での酸素分圧を制御し、この基準極酸素
分圧と測定極酸素分圧との差に対応して生じる起電力(
出力電圧)を電圧測定手段9により測定し、測定極酸素
分圧すなわち被測定雰囲気中の酸素濃度を検出するよう
にしていた。この場合、拡散層7の細孔容積(cc/g
)が比較的大きいとS(たとえば0.2cc/g以上の
とき)には、被測定雰囲気中の酸素分子が測定極6へ容
易に到達するため、起電力(出力電圧)は空燃比14.
7付近(すなわち空気過剰率入=1付近)で急激に変化
するが、拡散層7の細孔容積が小さくなる(たとえば0
.2cc/g以下となる)につれて、被測定雰囲気中の
酸素分子が測定極6へ到達する際のいわゆる拡散限界挙
動が大きくなるため、測定極酸素分圧は被測定雰囲気中
の酸素分圧よりも低くなり、したがって空気過剰側(λ
〉1側)で出力電圧が急激に変化するようになり、希薄
燃焼側での制御が可能となる。
Conventionally, this type of oxygen sensor has a structure shown in FIG. 1, for example. This oxygen sensor l has a heating element 2
A reference electrode 4, an oxygen ion conductive solid electrolyte 5. A measurement electrode 6° and a diffusion layer 7 are sequentially laminated. When detecting the oxygen concentration in the atmosphere to be measured using this oxygen sensor l, as shown in FIG. The oxygen partial pressure at the reference electrode 4 is controlled by causing the movement of oxygen ions, and the electromotive force (
The output voltage) was measured by the voltage measuring means 9 to detect the oxygen partial pressure at the measurement pole, that is, the oxygen concentration in the atmosphere to be measured. In this case, the pore volume of the diffusion layer 7 (cc/g
) is relatively large (for example, when it is 0.2 cc/g or more), oxygen molecules in the atmosphere to be measured easily reach the measurement electrode 6, so that the electromotive force (output voltage) is reduced to an air-fuel ratio of 14.
The pore volume of the diffusion layer 7 becomes smaller (for example, when the excess air ratio is around 1), it changes rapidly around 7 (i.e., when the excess air ratio is around 1).
.. 2 cc/g or less), the so-called diffusion limit behavior when oxygen molecules in the atmosphere to be measured reach the measurement electrode 6 increases, so the oxygen partial pressure at the measurement electrode becomes lower than the oxygen partial pressure in the atmosphere to be measured. and therefore the excess air side (λ
>1 side), the output voltage changes rapidly, and control on the lean burn side becomes possible.

しかしながら、このような従来の酸素センサlでは、測
定極6が通電用電極を兼ねる構造となっていたため、被
測定雰囲気の温度変化による出力変イヒが大きく、空燃
比の検出精度が良くないという問題点があった。これを
さらに訂しく説明すると、第3図は空気過剰率入=1.
6伺近で出力電圧が急激に変化するように拡11に層7
の細孔容積およびセンサ電流等を定めた酸素センサの出
力特性を示す模式図であって、刊ガス温度によってセン
サ出力電圧は異なっている。この場合、空燃比制御精度
として望ましいとされる入=1.6±0.03にしたと
きには、排ガスVM度は450 ’C±50°Cの範囲
に入っていなければならない。しかしながら、排ガス温
度は始動時あるいは走行状態等によってかなり変化する
ものであり、適正排カス温度ができるだけ幅広いことが
望まれるが、従来の場合には上述したようにせまいもの
であり、空燃比の検出精度が良くないという問題点があ
った。
However, in such a conventional oxygen sensor, the measurement electrode 6 has a structure that also serves as a current-carrying electrode, so there is a problem that the output fluctuates greatly due to temperature changes in the atmosphere to be measured, and the air-fuel ratio detection accuracy is poor. There was a point. To explain this more precisely, FIG. 3 shows the case where the excess air ratio is 1.
Layer 7 is placed in the expansion 11 so that the output voltage changes rapidly near 6.
FIG. 2 is a schematic diagram showing the output characteristics of an oxygen sensor in which the pore volume, sensor current, etc. of the oxygen sensor are determined, and the sensor output voltage differs depending on the gas temperature. In this case, when the air-fuel ratio control accuracy is set to 1.6±0.03, the exhaust gas VM degree must be within the range of 450'C±50°C. However, the exhaust gas temperature changes considerably depending on the startup or driving conditions, and it is desirable that the appropriate exhaust gas temperature be as wide as possible, but in the conventional case, as mentioned above, it is narrow, and the air-fuel ratio detection There was a problem that the accuracy was not good.

