[go: up one dir, main page]

JPS59182347A - Automatic analytical instrument - Google Patents

Automatic analytical instrument

Info

Publication number
JPS59182347A
JPS59182347A JP5751683A JP5751683A JPS59182347A JP S59182347 A JPS59182347 A JP S59182347A JP 5751683 A JP5751683 A JP 5751683A JP 5751683 A JP5751683 A JP 5751683A JP S59182347 A JPS59182347 A JP S59182347A
Authority
JP
Japan
Prior art keywords
reaction
sample
reagent
value
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5751683A
Other languages
Japanese (ja)
Other versions
JPH0257863B2 (en
Inventor
Kiyokazu Nakano
中野 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP5751683A priority Critical patent/JPS59182347A/en
Publication of JPS59182347A publication Critical patent/JPS59182347A/en
Publication of JPH0257863B2 publication Critical patent/JPH0257863B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、一群の試・料液の各々をこ分析試薬を添加
し所定の条件下で反応させて生成した反応液の光学的特
性、例えば可視光、紫外、近赤外などの吸光度、螢光強
度、特定波長の光散乱強度などから被分析成分の濃度を
測定する自動分析装置であって、分析試薬が所定の力価
を有し反応が正常に完了したことを自動的に確認しなが
ら分析できるよう構成した自動分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field This invention is directed to the optical characteristics of a reaction solution produced by adding an analytical reagent to each of a group of samples/sample solutions and reacting them under predetermined conditions. is an automatic analyzer that measures the concentration of an analyte component based on absorbance of visible light, ultraviolet, near-infrared, etc., fluorescence intensity, light scattering intensity of a specific wavelength, etc., and the analytical reagent has a predetermined titer. The present invention relates to an automatic analyzer configured to perform analysis while automatically confirming that a reaction has completed normally.

(ロ)従来技術 従来、一群の試料液にそれぞれ分析試薬を添加し所定の
条件下で反応させて生成した反応液の光学特性から被分
析成分の濃度を測定する自動分析装置は、その反応が完
了するのに要する時間を経過した後に各試料毎に1自宛
その光学特性を測定して分析するのが一般的である。ま
たこれらの分析装置には、一度に調製した相当量の分析
試薬を備蓄しその力価の劣化を防止するために分析試薬
の保冷装置を備えているものがある。そしてこの備蓄分
析試薬をすべて使いきってから新たに調製した分析試薬
か充填される。そして自動分析装置で多数の試料を効率
よく分析するために一旦充填した分析試薬は使用し終る
までの途中でチェックしない場合がある。そして試薬が
劣化したままでエンドポイント分析法(例えば血清中の
グルコースの酵素反応による分析)を行う場合は、感度
不良によって再現性が低下し、さらに劣化か著しくなる
と真の値からずれた測定値となる。またレイトアッセイ
法(例えばGPTの酵素活性の分析ンにおける装置常数
(K値)を決定する場合は分析試薬が劣化していると真
の値とすれたに値となる。
(B) Prior Art Conventionally, automatic analyzers measure the concentration of the analyte component from the optical properties of the reaction liquid produced by adding analytical reagents to a group of sample liquids and reacting them under predetermined conditions. It is common to measure and analyze the optical properties of each sample after the time required to complete the process. Furthermore, some of these analyzers are equipped with an analytical reagent cooling device in order to store a considerable amount of analytical reagent prepared at one time and prevent the titer from deteriorating. After all the stored analytical reagents are used up, newly prepared analytical reagents are filled. In order to efficiently analyze a large number of samples with an automatic analyzer, the analytical reagents once filled may not be checked until they are finished being used. If an endpoint analysis method (for example, an enzyme reaction analysis of glucose in serum) is performed with reagents that have deteriorated, reproducibility will decrease due to poor sensitivity, and if the reagent deteriorates significantly, the measured value will deviate from the true value. becomes. Furthermore, when determining the device constant (K value) in a late assay method (for example, an assay for the enzyme activity of GPT), if the analytical reagent has deteriorated, the value will be a value that is close to the true value.

