[go: up one dir, main page]

JPS59160519A - Wet type waste gas desulfurizer - Google Patents

Wet type waste gas desulfurizer

Info

Publication number
JPS59160519A
JPS59160519A JP58034617A JP3461783A JPS59160519A JP S59160519 A JPS59160519 A JP S59160519A JP 58034617 A JP58034617 A JP 58034617A JP 3461783 A JP3461783 A JP 3461783A JP S59160519 A JPS59160519 A JP S59160519A
Authority
JP
Japan
Prior art keywords
absorbent
slurry
load
concn
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58034617A
Other languages
Japanese (ja)
Other versions
JPH0417691B2 (en
Inventor
Tsuneo Narita
成田 恒雄
Tsukasa Nishimura
西村 士
Tadaaki Mizoguchi
忠昭 溝口
Shigeyoshi Kawano
川野 滋祥
Toshio Katsube
利夫 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58034617A priority Critical patent/JPS59160519A/en
Publication of JPS59160519A publication Critical patent/JPS59160519A/en
Publication of JPH0417691B2 publication Critical patent/JPH0417691B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To maintain the concn. of an absorbent in follow-up satisfactorily to the rise in the load of a boiler, etc. and to decrease the consumption of the absorbent by providing a piping system which feeds directly the absorbent slurry from a tank to an absorption column in such a way that the concn. of the absorbent attains a prescribed value or above when the concn. of SO2 in the waste gas increases. CONSTITUTION:A quick feed piping 42 for an absorbent which feeds directly an absorbent slurry from an absorbent slurry tank 25 to a piping 40 for circulating the slurry in an absorption column is provided. The load signal when the load on a boiler side increases is converted to the pH of the absorbent liquid necessary for maintaining a required rate of desulfurization under said load. A quick feed valve 41 for the absorbent slurry is controlled by the addition signal of the deviation signal between said pH set value and the value detected with a pH meter 33 and the load change signal (differential signal of the load), by which the concn. of the absorbent in the circulating slurry is increased to the required concn.

Description

【発明の詳細な説明】 本発明は湿式排煙脱硫装置に係シ、特に吸収剤および硫
酸の消費量を低減するに好適な湿式排煙脱硫装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet flue gas desulfurization system, and more particularly to a wet flue gas desulfurization system suitable for reducing the consumption of absorbent and sulfuric acid.

現在、火力発電所等に設置されている排煙脱硫装置は、
石灰石、石灰等を吸収剤としたスラリからなる吸収液ス
ラリを用い、ボイラ等の排ガス中の硫黄酸化物(80,
)を吸収し、得られた亜硫酸カルシウムを酸化して、硫
酸カルシウム、すなわち石膏として回収する方法が最も
一般的である。
Currently, flue gas desulfurization equipment installed at thermal power plants, etc.
Sulfur oxides (80,
), the resulting calcium sulfite is oxidized, and the most common method is to recover it as calcium sulfate, that is, gypsum.

この石灰石または石灰(以下、吸収剤と略す)を用いる
従来の排煙脱硫装置の系統を第1図に示し、その概要を
以下に述べる。ボイラ等の排ガスは、煙道1によシ除じ
ん塔2°に導入され、ここで除しん塔循環タンク5から
循環ボンダ4によシ供給される循環液との気液接触によ
シ、飽和温度まで冷却されるとともに、排ガス中に含有
されるダストが除去された後、吸収塔7に送られる。な
お、場合によっては、吸収塔7に送られるガス中のミス
トを除去するために、ミストエリミネータ6が設置され
る場合もある。吸収塔7で循環ポンプ10により配管4
0を経て供給され九吸収液スラリとの気液接触により排
ガス中のSO工が吸収、除去された後、デミスタ8で同
伴ミストが除去され、煙道9から清浄ガスが・排出され
る。なお、12はミストエリミネータ6およびデミスタ
8への補給水配管である。
The system of a conventional flue gas desulfurization device using this limestone or lime (hereinafter abbreviated as absorbent) is shown in FIG. 1, and its outline will be described below. Exhaust gas from the boiler, etc. is introduced into the dust removal tower 2° through the flue 1, where it is brought into gas-liquid contact with the circulating liquid supplied from the dust removal tower circulation tank 5 to the circulation bonder 4. After being cooled to saturation temperature and removing dust contained in the exhaust gas, it is sent to the absorption tower 7. In some cases, a mist eliminator 6 may be installed to remove mist from the gas sent to the absorption tower 7. In the absorption tower 7, the circulation pump 10 connects the piping 4.
After the SO gas in the exhaust gas is absorbed and removed by gas-liquid contact with the absorbing liquid slurry supplied through the demister 8, the entrained mist is removed by the demister 8, and clean gas is discharged from the flue 9. Note that 12 is a make-up water pipe to the mist eliminator 6 and demister 8.