この発明は、L記した従来の問題点に着目してなされた
もので、被測定雰囲気の温度変化による出力変化の影響
が小さく、空燃比を精度よく検出することができる酸素
センサを提供することを目的としている。
The present invention has been made by focusing on the conventional problems noted in L. It is an object of the present invention to provide an oxygen sensor that is less affected by output changes due to temperature changes in the atmosphere to be measured and that can accurately detect the air-fuel ratio. It is an object.

この発明は、基板と基準極と酸素イオン伝導性固体電解
質と測定極とを積層し、基準極と測定極との間で通電し
て固体電解質内で酸素イオンの移動を生じさせて基準極
酸素分圧を制御する酸素センサにおいて、前記測定極を
測定側進電極とA11l定側参照極とに分け、少なくと
も測定側進電極に、被測定雰囲気中の酸素分子の拡散限
界挙動を生じさせる拡散層を設けると共に、前記基準極
と測定側進電極との間で通電して基準極酸素分圧を制御
し、前記測定側通電極、測定側参照極および基準極間で
の電位の取り出しを可能としたことを特徴としている。
In this invention, a substrate, a reference electrode, an oxygen ion conductive solid electrolyte, and a measurement electrode are laminated, and current is passed between the reference electrode and measurement electrode to cause movement of oxygen ions within the solid electrolyte. In an oxygen sensor that controls partial pressure, the measuring electrode is divided into a measuring side advancing electrode and an A11l constant side reference electrode, and at least the measuring side advancing electrode has a diffusion layer that causes diffusion limit behavior of oxygen molecules in the atmosphere to be measured. and control the reference electrode oxygen partial pressure by supplying current between the reference electrode and the measurement side forwarding electrode, making it possible to take out the potential between the measurement side current electrode, the measurement side reference electrode, and the reference electrode. It is characterized by what it did.

以下、この発明の実施例を図面に基づいてさらに訂細に
説明する。
Hereinafter, embodiments of the present invention will be described in more detail based on the drawings.