(ハ)発明の目的 この発明は上記のような問題点を解消するためになされ
たものであって、分析試薬が所定の力価を有し反応が正
常に完了したことを一試料の分析毎に自動的1こ研認し
ながら分析できる自動分析装置を提供することを目的と
するものである。
(c) Purpose of the Invention This invention was made to solve the above-mentioned problems. The purpose of this invention is to provide an automatic analyzer that can perform analysis while automatically performing one test.

に)発明の構成 この発明は、被分析成分を含有する多数の試料液に所定
の分析試薬を添加し所定の条件下で反応させて生成した
反応液の光学的特性から被分析成分の濃度を連続的もし
くは間欠的に定量する自動分析装置であって、 上記反応液および試薬ブランク液の光学的特性を、分析
試薬を添加してから任意にきめた時間(t工、t2、・
・・・・、tn−1,1n)経過後に複数回測定する手
段と、t工、t2、・・・・・、tn−1、tnにおけ
る該反応液の測定値At □、At 2、・・・・・、
At、n−0、Atn:F6よび試薬ブランク液の測定
値AR工、AR2、・・・・曽、ARユニー、AR−こ
ついて、式: %式% で表される数値を算出し、各数値が所定のしきい値以上
であるか否かを判定して各数値がいずれもしきい値以上
であれはAtn値から被分析成分の濃度に換算して表示
し、−1各算出値のいずれかがしきい値以下であれは分
析異常であることを表示もしくは通報する手段を具備し
、分析試薬が所定の力価を有し反応が正常【こ完了した
ことを一試料の分析毎に自動的に確認しながら分析でき
るよう構成したことを特徴とする自動分析装置を提供す
るものである。
B) Structure of the Invention This invention is a method for determining the concentration of an analyte component from the optical properties of a reaction solution produced by adding a predetermined analytical reagent to a large number of sample liquids containing the analyte component and reacting them under predetermined conditions. This is an automatic analyzer that continuously or intermittently performs quantitative determination, and the optical properties of the reaction solution and reagent blank solution are determined at an arbitrarily determined time (tt, t2, .
..., tn-1, 1n), and the measured values of the reaction solution at t, t2, ..., tn-1, tn, At □, At 2, . ...,
At, n-0, Atn: Measured values of F6 and reagent blank solution AR engineering, AR2, ... Zeng, AR unit, AR-stuck, formula: Calculate the numerical value expressed by % formula %, and each It is determined whether the numerical values are above a predetermined threshold value, and if each numerical value is above the threshold value, the Atn value is converted into the concentration of the analyte component and displayed, and -1 is calculated for each calculated value. If the titer is below the threshold, it is equipped with a means to display or notify that the analysis is abnormal. The present invention provides an automatic analyzer characterized in that it is configured so that analysis can be performed while confirming the accuracy of the analysis.

(ホ)実施例 以下、図に示す実施例に基づいて、この発明を説明する
。たたしこれによりこの発明か限定されるものではない
(e) Examples The present invention will be described below based on examples shown in the drawings. However, this invention is not limited to this.

第1図は、反応液の吸光度を測定して被分析成分の濃度
を測定する、この発明の自動分析装置の一実施例の構成
説明図である。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of an automatic analyzer of the present invention, which measures the concentration of an analyte component by measuring the absorbance of a reaction solution.