吸収塔7にはガス中のso工を吸収するに必要なスラリ
か吸収剤スラリタンク25からポンプ26によシ供給さ
れる一方、吸収塔ブリードポンプ11により、so−を
吸収し、生成した亜硫酸カルシウムを含有するスラリの
一部が抜き出され、酸化塔供給タンク13に供給される
。酸化塔供給タンク13では、未反応の吸収剤が硫酸2
8と反応しテ石膏ニなるとともに、PH調整された後、
ポンプ14によシ酸化塔15に送られ、空気圧縮機21
により空気槽22を介して供給される空気にょシ酸化さ
れ、スラリ中の亜硫酸カルシウムは石膏となる。得られ
た石膏スラリは、石膏シラフナ16、スラリタンク17
および脱水機19を経て脱水され、石膏2oが回収され
る。なお、図中、3.18.24はポンプ、23は濾過
水ポンプ、27は吸収剤、29は排水を示す。
The absorption tower 7 is supplied with slurry necessary for absorbing the SO- in the gas from the absorbent slurry tank 25 through the pump 26, while the absorption tower bleed pump 11 absorbs SO- and the generated sulfur dioxide. A portion of the slurry containing calcium is extracted and supplied to the oxidation tower supply tank 13. In the oxidation tower supply tank 13, unreacted absorbent is converted into sulfuric acid 2
After reacting with 8 and forming gypsum, the pH was adjusted.
The air is sent to the oxidation tower 15 by the pump 14, and then sent to the air compressor 21.
The air supplied through the air tank 22 is oxidized, and the calcium sulfite in the slurry becomes gypsum. The obtained gypsum slurry was transferred to gypsum Shirafuna 16 and slurry tank 17.
The gypsum 2o is then dehydrated through a dehydrator 19 and recovered. In addition, in the figure, 3, 18, and 24 are pumps, 23 is a filtered water pump, 27 is an absorbent, and 29 is a drainage water.

上記排煙脱硫装置における吸収剤スラリの供給方法およ
び供給量の制御方法は、第2図に示すように、脱硫装置
に流入する排ガス量とSO!濃度を各々計器30と31
によシ検出し、掛算器35によりSO工量を算出し、こ
れに一定の比率(定数)を掛けて必要な吸収剤スラリ量
とし、これと吸収剤スラリ流量計32で検出した実際の
流量を比較し、これらの差が可及的に小さくなるように
吸収剤スラリ流量調整弁34を制御するものである。こ
の方は流入SO工量にかかわらず一定となる。
The method for supplying the absorbent slurry in the flue gas desulfurization equipment and the method for controlling the supply amount are as shown in FIG. Concentration meters 30 and 31 respectively
The amount of SO work is calculated by the multiplier 35, and this is multiplied by a certain ratio (constant) to obtain the required amount of absorbent slurry, and this is combined with the actual flow rate detected by the absorbent slurry flowmeter 32. The absorbent slurry flow rate regulating valve 34 is controlled so that the difference between the two is as small as possible. This amount remains constant regardless of the amount of inflow SO.