第4図および第゛5図はこの発明の一実施例における酸
素センサ10のそれぞれ模式的断面図および製造工程説
明図である。図に従って説明すると、適当な大きさに切
断した一方の基板素材11a (例えば、8X10X0
.7t+nl11)上に、第5図(a)の点線で示す形
状に発熱体12を印刷積層し、その上に4木の白金リー
ド線(直径0.2mm、長さ7mi+)13,14,1
5.16を並べる。次いでこの上に4個のスルーホール
(直径0..6mm)17,18,19..20を形成
した他方の基板素材11b(例えば、8×10×0.7
’tmm)を加圧積層し、前記スルーホール17.18
,19.20に白金ペーストを落しこんでスルーホール
17,18.1’−9,20とり一ド線13,14,1
5.16との間の電気的な接続を可能にする(焼成後)
(第5図(a)参照)ことにより、基板11を製作する
。なお、発熱体12の両端は各々両端のリード線13.
16と接続しうるようになっている。ζこで、基板11
のit−材11a、llbとしてアルミナグリーンシー
トを用いているが、耐熱性であり、かつ絶縁性があるも
のならばその他のものでもよく、例えばフォルステライ
ト、ステアタイト、ムライト、スピネル等が使用できる
。また、発熱体12を形成するに当っては白金粉末とラ
ッカーとを混練した白金ペーストを用いて印刷にて積層
してい′るが、その他白金ワイヤ等の電子伝導性を有す
る利料を埋設してもよい。また、ここでは発熱体12の
材料として白金を用いているが、電子伝導性を有する材
料ならばその他のものでも良い。さらに、リード線13
,14,15.16の材料として耐食性のある白金ワイ
ヤを用いているが、電子伝導性を有する材料ならばその
他のものでもよい。次に、第5図(a)の状態のものに
、必要に応じて5モル%Y2O3−95モル%ZrO2
とラッカーを4昆練したセラミックペーストを用いて印
刷により中間層を積層する(図示せず)。この中間層は
、基板11と後述の基準極22との伺着強度を確保しか
つ基準極22側に強制的に送られてくる酸素イオンが基
1μ極22で酸素分子となり、この一部の酸素分子が中
間層の細孔を拡散して外に逃げることによって、後述の
固体電解質23が基準極22中にたまった酸素分子の圧
力によって破壊されるのを防ぐためのものであり、上述
のほがY203  、MgO、C,aO等で安定化した
ZrO2、A文、03.Mg0−A文、OA等のセラミ
ックスとラッカーを混練したセラミックペーストを用い
ることができる。次いで、基板11の十に、あるいは中
間層の」−に、Pt粉末とラッカーとを混練した白金ペ
ーストを用いて印刷により基準極22を積層する(第5
図(b)参照)。なお、このとき基準極22の一部はス
ルーホール18を介してリード線14と接続するように
している。
FIG. 4 and FIG. 5 are a schematic cross-sectional view and a manufacturing process explanatory diagram, respectively, of an oxygen sensor 10 in an embodiment of the present invention. To explain according to the diagram, one of the substrate materials 11a (for example, 8X10X0
.. 7t+nl11), a heating element 12 is printed and laminated in the shape shown by the dotted line in FIG.
5. Arrange 16. Next, four through holes (diameter 0.6 mm) 17, 18, 19. .. 20 (for example, 8×10×0.7
'tmm) are laminated under pressure, and the through holes 17 and 18 are laminated under pressure.
, 19.20 and put platinum paste into the through holes 17, 18.1'-9, 20 and the single lead wires 13, 14, 1.
5.16 to enable electrical connection between (after firing)
(See FIG. 5(a)) The substrate 11 is manufactured. Note that both ends of the heating element 12 are connected to lead wires 13 at both ends.
16 can be connected. ζHere, the substrate 11
Although alumina green sheets are used as the IT materials 11a and 11b, other materials may be used as long as they are heat resistant and insulating, such as forsterite, steatite, mullite, spinel, etc. . Furthermore, in forming the heating element 12, a platinum paste made by kneading platinum powder and lacquer is used to laminate the heat generating element by printing, but other material having electronic conductivity such as platinum wire may also be embedded. You can. Furthermore, although platinum is used here as the material for the heating element 12, other materials may be used as long as they have electronic conductivity. Furthermore, the lead wire 13
, 14, 15, and 16 are made of corrosion-resistant platinum wire, but other materials may be used as long as they have electron conductivity. Next, if necessary, add 5 mol% Y2O3-95 mol% ZrO2 to the state shown in FIG. 5(a).
An intermediate layer is laminated by printing using a ceramic paste coated with lacquer and lacquer (not shown). This intermediate layer ensures adhesion strength between the substrate 11 and the reference electrode 22, which will be described later, and oxygen ions that are forcibly sent to the reference electrode 22 side become oxygen molecules at the base 1μ electrode 22, and some of these This is to prevent the solid electrolyte 23 (described later) from being destroyed by the pressure of the oxygen molecules accumulated in the reference electrode 22 by the oxygen molecules diffusing through the pores in the intermediate layer and escaping to the outside. Hoga Y203, ZrO2 stabilized with MgO, C, aO, etc., A text, 03. A ceramic paste obtained by kneading a lacquer with ceramics such as Mg0-A or OA can be used. Next, the reference electrode 22 is laminated on the top of the substrate 11 or on the middle layer by printing using a platinum paste made by kneading Pt powder and lacquer (fifth layer).
(See figure (b)). Note that at this time, a part of the reference electrode 22 is connected to the lead wire 14 via the through hole 18.

°   また、基準極22の材料としては、電子伝導性
を有する材料ならば良いが、特に触媒作用を有し、かつ
耐食性がある白金あるいは白金を含む合金が。
Further, as the material for the reference electrode 22, any material having electron conductivity may be used. In particular, platinum or an alloy containing platinum, which has a catalytic action and is corrosion resistant, may be used.