まず−回の分析に用いる試料の液茄と同量の純水もしく
は生理的食塩水(1)がそのピペッタ(2)で採取され
反応兼測定容器ライン(3)の容器(4)に採取され順
次矢印(a)の方向に駆動されて移動する。次いでこの
容器にひとつの試料の分析に用いる所定量の分析試薬(
5)をそのピペッタ(6)で採取して注入し試薬ブラン
ク液とする。−万別の容器(7)に、試料架設テーブル
(8)上に並べられた一群の同種試料の1容器から試料
採取ピペッタ(9)が所定量の第1号試料液を分取し、
順次矢印[a)の方向に駆動されて移動する。次いでこ
の容器(7)に分析試薬ピペッタ(6)によって採取さ
れた所定量の分析試薬(5)を注入し反応を開始させ、
生成した第1号試料反応液を順次矢印(a)方向に駆動
して移動させる。次いで以後の反応兼測定容器に別の第
2・・・・0号試料液の所定量を、順次上記と同様にし
て採取し分析試薬(5)を添加して反応を開始させ、第
2〜m号試料の反応液を作製して順次矢印(a)の方向
番こ移動させる。
First, the same amount of pure water or physiological saline (1) as the liquid sample used for the second analysis is collected with the pipetter (2) and into the container (4) of the reaction/measuring container line (3). It is sequentially driven and moved in the direction of arrow (a). Next, a predetermined amount of analytical reagent (
5) with the pipettor (6) and inject it as a reagent blank solution. - A sample collection pipettor (9) separates a predetermined amount of No. 1 sample liquid from one container of a group of homogeneous samples arranged on a sample installation table (8) in a universal container (7),
It is sequentially driven and moved in the direction of arrow [a]. Next, a predetermined amount of the analytical reagent (5) collected by the analytical reagent pipetter (6) is injected into the container (7) to start a reaction.
The generated No. 1 sample reaction solution is sequentially driven and moved in the direction of arrow (a). Next, a predetermined amount of another No. 2 sample solution No. 0 is sequentially collected in the subsequent reaction/measuring container in the same manner as above, and the analytical reagent (5) is added to start the reaction. A reaction solution for sample m is prepared and sequentially moved in the direction of arrow (a).

順次移動されて、試薬ブランク液作製後の所定時間(t
工)経過した試薬ブランク液の容器が(A)の位置に達
した時、光源ランプ(10iの光かオプティカルファイ
バー(社)を通じて該試薬ブランク液を透過してからフ
ィルター(14を透過し所定の光のみを透過し検出器(
131に入る。さらに上記試薬ブランク液が試薬ブラン
ク液作製時から所定の時間(t2)経過してから(B)
位置に達したとき上記と同様に光源ランプ00)→オプ
ティカルファイバー141−B位置の試薬ブランク液→
フィルター115)→検出器(16)の経路で透過光が
検出器部に入る。さらにこの試薬ブランク液容器が試薬
ブランク欣作製から所定の時間(t3)経過して(0)
の位置に達した時に上記と同様に光源ランプ(10)→
オプティカルファイバー〇′71−試薬フランク液−フ
ィルター(囮−検出器(19)の経路で迫過光が検出器
u9に入る。
The reagent blank solution is moved sequentially for a predetermined time (t) after the preparation of the reagent blank solution.
Step) When the container of the reagent blank solution that has passed has reached the position (A), the light of 10i is transmitted through the reagent blank solution through a light source lamp (manufactured by Optical Fiber Co., Ltd.). Only light passes through the detector (
Enter 131. Furthermore, after a predetermined time (t2) has elapsed since the reagent blank solution was prepared, (B)
When reaching the position, light source lamp 00) → reagent blank liquid at optical fiber 141-B position →
The transmitted light enters the detector section along the path from filter 115) to detector (16). Furthermore, this reagent blank liquid container is changed to (0) after a predetermined time (t3) has elapsed since the reagent blank container was prepared.
When the position is reached, the light source lamp (10) →
Optical fiber 〇'71-reagent flank liquid-filter (decoy-detector (19) path through which the impinging light enters the detector u9.

各検出器[131、TIED、 (19)からの透過光
の信号はマルチプレクサ(20+に入り、標準の特定の
波長か選択され次いで吸光度変換器Cυを経て吸光度メ
モリ一部日に入って、t工、t22よびt3の時間経過
後に2ける試薬ブランク液の各吸光度AIR工、AlR
8およびAIR3が記憶される。
The transmitted light signal from each detector [131, TIED, (19) enters a multiplexer (20+), selects a standard specific wavelength, and then passes through an absorbance converter Cυ to an absorbance memory part. , after the elapse of time t22 and t3, the absorbance of the reagent blank solution in 2
8 and AIR3 are stored.