ところが、脱硫装置の吸収塔の特性として吸収液のpH
が高い程、また流入SO工量が少ない程、脱硫性能は高
くな9、また、吸収塔スラリのpHは液中の吸収剤濃度
が高い程、また流入SO□量が低い程上昇する。即ち、
脱硫装置を低負荷で運転した場合、流入SO,量の低下
によってのみでなく、流入SO!量の低下に起因する吸
収塔スラリのpH上昇によっても、脱硫性能が上昇する
。これは低負荷運転時において、必要以上の吸収剤を消
費し、またその結果として多量に硫酸を消費し、運転費
を高くすることになる。
However, as a characteristic of the absorption tower of the desulfurization equipment, the pH of the absorption liquid
The higher the concentration of the absorbent, and the lower the amount of inflow SO, the higher the desulfurization performance. That is,
When the desulfurization equipment is operated at low load, not only the amount of inflow SO! An increase in the pH of the absorber slurry due to a decrease in volume also increases desulfurization performance. This consumes more absorbent than necessary during low-load operation, and as a result, a large amount of sulfuric acid is consumed, increasing operating costs.

このような従来技術の欠点をなくすために1.第3図に
示すように、吸収液ス2すp’H計33、調節計36お
よび加算器38を設け、各負荷において吸収液\ラリの
pHが一定゛になるような補正回路を付加する制御方法
が考えられている。これは、上記したように低負荷時の
脱硫率を計画値に維持するために、各負荷帯においてP
Hがあらかじめ設定した直になるように吸収剤スラリの
供給量を制御するものである。
In order to eliminate such drawbacks of the conventional technology, 1. As shown in FIG. 3, an absorption liquid pH meter 33, a controller 36, and an adder 38 are provided, and a correction circuit is added to keep the pH of the absorption liquid constant at each load. Control methods are being considered. As mentioned above, in order to maintain the desulfurization rate at the planned value at low loads, P
The supply amount of the absorbent slurry is controlled so that H is equal to a preset value.

しかしながら、吸収塔スラリのpHは、上述のように吸
収S08、量と吸収液スラリ中の吸収剤濃度に依存する
だめ、流入SO□量が減少した場合、P Hを一定に保
つと吸収、剤濃度は低下することになる。
However, as mentioned above, the pH of the absorber slurry depends on the amount of absorbed SO8 and the absorbent concentration in the absorbent slurry. The concentration will decrease.

また一般に、吸収塔7は酸化塔供給タンク13への抜き
出し量に対して約20時間分のスラリを保有しているた
め、流入ガス側の負荷変化速度に比べて液組成の変化に
遅れを生じる。従って、上記従来技術の制御方法では、
低負荷で安定したP Hz吸収液スラリ性状で運転して
いる状態から負荷上昇を行なった場合、負荷上昇に対し
液組成の変化が遅れ、一時的にpHが低下して脱硫率の
低下を招くことになる。これは、特に負荷変動の多いボ
イラ等に設置される脱硫装置においてはh安定運転がで
きないという欠点を生じることになる。
Additionally, since the absorption tower 7 generally holds about 20 hours worth of slurry for the amount withdrawn to the oxidation tower supply tank 13, there is a delay in the change in liquid composition compared to the rate of load change on the inflow gas side. . Therefore, in the conventional control method described above,
If the load is increased from a state where the system is operating with stable P Hz absorption liquid slurry properties at low load, the change in liquid composition will be delayed in response to the increase in load, resulting in a temporary drop in pH and a decrease in desulfurization rate. It turns out. This results in the disadvantage that stable operation cannot be achieved, particularly in desulfurization equipment installed in boilers and the like that experience frequent load fluctuations.

本発明の目的は、上記した従来技術の欠点をなくシ、ボ
イラ等の負荷変動に対する追従性が良く、かつ吸収剤お
よび硫酸の消費量を低減することができる湿式排煙脱硫
装置を提供することにある。
An object of the present invention is to provide a wet flue gas desulfurization device that eliminates the drawbacks of the prior art described above, has good followability to load fluctuations of a boiler, etc., and can reduce consumption of absorbent and sulfuric acid. It is in.