好ましい。また、基板11あるいは中間層および後述の
固体電解質23と基準極22とのイ・1着強度を高める
ために、基準極22の材料としてセラミックスと金属と
の混合体であるサーメットを用いるのも良い。このとき
、金属としては前述の白金あるいは白金を含む合金が良
く、またセラミックスとしては固体電解質23と同じ材
質のY203  、Cao 、MgO等で安定化したZ
rO2、アルミナ、ムライト、スピネル等が適している
。次に、第5図(b)の状態のものに5モル%Y2O3
−95モル%ZrO2とう・ンヵーとを41配線した固
体電/Ilf質ペーストを用いて印刷により固体電解質
23を積層する(第5図(Q)参照)。ここで、固体電
解質23の材料としては、上述のほかに従来既知の酸素
イオン伝導性を有する固体電解質を用いてもよい。次い
で、第5図(C)の状態のものに、前記基準極材料と同
じ白金ペーストを用いて印刷により測定側逆電極24お
よび測定側参照極25を積層する(第5図(d)参照)
。このとき、測定側逆電極24の−・部はスルーホール
20を介してリード線16と接続し、測定側参照極25
の一部はスルーホール19を介してリード線15と接続
しうるようにしている。なお−測定側逆電極24と測定
側参照極25の間隔は明確に駆足できないが、例えば、
0.2〜1 mmW度にするのが良い。このように゛基
板ll上に測定極24.25までを積層したもの(第5
図(d)参照)を大気雰囲気中1500℃、2時間の条
件で焼成する。次に、焼成後の素子を有機溶剤中で超音
波洗f41 L 、乾燥後PVD法により少なくとも測
定側進電極24上に第2測定極(図示せず)を形成する
ことも望ましい。この第2測定極を設ける:  ことに
よって、被測定ガスと接触する電極表面積が増え、また
被測定ガス−電極一固体電解質の接する三相界面がふえ
るため、センサ素子の応答速度が速くなる。
preferable. Furthermore, in order to increase the bonding strength between the substrate 11 or the intermediate layer and the solid electrolyte 23 (described later) and the reference electrode 22, it is also preferable to use cermet, which is a mixture of ceramics and metal, as the material for the reference electrode 22. . At this time, the metal is preferably the aforementioned platinum or an alloy containing platinum, and the ceramic is Z stabilized with Y203, Cao, MgO, etc., which is the same material as the solid electrolyte 23.
Suitable materials include rO2, alumina, mullite, and spinel. Next, 5 mol% Y2O3 was added to the state shown in Figure 5(b).
A solid electrolyte 23 is laminated by printing using a solid electrolyte/Ilf material paste in which 41 wires of -95 mol % ZrO2 holes and anchors are formed (see FIG. 5 (Q)). Here, as the material for the solid electrolyte 23, in addition to those mentioned above, a conventionally known solid electrolyte having oxygen ion conductivity may be used. Next, the measuring side reverse electrode 24 and the measuring side reference electrode 25 are laminated on the state shown in FIG. 5(C) by printing using the same platinum paste as the reference electrode material (see FIG. 5(d)).
. At this time, the - section of the measurement side reverse electrode 24 is connected to the lead wire 16 via the through hole 20, and the measurement side reference electrode 25 is connected to the lead wire 16 through the through hole 20.
A part of the lead wire 15 can be connected to the lead wire 15 via a through hole 19. Although the distance between the measurement side reverse electrode 24 and the measurement side reference electrode 25 cannot be determined clearly, for example,
It is preferable to set it to 0.2 to 1 mmW degrees. In this way, measurement electrodes up to 24.25 were stacked on substrate 1 (5th
(see Figure (d)) is fired at 1500° C. for 2 hours in an air atmosphere. Next, it is also desirable to ultrasonically wash the fired element in an organic solvent, dry it, and then form a second measurement electrode (not shown) on at least the measurement side advancing electrode 24 by PVD. By providing this second measurement electrode, the surface area of the electrode that comes into contact with the gas to be measured increases, and the three-phase interface where the gas to be measured, the electrode, and the solid electrolyte come into contact increases, so the response speed of the sensor element becomes faster.

次に、第5図(d)の状態のものに、平均粒径10gm
c7)スピネル(Mg O−A l 20 s )を用
い、プラズマ溶射法にて拡散層26を設ける。このとき
、プラズマ溶射法によって拡散層?6を設けるに際し、
溶射距離を10〜15cm、溶射電力を12〜50KW
、プラズマ発生ガスをArおよびHeとし、粉末内部供
給装置を使用すると共に、素子取り伺は治具の回転数を
50−10 Or、p、m。
Next, in the state shown in Fig. 5(d), an average particle size of 10 g was added.
c7) Using spinel (MgO-Al20s), a diffusion layer 26 is provided by plasma spraying. At this time, a diffusion layer is created using the plasma spraying method. In establishing 6,
Spraying distance: 10-15cm, spraying power: 12-50KW
Ar and He were used as the plasma generating gas, an internal powder supply device was used, and the number of rotations of the jig was 50-10 Or, p, m for picking up the element.