一万第1号試料の反応液が順次移動されて反応開始後の
所定時間(tρ経過して[A)の位置に達した時、前記
と同様に光源ランプ(10−オプティカルファイバー(
11)−A位置の第1号試料反応液−フィルター(12
−検出器(13の経路で透過光力S検出器t131 l
こ入る。次いで反応開始から所定時tLl’l’ (t
2 )の時間経過して(B)の位置に達した時、光源ラ
ンプαD→オプティカルファイ)< −(141−B位
置の第1号試料反応後−フィルター(15)−検出器(
161の経路で透過うし力S検出器aeに入る。さらに
反応開始後の所定時間(1)経過して(C)位置に達し
たとき光源ランプ(il1→オプティカルファイツクー
(lη→C位置の負31号試料反応液−フイルター(1
8)→検出器091の経路で透過光が検出器a翅に入る
。そして各検出器σ31. (16)、t19)からの
透過光の信号はマルチプレクサ(20+ 4こ入り、標
準の特定の波長か選択され、次し)で吸光度変換器(2
1)を経て吸光度の信号に変換され吸う上置メモリ一部
のに入って第1号試料反応液の反応開始後11  葛よ
びt の時間経過後の各吸)¥、度Altよ、IS  
2      3 At  およびAlt3か記憶される。
When the reaction solution of sample No. 1 is sequentially moved and reaches the position [A] after a predetermined time (tρ has elapsed after the start of the reaction), the light source lamp (10-optical fiber
11) - No. 1 sample reaction solution at position A - Filter (12
- detector (transmitted light power S detector with 13 paths t131 l
Come in. Next, at a predetermined time tLl'l' (t
2) When reaching the position (B) after the elapse of time, the light source lamp αD → optical fiber) < - (141-After reaction of the first sample at the B position - filter (15) - detector (
It enters the transmitted force S detector ae through the path 161. Further, when the predetermined time (1) after the start of the reaction has passed and the position (C) is reached, the light source lamp (il1 → optical fiber (lη → negative No. 31 sample reaction liquid at position C) - filter (1
8) The transmitted light enters the detector a wing on the path of →detector 091. And each detector σ31. The transmitted light signal from (16), t19) is sent to a multiplexer (20+4, a standard specific wavelength is selected, and then) to an absorbance converter (2
1) The absorbance signal is converted into an absorbance signal and entered into a part of the upper memory. After the reaction of the first sample reaction solution has started, each absorbance after 11 hours has elapsed) ¥, degree Alt, IS
2 3 At and Alt3 are stored.

 2 次いで吸光度メモリ一部叫こ言己悦されπ上言己の各吸
光度は吸光度判定部]こ入り、下1己式(I)〜(勤の
左辺で表される数値か算出される。
2 Next, a part of the absorbance memory is read, and each of the absorbance values is calculated by the absorbance determination section.

l A:ttニーAIR工l ) V、(I)そしてま
ず(1)式左辺の算出数値が予め記憶させた所定のしき
い値■、以上である力)合力1力S半」定されV工以下
であれは表示部(26jに異常の信号力i伝えられ表示
部%)か異常を表示する。また、以上であれは続いて(
n)式左辺の算出数fKか予め記憶させた所定のしきい
値73以上であるか否か判定さ些■2以下であれは上記
と同様にして異常力5表示される。またv2以上であれ
は右11いて国)式の左辺の算出数値が予め記憶された
しきい値73以上であるか否かが判定され、■3以下で
あれは上記と同様に異常が表示される。なお異常か表示
された時(こ分析が自動的に停止されおよび/′f、た
は測定値力S印字される。さらに73以上であれば吸光
度Alt3の信号が濃度変換器勃)を経て表示部@に送
られ被分析成分濃度の分析結果が表示8よび/または印
字される。
l A: tt knee AIR engineering l) V, (I) And first, the calculated value on the left side of equation (1) is greater than a predetermined threshold value stored in advance. If it is less than 26j, the abnormality will be displayed on the display section (26j receives the abnormal signal power i and displays %). Also, the above continues (
n) It is determined whether the calculated number fK on the left side of the equation is greater than or equal to a predetermined threshold value 73 stored in advance. If it is less than or equal to 2, abnormal force 5 is displayed in the same manner as above. Also, if it is v2 or higher, it is determined whether the calculated value on the left side of the equation is equal to or higher than the pre-stored threshold value 73, and if it is lower than v3, an abnormality is displayed as above. Ru. Furthermore, when an abnormality is displayed (the analysis is automatically stopped and /'f or measured value S is printed. Furthermore, if it is 73 or more, the signal of absorbance Alt3 is displayed on the concentration converter). The analysis result of the concentration of the component to be analyzed is displayed on display 8 and/or printed.