本発明は、硫黄酸化吻(so工)を含む排ガスが流通す
る吸収塔゛に吸収液を循“環させ、気液接触を行なわせ
てSO工を吸収除去する湿式排煙脱硫装置に゛おいて、
吸収塔スラリ循環配管または吸収塔に、濃度が低濃度か
ら高濃度に上昇する時点で吸収剤濃度が所定値以上にな
るように前記吸収剤、スラリの直接供給配管系から所定
量の吸収剤を急速供給する′吸収剤供給制御系を設けた
ことを特徴とする。
The present invention is applicable to a wet flue gas desulfurization device that circulates an absorption liquid through an absorption tower through which exhaust gas containing sulfur oxidizer (SO) flows, and performs gas-liquid contact to absorb and remove SO. There,
A predetermined amount of absorbent is supplied to the absorption tower slurry circulation piping or the absorption tower from the direct supply piping system for the absorbent and slurry so that the absorbent concentration reaches a predetermined value or more at the point when the concentration increases from a low concentration to a high concentration. It is characterized by the provision of an absorbent supply control system that rapidly supplies the absorbent.

すなわち、本発明は、吸収塔内でボイラ等の排ガスと気
液接触を行なわせ、S01を吸収、除去するための吸収
液スラリの循環配管または吸収塔タンクに、吸収剤スラ
リの供給配管を直接、接続し、低負荷時(低排ガス量又
は低SOx濃度時)において、吸収剤当量比を下げるよ
うに吸収剤スラリの供給量を制御し、一方、負荷上昇(
低排ガス量又はS08濃度上昇)と同時に循環スラリ中
の吸収剤濃度を該負荷上昇にと4−/zつて、その負荷
に必要な濃度まで高めるように、前記スラリ供給配管か
ら吸収剤スラリを急速供給するようにしたものである。
That is, the present invention connects the absorbent slurry supply pipe directly to the absorbent slurry circulation pipe or the absorption tower tank for making gas-liquid contact with the exhaust gas from a boiler or the like in the absorption tower and absorbing and removing S01. , and control the supply amount of absorbent slurry to lower the absorbent equivalence ratio at low load (low exhaust gas amount or low SOx concentration), while controlling the supply amount of absorbent slurry to lower the absorbent equivalence ratio when the load increases (
The absorbent slurry is rapidly supplied from the slurry supply pipe so as to increase the absorbent concentration in the circulating slurry to the concentration required for the load at the same time as the load increase (low exhaust gas amount or increase in S08 concentration). It was designed to be supplied.

以下、本発明を図面によシさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第4図は、本発明の一実施例を示す脱硫装置の吸収塔廻
りの配管系統図でオシ、第5図は対応する制御系統図で
ある。第4図において、吸収塔7には、第1図と同様に
吸収剤スラリタンク25、同ポンプ26、および吸収剤
スラリ調節弁34からなる吸収剤スラリ供給系統と、吸
収剤循環配管40およびポンプ10からなる吸収剤スラ
リ循環系統とが設けられ、さらに吸収剤スラリタンク2
5には、吸収剤循環配管43および吸収剤スラリ戻り調
整弁44と、吸収剤急速供給配管42およびその供給バ
ルブ41が設けられている。
FIG. 4 is a piping system diagram around an absorption tower of a desulfurization apparatus showing an embodiment of the present invention, and FIG. 5 is a corresponding control system diagram. In FIG. 4, the absorption tower 7 includes an absorbent slurry supply system consisting of an absorbent slurry tank 25, an absorbent slurry pump 26, and an absorbent slurry control valve 34, as well as an absorbent circulation pipe 40 and a pump, as in FIG. An absorbent slurry circulation system consisting of 10 and an absorbent slurry tank 2 is provided.
5 is provided with an absorbent circulation pipe 43, an absorbent slurry return adjustment valve 44, and an absorbent rapid supply pipe 42 and its supply valve 41.