とする条件で拡散層26の細孔容積が0.2cc/g以
下となるようにかつ拡散層16の厚さが10〜300 
gmとなるようにすることがより望ましい。ここで、溶
射材料としてMg0−AJ1203スピネルを用いるの
が良いが、その他従来既知のセラミックス材料を用いて
もよい。また上記溶剤条件で拡散層26を設けた場合、
被測定ガス特に自動車用内燃機関の排ガスに対する耐久
性が良いことが確認されたが、上記条件において拡散層
26の細孔容積が0 、01〜0 、2cc/gとなる
ようにするには溶射材料の平均粒径がlo〜4゜7zm
である粉末を用いるのが良いことがわかった。本実施例
において、拡散層26を設けるに際してはプラズマ溶射
法を用いたが、その他ディッピング法やスクリーン印刷
法を用いることもできる。そして最後に、素子の片面側
にプラズマ溶射、法によりスピネル(M g O−A 
l 203 )を溶射して保護層27を形成した。
Under these conditions, the pore volume of the diffusion layer 26 is 0.2 cc/g or less, and the thickness of the diffusion layer 16 is 10 to 300 cc/g.
It is more desirable to make it so that it becomes gm. Here, it is preferable to use Mg0-AJ1203 spinel as the thermal spraying material, but other conventionally known ceramic materials may also be used. Further, when the diffusion layer 26 is provided under the above solvent conditions,
It has been confirmed that the durability against the gas to be measured, especially the exhaust gas from automobile internal combustion engines, is good, but thermal spraying is required to make the pore volume of the diffusion layer 26 0.01 to 0.2 cc/g under the above conditions. The average particle size of the material is lo~4゜7zm
It was found that it is best to use a powder that is In this embodiment, a plasma spraying method was used to provide the diffusion layer 26, but other methods such as a dipping method or a screen printing method may also be used. Finally, one side of the element is coated with spinel (M g O-A
The protective layer 27 was formed by thermal spraying 1 203 ).

なお、]二記の酸素センサ10では、基板11が構造基
体となっているが、その他の構造基体を用いてもよく、
また固体電解質23と同じ材質で多孔質の構造基体とし
てもよく、適宜の変形が可能である。
Note that in the oxygen sensor 10 described in ]2, the substrate 11 is the structural base, but other structural bases may be used.
Further, a porous structural base made of the same material as the solid electrolyte 23 may be used, and appropriate modifications are possible.

次に、」;記構酸の酸素センサ10を第6図および簾7
図に示す結線として、空燃比変化による出力変化を調べ
た。なお、第6図および第7図において、31は通電用
外部電源、33.34は差動増幅器である。
Next, install the oxygen sensor 10 in Figure 6 and screen 7.
Using the connections shown in the figure, changes in output due to changes in air-fuel ratio were investigated. In addition, in FIG. 6 and FIG. 7, 31 is an external power supply for energizing, and 33 and 34 are differential amplifiers.

これらのうち、第6図に示すように、基準極22と通電
棒24との間に外部型@i31を接続し、通電棒24と
参照極25を差動増幅器33に接続した場合に、差動増
幅器33からの出力VR−Eは、第8図の曲線VR−H
のようになる。また、第7図に示すように、基準極22
と通電棒24との間に外部電源31を接続し、基準極2
2と参照極25とを差動増幅器34に接続した・場合に
、差動増幅器34からの出力VR−3は、第8図の曲線
VR−3のようになる。
Among these, as shown in FIG. The output VR-E from the dynamic amplifier 33 corresponds to the curve VR-H in FIG.
become that way. Further, as shown in FIG. 7, the reference electrode 22
An external power supply 31 is connected between the current-carrying rod 24 and the reference electrode 2.
2 and the reference pole 25 are connected to the differential amplifier 34, the output VR-3 from the differential amplifier 34 becomes like the curve VR-3 in FIG.

ここで、第8図に示す曲線VR−Eが得られる理由は、
リーン側(入〉l側)での酸素分圧Po2の変化が小さ
いためi開極25の電位はほとんど変化しないが、通電
5124では拡散限界挙動を生じるような酸素濃度では
通電棒24近傍の酸素濃度が枯渇するため、参照極25
に対する通電棒24の電位をとると第8図に示すように
なる。この場合、注意すべき点は、従来の第2図に示す
電圧測定手段9によって測定された曲線vs−Eと−[
二記曲線V R−Eとを比較したときに、入〉lの領域
においては出力レベルが異なるだけで出力の急変点はほ
とんど変化していないことである。
Here, the reason why the curve VR-E shown in FIG. 8 is obtained is as follows.
Since the change in oxygen partial pressure Po2 on the lean side (in> l side) is small, the potential of the i-opening 25 hardly changes. Reference electrode 25 due to concentration depletion
The potential of the current-carrying rod 24 is as shown in FIG. 8. In this case, it should be noted that the curves vs-E and -[
When comparing the curve VRE shown in FIG. 2, only the output level differs in the region of input>1, and the abrupt turning point of the output hardly changes.

また、第8図に示す曲線VR−5が得られる理由は、基
準極酸素分圧は外部電源31からの通電によって一定に
保たれているが、参照極25の酸素分圧は理論空燃比を
境にして急激に変化するため、参照極25に対する基準
極22の電位をとると第8図に示すようになる。
Moreover, the reason why the curve VR-5 shown in FIG. 8 is obtained is that the reference electrode oxygen partial pressure is kept constant by energization from the external power supply 31, but the oxygen partial pressure of the reference electrode 25 is lower than the stoichiometric air-fuel ratio. Since the potential of the reference electrode 22 with respect to the reference electrode 25 is taken as shown in FIG. 8, it changes rapidly at the boundary.