この第1号試料と同様の手順によって第2〜m号の試料
も処理され、異常が表示されると分析か自動的に停止す
るか窓よび/または測定値を印字する。
Samples No. 2 to No. m are also processed in the same procedure as the No. 1 sample, and when an abnormality is displayed, the analysis is automatically stopped or the window and/or the measured value is printed.

なお上記の一連の操作は制御部面で行われる。Note that the above series of operations are performed on the control section.

試薬ブランク液の吸光度測定は上記のように一群の試料
液を連続的をこ測定し始める最初に一回測定するだけで
よい。
The absorbance of the reagent blank solution only needs to be measured once at the beginning of continuous measurement of a group of sample solutions as described above.

t工としては分析試薬の力価か正常であれは、分析に利
用する反応か40〜60%程度完了している時間が選ば
れる。t2としては反応率が70〜90%完了している
時間が選ばれ、t3としては反応か充分完了している時
間が選択される。
As for the t-process, if the titer of the analytical reagent is normal, the time is selected when the reaction used for analysis is about 40 to 60% complete. The time at which the reaction rate is 70 to 90% complete is selected as t2, and the time at which the reaction is sufficiently completed is selected as t3.

また各しきい値V工、■2および■3は上記の時間t工
〜t3に基づいて反応が正常に進行しているかどうかを
チェックできるように適宜選択される。
Further, the threshold values V, (2) and (3) are appropriately selected so that it can be checked whether the reaction is progressing normally based on the above-mentioned times t-t3.

第2図は試薬ブランク液調製または反応開始時間t。か
らtよ〜t3経過後の試薬ブランク液と第1号試料反応
液の吸光度を示すグラフであり、曲線X工、x2は分析
試薬の力価が劣化した場合のグラフである。
FIG. 2 shows reagent blank solution preparation or reaction start time t. This is a graph showing the absorbance of the reagent blank solution and the No. 1 sample reaction solution after t to t3, and curves X and x2 are graphs when the titer of the analytical reagent has deteriorated.

な?試薬ブランク液や試料反応液の時間経過後の測定回
数はその分析に利用する反応の種類によって左右される
が一般に3〜4回で充分である。
What? The number of times the reagent blank solution or sample reaction solution is measured over time depends on the type of reaction used for the analysis, but 3 to 4 times is generally sufficient.

上記の吸光度によって分析する具体例としては、血清ま
たは血漿中のグルコースの分析が挙けられ、下記の反応
式に基づいて生成したキノン色素を波長510 nmの
光の吸光度で測定される。
A specific example of analysis using the above-mentioned absorbance is the analysis of glucose in serum or plasma, in which a quinone dye produced based on the following reaction formula is measured using the absorbance of light at a wavelength of 510 nm.

2 H202+フェノール+4−アミノアンチピリンパ
ーオキシダーゼ □ キノン色素+4H20 他の具体例としては、GPTの酵素活性を下記反応に基
づいて分析する場合に、反応式(B)に基いてNADH
の340 um 近傍の波長光の吸光度で装置定数(K
値)を測定する場合が挙げられる。
2 H202 + Phenol + 4-aminoantipyrine peroxidase □ Quinone dye + 4H20 As another specific example, when analyzing the enzymatic activity of GPT based on the following reaction, NADH based on reaction formula (B)
The device constant (K
An example of this is when measuring a value).

GPT L−アラニン+α−ケトグルタル酸−〉グルタミン酸+
ピルビン酸               (A)DH ピルビン酸十NADH−〉乳酸十NA D      
 (B)この場合は分析試薬の劣化の、測定値に対する
影響が大きいのでこの自動分析装置によって測定すれば
特に有利である。
GPT L-alanine + α-ketoglutaric acid -> Glutamic acid +
Pyruvate (A) DH Pyruvate 10NADH->Lactic acid 10NA D
(B) In this case, since the deterioration of the analytical reagent has a large effect on the measured value, it is particularly advantageous to measure using this automatic analyzer.