上記構成において、流入SO工量が減少した時には循環
スラリ中の吸収剤濃度を下げるように吸収剤スラリの供
給量が吸収剤スラリ供給配管ラインの調節弁34で制御
される。その手段としては、第5図に示す通夛前述のP
H一定制御も一手段でワシ、更に低負荷時にpHを下げ
るような制御も考えられる。本実施例では、負荷上昇開
始と同時に、吸収剤スラリの供給量を急速に増加させ、
循環スラリ中の吸収剤濃度を、負荷上昇にともなって、
その負荷に必要な濃度まで高める。具体的には、第5図
に示す過多給電指令等によシ、ゲイ2側の負荷変化をボ
イラ負荷指令50として逸早くとらえ、この負荷信号を
関数発生器51によシその負荷において所要脱硫率を維
持するために必要な吸収液pHに変換し、とのPH設定
値と、PH計33によシ検出された実際のpH値との偏
差信号と負荷変化信号(負荷の微分信号)の加算信号で
吸収剤スラリ急速供給弁41を制御し、循環スラリ中の
吸収剤濃度を必要な濃度まで高める。なお、52は調節
計、53は切替器、54は微分器、55は関数発生器で
ある。ここで吸収剤スラリ供給ラインの吸収剤スラリ供
給タンク25に戻る循環ライン43に戻り調整弁(自動
0N−OFF弁)44を設け、通常運転時には骸自動0
N−OFF弁44は全開とし、弁41は閉として一定量
のスラリ、をタンク25内に循環させて運転し、負荷上
昇開始時には負荷変化信号(微分信号)により、吸収剤
スラリ急速供給弁41を上述の通9制御すると共に、自
動0N−OFF弁44および吸収剤スラリ調節弁34を
全閉させることにより、吸収剤スラリの供給量を急速に
増加させる。このようにして負荷上昇時にその負荷に必
要な吸収剤濃度まで時間遅れなく吸収剤濃度を高めるこ
とができ本実施例での負荷変化試験結果を従来技術と比
較して第6図@)、←)、r)K示す。0)は吸収剤当
量比を過剰にし、低負荷時に計画脱硫率を達成すること
はできるが、吸収剤スラリ量が多くなる場合、←)は低
負荷時、吸収剤尚量り少なくすることができるが、負荷
上昇時に計画脱硫率が維持できなくなる場合、(ハ)は
本発明の場合をそれぞれ示す。
In the above configuration, the supply amount of the absorbent slurry is controlled by the control valve 34 of the absorbent slurry supply piping line so as to lower the absorbent concentration in the circulating slurry when the inflow SO production amount decreases. As a means for this, the above-mentioned P
Constant H control is one option, and control that lowers the pH at low loads is also conceivable. In this example, the supply amount of absorbent slurry is rapidly increased at the same time as the load starts to increase.
The absorbent concentration in the circulating slurry is increased as the load increases.
Increase to the concentration required for that load. Specifically, the load change on the gay 2 side is quickly detected as the boiler load command 50 by using the excessive power supply command shown in FIG. Addition of the deviation signal between the pH set value and the actual pH value detected by the PH meter 33 and the load change signal (load differential signal) The signal controls the absorbent slurry rapid supply valve 41 to increase the absorbent concentration in the circulating slurry to the required concentration. In addition, 52 is a controller, 53 is a switch, 54 is a differentiator, and 55 is a function generator. Here, a return regulating valve (automatic 0N-OFF valve) 44 is provided in the circulation line 43 that returns to the absorbent slurry supply tank 25 of the absorbent slurry supply line, and during normal operation, the automatic zero
The N-OFF valve 44 is fully opened and the valve 41 is closed to circulate a certain amount of slurry into the tank 25. When the load starts to increase, the absorbent slurry rapid supply valve 41 is activated by the load change signal (differential signal). is controlled as described above, and the automatic ON-OFF valve 44 and the absorbent slurry control valve 34 are fully closed, thereby rapidly increasing the amount of absorbent slurry supplied. In this way, when the load increases, the absorbent concentration can be increased to the absorbent concentration required for that load without any time delay. Figure 6 shows a comparison of the load change test results in this example with the conventional technology. ), r) K is shown. 0) allows the absorbent equivalent ratio to be excessive and achieve the planned desulfurization rate at low loads, but if the amount of absorbent slurry increases, ←) allows the amount of absorbent to be reduced at low loads. However, when the planned desulfurization rate cannot be maintained when the load increases, (c) shows the case of the present invention.