−・方、上記曲線に示す出力の温度変化による影響を調
べたところ、曲線Vpt−Eが小さく1曲線V R−H
については、第9図に示すように、λ=1.6近傍にお
いて空燃比検出精度を前記と同じように入=1.6±0
.03とする−ためには排ガス温度が450℃±150
℃の範囲に広がったことが確認された。したがって、入
〉lのリーン雰囲気における酸素濃度の検出を従来より
も広い温度範囲で精度良く行うことができる。
- On the other hand, when we investigated the influence of temperature changes on the output shown in the above curve, we found that curve Vpt-E is small and curve 1 is V R-H.
As shown in FIG.
.. In order to set the temperature to 03, the exhaust gas temperature must be 450℃±150℃.
It was confirmed that the virus spread to a range of ℃. Therefore, it is possible to accurately detect the oxygen concentration in a lean atmosphere over a wider temperature range than in the past.

さらに、前記実施例の酸素センサにおいては入=1近傍
の空燃比を検出するためには、曲線VR−sを利用すれ
ばよい。このとき、第8図から曲線VR−1:を用いて
もよいと考えられるが、 ■リーン空燃比での出力急変点との区別をつけるために
特別の工夫が必要であること、■応答速度が曲線V R
−Sの場合より若干遅いために入=1近傍では曲線VR
−sを利用するのがより好ましいこと、 などの理由によって得策ではない。
Furthermore, in the oxygen sensor of the above embodiment, the curve VR-s may be used to detect the air-fuel ratio in the vicinity of ON=1. At this time, it is considered possible to use the curve VR-1: from Fig. 8, but ■Special measures are required to distinguish it from the sudden change in output at a lean air-fuel ratio, ■Response speed is the curve V R
- Since it is slightly slower than the case of S, the curve VR near input = 1
It is not a good idea to use -s for some reasons.

次に、この実施例による酸素センサーOをり一7/<−
ンエンジンの燃焼制御のための空燃比検出システムに用
いた場合の基本回路例を第1θ図に示す。図において、
10は酸素センサ、31は外部電源、32は電圧安定化
用ツェナダイオード、33.34は差動増幅器、35は
出力選択回路、3Gは出力選択図1I835からの出力
V と基準電圧v5とを比較して制御信号出力V。を発
生する比較器である。このような回路において1.リー
ン燃焼制御のときには差動増幅器33かもの出力が制御
に用いられ、高速あるいは加速時にエンジン出力が必要
になると空燃比はリッチ側へ移動し、入=1近傍になる
と差動増幅器34の出力があるレベルを越えて大きくな
るため出力選択回路35により差動増幅器34の出力が
選ばれ、これが比較器36の入力となる。したがって、
このような空燃比検出システムでは、センサ電流によっ
て任意のリーン燃焼状態(入>1)を制御できると共に
入=1近傍の空燃比を制御できるので、燃費が飛跡的に
向上する。
Next, the oxygen sensor O according to this embodiment is 7/<-
An example of a basic circuit when used in an air-fuel ratio detection system for combustion control of an engine is shown in Fig. 1θ. In the figure,
10 is an oxygen sensor, 31 is an external power supply, 32 is a Zener diode for voltage stabilization, 33.34 is a differential amplifier, 35 is an output selection circuit, 3G is an output selection Comparison of the output V from the I835 in Figure 1 and the reference voltage v5 and control signal output V. It is a comparator that generates In such a circuit, 1. During lean combustion control, the output of the differential amplifier 33 is used for control, and when engine output is required at high speed or acceleration, the air-fuel ratio moves to the rich side, and when the input value approaches 1, the output of the differential amplifier 34 increases. Since the signal becomes larger than a certain level, the output selection circuit 35 selects the output of the differential amplifier 34, which becomes the input of the comparator 36. therefore,
In such an air-fuel ratio detection system, an arbitrary lean combustion state (on>1) can be controlled by the sensor current, and the air-fuel ratio in the vicinity of on=1 can be controlled, so that fuel efficiency improves dramatically.

f511図および第12図はこの発明の他の実施例を示
す図であって、第11図に示す酸素センサlOは、固体
電解質23の上に測定側逆電極24と測定側参照極25
とを並べて積層し、測定側逆電極24の表面にのみ拡散
層26を設けた場合を示している。このようにした場合
には、測定側参照極25が拡散層26に覆われていない
ため、入=1近傍での参照極25の雰囲気変化に対する
電位変化を速くすることができるという利点を有してい
る。また、第12図に示す酸素センサ10は基板11に
iU接参照極25を形成した場合を示しており、この場
合にも雰囲気変化に対する参照極25の電位変化を速く
することができる。
Figure f511 and Figure 12 are diagrams showing other embodiments of the present invention, and the oxygen sensor lO shown in Figure 11 has a measurement side reverse electrode 24 and a measurement side reference electrode 25 on a solid electrolyte 23.
The figure shows a case in which the diffusion layer 26 is provided only on the surface of the measurement side reverse electrode 24. In this case, since the measurement-side reference electrode 25 is not covered with the diffusion layer 26, there is an advantage that the potential change of the reference electrode 25 in response to an atmosphere change near input=1 can be made faster. ing. Further, the oxygen sensor 10 shown in FIG. 12 shows a case where an iU contact reference electrode 25 is formed on the substrate 11, and in this case as well, the potential change of the reference electrode 25 with respect to changes in the atmosphere can be made faster.

以上説明してきたように、この発明によれば、基板と基
準極と酸素イオン伝導性固体轍解質と測定極とを積層し
、基準極と測定極との間で通電して固体電解質内で酸素
イオンの移動を生じさせて前記測定極を測定側逆電極と
測定側参照極とに分け、少なくとも測定側逆電極に、被
測定雰囲気中の酸素分子の拡散限界挙動を生じさせる拡
散層を設けると共に、前記基準極と測定側逆電極との間
で通電して基準極酸素分圧を制御し、前記測定側参照極
と基準極間での電位の取り出しを可能としたから、被測
定雰囲気の温度変化による出力変化の影響が小さく、被
測定雰囲気中の酸素濃度の検出を精度よく行うことがで
き、構造も簡単でしかも堅牢であるなどの数々のすぐれ
た効果を奏する。
As explained above, according to the present invention, the substrate, the reference electrode, the oxygen ion conductive solid rut solute, and the measurement electrode are laminated, and current is passed between the reference electrode and the measurement electrode to generate the electrolyte in the solid electrolyte. The measurement electrode is divided into a measurement side counter electrode and a measurement side reference electrode by causing movement of oxygen ions, and at least the measurement side counter electrode is provided with a diffusion layer that causes diffusion limit behavior of oxygen molecules in the atmosphere to be measured. At the same time, current is applied between the reference electrode and the counter electrode on the measurement side to control the reference electrode oxygen partial pressure, and it is possible to take out the potential between the reference electrode on the measurement side and the reference electrode. It has many excellent effects, such as being less affected by changes in output due to temperature changes, being able to accurately detect the oxygen concentration in the atmosphere to be measured, and having a simple and robust structure.

【図面の簡単な説明】[Brief explanation of the drawing]

ff11図は従来の酸素センサの模式的断面図、第2図
は第1図の酸素センサの結線図、第3図は第1図の酸素
センサの雰囲気温度変化による出力電圧特性変化を示す
グラフ、第4図はこの発明の一実施例による酸素センサ
の模式的断面図、第5図(a)〜(f)は第4図の酸素
センサの製造工程を順次示す平面説明図、第6図および
第7図は第5図の酸素センサの結線図、!88図は第1
図および第4図に示す酸素センサの出力電圧特性を示す
グラフ、第9図は第4図の酸素センサの入〉■での雰囲
気温度変化による出力電圧特性変化を示すグラフ、第1
0図は第4図の酸素センサを空燃比検出システムに用い
た場合の基本回路例を示す結線図、第11図および第1
2図は各々この発明の他の実施例による酸素センサの模
式的断面図である。 10・・・酸素センサ、11・・・基板、22・・・基
準極、23・・・酸素イオン伝導性固体電解質、24・
・・測定側逆電極、25・・・測定側錠1jlJ、極、
′26・・・拡散層、31・・・外部電源。 第1図 第2図 空ふ比 (A/F) 第4図 2 第5図 (a)(b) ((j’        (−d) 第6図 第7図 ・第8 im 空気過創率(χ) 第9図 □」 5 4“逍1))、2 1 第127図 2
ff11 is a schematic cross-sectional view of a conventional oxygen sensor, FIG. 2 is a wiring diagram of the oxygen sensor in FIG. 1, and FIG. 3 is a graph showing changes in output voltage characteristics due to changes in ambient temperature of the oxygen sensor in FIG. 1. FIG. 4 is a schematic cross-sectional view of an oxygen sensor according to an embodiment of the present invention, FIGS. Figure 7 is the wiring diagram for the oxygen sensor in Figure 5! Figure 88 is the first
Figure 9 is a graph showing the output voltage characteristics of the oxygen sensor shown in Figure 4, and Figure 9 is a graph showing changes in the output voltage characteristics due to atmospheric temperature changes at
Figure 0 is a wiring diagram showing a basic circuit example when the oxygen sensor in Figure 4 is used in an air-fuel ratio detection system, Figure 11 and Figure 1
2 are schematic cross-sectional views of oxygen sensors according to other embodiments of the present invention. DESCRIPTION OF SYMBOLS 10... Oxygen sensor, 11... Substrate, 22... Reference electrode, 23... Oxygen ion conductive solid electrolyte, 24...
... Measuring side reverse electrode, 25... Measuring side lock 1jlJ, pole,
'26... Diffusion layer, 31... External power supply. Fig. 1 Fig. 2 Air-to-air ratio (A/F) Fig. 4 2 Fig. 5 (a) (b) ((j' (-d) Fig. 6 Fig. 7/8 im Air overflow ratio ( χ) Figure 9 □" 5 4 "Sho 1)), 2 1 Figure 127 2