試験条件 負荷モデル  第6図 負荷変化速度 5チ/分 入口SOx濃度 1000PIII 吸収剤当量比 定格時1,05 本試験の結果、負荷上昇速度に追従して、吸収液ス2す
中の吸収剤濃度を急速に高くすることができるため、低
負荷時に吸収剤スラリ供給量を低減することが可能とな
る。上記試験結果では、通常運転時、吸収剤当量比1.
05に対し、3〇−負荷時1.01まで低減できること
がわかった。従って第6図の斜線部に相当する吸収剤ス
ラリ供給量を低減することができることになる。
Test conditions Load model Figure 6 Load change rate 5 inches/min Inlet SOx concentration 1000 PIII Absorbent equivalent ratio 1.05 at rated time As a result of this test, the absorbent concentration in the absorbent liquid follows the load increase rate. can be rapidly increased, making it possible to reduce the amount of absorbent slurry supplied during low loads. The above test results show that during normal operation, the absorbent equivalent ratio is 1.
It was found that it can be reduced to 1.01 at 30-load compared to 05. Therefore, the amount of absorbent slurry supplied corresponding to the shaded area in FIG. 6 can be reduced.

次に第7図は、本発明の他の実施例ケ示すもので、吸収
塔7の側5Vr−吸収剤スラリを貯えたリザーブタンク
45を設け、負荷上昇開始と同時に該タンク下部に設け
た吸収剤スラリ急速嫁入弁46によシ、吸収塔循環タン
ク内に、該タンク内の吸収剤濃度が負荷上昇にともなっ
て、その負荷に必要な濃度になるように吸収剤スラリな
供給するようKしたものである0本実施例においても第
1の実施例と同様の効果が得られる。
Next, FIG. 7 shows another embodiment of the present invention, in which a reserve tank 45 storing 5Vr-absorbent slurry is provided on the side of the absorption tower 7, and at the same time as the load starts to rise, an absorption tank 45 is installed at the bottom of the tank. The agent slurry rapid transfer valve 46 is configured to supply absorbent slurry into the absorption tower circulation tank so that as the load increases, the absorbent concentration in the tank becomes the concentration required for the load. In this embodiment, the same effects as in the first embodiment can be obtained.