Claims (1)

【特許請求の範囲】[Claims] (1)基板と基準極と酸素イオン伝導性固体電解質と測
定極とを積層し、基準極と測定極との間で通電して固体
電解質内で酸素イオンの移動を生じさせて基準極酸素分
圧を制御する酸素センサにおいて、前記測定極を測定測
道電極と測定側参照極とに分け、少なくとも測定測道電
極に、被測定雰囲気中の酸素分子の拡散限界挙動を生じ
させる拡散層を設けると共に、前記基準極と測定測道電
極との間で通電して基準極酸素分圧を制御し、前記測定
側参照極と基準極間の電位の取り出しを可能としたこと
を特徴とする酸素センサ。
(1) A substrate, a reference electrode, an oxygen ion conductive solid electrolyte, and a measurement electrode are laminated, and electricity is applied between the reference electrode and measurement electrode to cause movement of oxygen ions within the solid electrolyte, and the oxygen ions are separated from the reference electrode. In an oxygen sensor that controls pressure, the measuring electrode is divided into a measuring electrode and a measuring side reference electrode, and at least the measuring electrode is provided with a diffusion layer that causes diffusion-limited behavior of oxygen molecules in the atmosphere to be measured. In addition, the oxygen sensor is characterized in that current is applied between the reference electrode and the measuring electrode to control the reference electrode oxygen partial pressure, thereby making it possible to take out the potential between the measuring side reference electrode and the reference electrode. .
JP58021992A 1983-02-15 1983-02-15 Oxygen sensor Pending JPS59148857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58021992A JPS59148857A (en) 1983-02-15 1983-02-15 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58021992A JPS59148857A (en) 1983-02-15 1983-02-15 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPS59148857A true JPS59148857A (en) 1984-08-25

Family

ID=12070515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58021992A Pending JPS59148857A (en) 1983-02-15 1983-02-15 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS59148857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450780B1 (en) * 1997-02-12 2004-12-17 삼성전기주식회사 The driving circuit of plated lambda senseor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450780B1 (en) * 1997-02-12 2004-12-17 삼성전기주식회사 The driving circuit of plated lambda senseor

Similar Documents

Publication Publication Date Title
JP3855483B2 (en) Stacked air-fuel ratio sensor element
JPS6156779B2 (en)
US4416763A (en) Air/fuel ratio detecting device for use in exhaust gas of IC engine
JPS6138414B2 (en)
JPH11166913A (en) Gas sensor
EP0059933B1 (en) Solid electrolyte oxygen sensing element of laminated structure with gas diffusion layer on outer electrode
JP7339896B2 (en) gas sensor
US6365036B1 (en) Electrode ink formulation for oxygen sensor
US5366611A (en) Oxygen sensor
JP3589384B2 (en) Carbon monoxide sensor and its aging method
JPS59148857A (en) Oxygen sensor
JP3106971B2 (en) Oxygen sensor
JP3943262B2 (en) NOx gas concentration measuring apparatus and NOx gas concentration measuring method
JP2005201841A (en) Oxygen concentration detecting element and its manufacturing method
JP3635191B2 (en) Gas sensor
JP2805811B2 (en) Combustion control sensor
JPH0244244A (en) Manufacture of electrochemical cell
JP2001013105A (en) Air-fuel ratio sensor
JP2812524B2 (en) Oxygen sensor
JP2714064B2 (en) Air-fuel ratio detector
JPS62190461A (en) Activation detecting device for air fuel ratio sensor
JPS61234352A (en) Air/fuel ratio detector
JPH10206380A (en) Oxygen concentration detecting element
JP3881780B2 (en) Nitrogen oxide sensor
JP3724939B2 (en) NOx gas concentration detector