以上、本発明によれば、ポイM)プラント等の負荷上昇
に対して良好に追従し、石灰石等の吸収剤および硫酸の
消費量を低減することができる。
As described above, according to the present invention, it is possible to satisfactorily follow an increase in the load of a POI plant, etc., and to reduce the consumption of an absorbent such as limestone and sulfuric acid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による排煙脱硫装置の系統図、第2図
および第3図はそれぞれ従来技術による吸収剤スラリ供
給量制御系統図、第4図および第5図は、それぞれ本発
明の実施例を示す排煙脱硫装置の吸収剤スラリ供給の配
管系統図および制御系統図、第6図は、本発明の実施例
における試験結果の12例として、負荷変化時における
脱硫率、吸収液スラリ中の吸収剤濃度、吸収剤スラリ供
給量を示した線図であ夛、第6図(イ)、仲)は従来技
術の(ハ) 場合、第6図榊は本発明の場合を示す。第7図は、本発
明の他の実施例を示す吸収剤スラリ供給制御系統図であ
る。 1・・・煙道、2“=・・除じん器、7・・・吸収塔、
10・−・吸収塔循環ポンプ、11・・・吸収塔ブリー
ドポンプ、25・・・吸収剤スラリタンク、26・・・
吸収剤スラリポンプ、27・・・吸収剤スラリ供給配管
、33・・・吸収塔タンクルH計、34・・・吸収剤ス
ラリ調節弁、40・・・吸収塔循環配管、41・・・吸
収剤スラリ急速供給バルブ、42・・・吸収剤スラリ急
速供給配管、43・・・吸収剤スラリ戻9配管、44−
・吸収剤スラリ戻シ調整弁、45・・・吸収剤リザーブ
タンク、46・・・吸収剤急速投入弁、50・−・ボイ
ラ負荷指令、51・・・関数発生器、52・−・調節計
、53・−・切替器、54・−・微分器、55・・・関
数発生器。 代理人 弁理士  川 北 武 良 策11!I 2乙X−
FIG. 1 is a system diagram of a flue gas desulfurization equipment according to the prior art, FIGS. 2 and 3 are system diagrams of absorbent slurry supply amount control according to the prior art, and FIGS. 4 and 5 are diagrams of an embodiment of the present invention, respectively. FIG. 6 is a piping system diagram and a control system diagram for supplying absorbent slurry in a flue gas desulfurization equipment, which shows examples of the desulfurization rate when the load changes, Fig. 6 (a) and middle) are diagrams showing the absorbent concentration and absorbent slurry supply amount. Fig. 6 (a) and middle) show the case of the prior art (c), and Fig. 6 (sakaki) shows the case of the present invention. FIG. 7 is an absorbent slurry supply control system diagram showing another embodiment of the present invention. 1... Flue, 2"=... Dust remover, 7... Absorption tower,
10... Absorption tower circulation pump, 11... Absorption tower bleed pump, 25... Absorbent slurry tank, 26...
Absorbent slurry pump, 27... Absorbent slurry supply piping, 33... Absorption tower tank H meter, 34... Absorbent slurry control valve, 40... Absorption tower circulation piping, 41... Absorbent Slurry rapid supply valve, 42... Absorbent slurry rapid supply piping, 43... Absorbent slurry return 9 piping, 44-
- Absorbent slurry return adjustment valve, 45... Absorbent reserve tank, 46... Absorbent rapid input valve, 50... Boiler load command, 51... Function generator, 52... Controller , 53... Switcher, 54... Differentiator, 55... Function generator. Agent Patent Attorney Takeshi Kawakita Good Plan 11! I 2 Otsu X-

Claims (1)

【特許請求の範囲】[Claims] (1)硫黄酸化物(80工)を含む排ガスが流通する吸
収塔に吸収液を循環させ、気液接触を行なわせて$00
を吸収除去する湿式排煙脱硫装置において、吸収塔スラ
リ循環配管または吸収塔に、吸収剤スラリ度から高濃度
に上昇する時点で吸収剤濃度が所定値以上になるように
前記吸収ilJスラリの直接供給配管系から所定量の吸
収剤を急速供給する吸収剤供給制御系を設けたことを特
徴とする湿式排煙脱硫装置。
(1) The absorption liquid is circulated through an absorption tower through which exhaust gas containing sulfur oxides (80 tons) flows, and gas-liquid contact is performed.
In the wet type flue gas desulfurization equipment that absorbs and removes the absorbed ilJ slurry, the absorbed ILJ slurry is directly added to the absorption tower slurry circulation piping or the absorption tower so that the absorbent concentration reaches a predetermined value or more at the time when the absorbent slurry level increases from the absorbent slurry level to a high concentration. A wet flue gas desulfurization device characterized by being provided with an absorbent supply control system that rapidly supplies a predetermined amount of absorbent from a supply piping system.
JP58034617A 1983-03-04 1983-03-04 Wet type waste gas desulfurizer Granted JPS59160519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58034617A JPS59160519A (en) 1983-03-04 1983-03-04 Wet type waste gas desulfurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58034617A JPS59160519A (en) 1983-03-04 1983-03-04 Wet type waste gas desulfurizer

Publications (2)

Publication Number Publication Date
JPS59160519A true JPS59160519A (en) 1984-09-11
JPH0417691B2 JPH0417691B2 (en) 1992-03-26

Family

ID=12419331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58034617A Granted JPS59160519A (en) 1983-03-04 1983-03-04 Wet type waste gas desulfurizer

Country Status (1)

Country Link
JP (1) JPS59160519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254227A (en) * 1985-05-01 1986-11-12 Babcock Hitachi Kk Method for controlling supply amount of limestone slurry
US5076818A (en) * 1990-06-28 1991-12-31 Jonsson Kjartan A Gas cleaning methods and apparatus
WO2019087901A1 (en) 2017-10-31 2019-05-09 三菱重工エンジニアリング株式会社 Gas treatment device, gas treatment method, co2 recovery device, and co2 recovery method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232895A (en) * 1975-09-09 1977-03-12 Mitsubishi Heavy Ind Ltd Process for controlling supplying quantity of lime in the wet recovery process of sulfur in the waste gas as gypsum with lime
JPS5343193U (en) * 1976-09-16 1978-04-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232895A (en) * 1975-09-09 1977-03-12 Mitsubishi Heavy Ind Ltd Process for controlling supplying quantity of lime in the wet recovery process of sulfur in the waste gas as gypsum with lime
JPS5343193U (en) * 1976-09-16 1978-04-13

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254227A (en) * 1985-05-01 1986-11-12 Babcock Hitachi Kk Method for controlling supply amount of limestone slurry
US5076818A (en) * 1990-06-28 1991-12-31 Jonsson Kjartan A Gas cleaning methods and apparatus
WO2019087901A1 (en) 2017-10-31 2019-05-09 三菱重工エンジニアリング株式会社 Gas treatment device, gas treatment method, co2 recovery device, and co2 recovery method
US12109529B2 (en) 2017-10-31 2024-10-08 Mitsubishi Heavy Industries, Ltd. Air pollution control unit and air pollution control method, and CO2 recovery unit and CO2 recovery method

Also Published As

Publication number Publication date
JPH0417691B2 (en) 1992-03-26

Similar Documents

Publication Publication Date Title
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
WO2011140820A1 (en) Wet flue gas desulfurization absorption tower for power plant
CN110479053B (en) Device for adjusting desulfurization slurry supply flow through single PID loop and feedforward and control method
CN112206641A (en) Single-tower multistage circulating ammonia/ammonium sulfate method for flue gas desulfurization
CN107648988B (en) Device and method for adjusting desulfurization slurry supply flow through double loops
US4582692A (en) Method of control for a wet lime-gypsum process desulfurization plant
JPS59160519A (en) Wet type waste gas desulfurizer
JPH11197450A (en) Wet desulfurization equipment and its operation method
JPH0355171B2 (en)
JP3519498B2 (en) Wet flue gas desulfurization equipment
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPH0147215B2 (en)
JPH03213125A (en) Absorbent ph control apparatus of wet exhaust gas desulfurizer
JP2883365B2 (en) Control device for wet flue gas desulfurization unit
JPH0244840Y2 (en)
JPS59199021A (en) Controlling method of wet lime-gypsum desulfurization plant
JPH0427530Y2 (en)
JPS63294928A (en) Device for controlling wet exhaust gas desulfurizer
JPS61274727A (en) Apparatus for controlling wet waste gas desulfurization apparatus
JPS61120620A (en) Method for controlling withdrawal flow amount of washing solution of cooling tower
JPS6244735Y2 (en)
JP3757616B2 (en) Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus
JPH01180219A (en) Absorbing liquid slurry control device for wet type flue gas desulfurization apparatus
JPS5936528A (en) Control device for supply rate of lime in stack gas desulfurization process by wet lime-gypsum method
JPS6274436A (en) Wet type waste gas desulfurization apparatus