上記実施例は吸光度測定によるものであるが、この外の
光学特性として反応液の螢光強度や光散乱強度を利用す
る場合は第1図における点線で囲まれた光学特性測定ブ
ロック翰が螢光強度や光散乱強度測定用の系に変換する
とともにこれに対応して他の系も適宜修正される。
The above example is based on absorbance measurement, but when using the fluorescence intensity or light scattering intensity of the reaction solution as an optical property other than this, the optical property measurement block ring surrounded by the dotted line in Fig. 1 uses fluorescence. The system is converted into a system for measuring intensity and light scattering intensity, and other systems are appropriately modified accordingly.

(へ)発明の効果 この発明の自動分析装置によれば、分析試薬の劣化を自
動的にチェックしかつ反応が正常に完了したことを確認
しながら多数の試料を連続的に分析することができる。
(F) Effects of the Invention According to the automatic analyzer of the present invention, it is possible to continuously analyze a large number of samples while automatically checking for deterioration of analytical reagents and confirming that the reaction has completed normally. .

従って試薬の劣化による可視性不良の測定値と力)真の
値からずれた測定値を与えるような分析を避けることが
できる。
Therefore, it is possible to avoid analyzes that give measured values that deviate from the true values (measured values with poor visibility and force) due to deterioration of reagents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の自動分析装置の一実施例の構成説明
図、第2図は第1図の装置によってエンドポイント法で
測定した場合の吸光度と時間との関係を示すグラフであ
る。 (1)・・−純水もしくは生理的食塩水、(2i (6
1(9i・・・ピペッタ、  (5)・・・分析試薬、
(3)・・・反応兼測定容器ライン、 +41 +71・・・反応兼測定容器、(8j−試料架
設テーブル、tlol・・光源ランプ、 (Ill (141G7)・・・オプティカルファイバ
ー、[121(151(181・・フィルター、 (1
3i u61 (191・検出器、(20)・・・マル
チプレクサ、 211・・・吸光度変換器、@・・・吸
光度メモリ一部、□□□・・・吸光度判定部、(2)・
・・濃度変換器、   □□□)・・・表示部、および
の)・・・制御部。
FIG. 1 is an explanatory diagram of the configuration of one embodiment of the automatic analyzer of the present invention, and FIG. 2 is a graph showing the relationship between absorbance and time when measured by the end point method using the apparatus shown in FIG. (1)...-Pure water or physiological saline, (2i (6
1 (9i... pipettor, (5)... analytical reagent,
(3)...Reaction and measurement vessel line, +41 +71...Reaction and measurement vessel, (8j-sample installation table, tlol...light source lamp, (Ill (141G7)...optical fiber, [121 (151) (181...filter, (1
3i u61 (191・Detector, (20)...Multiplexer, 211...Absorbance converter, @...Absorbance memory part, □□□...Absorbance determination section, (2)・
...concentration converter, □□□)...display section, and)...control section.

Claims (1)

【特許請求の範囲】 1、被分析成分を含有する多数の試料液に所定の分析試
薬を添加し所定の条件下で反応させて生成した反応液の
光学的特性から被分析成分の濃度を連続的もしくは間欠
的に定量する自動分析装置であって、 上記反応液8よび試薬ブランク液の光学的特性を、分析
試薬を添加してから任意にきめた時間(t工、t2、・
・・・・、t n−1,t□り経過後に複数回測定する
手段と、t工、t2、・・・・・、tn−1、tnにお
ける該反応液の測定値At工、A t 2、・・・・・
、Atn−□、Atn2よび試薬ブランク液の測定値A
R工、AR2、・・・・・、AR,n−0、ARnにつ
いて、式:%式% で表される数値を算出し、各数値か所定のしきい値以上
であるか否かを判定して各数値がいずれもしきい値以上
であれはAt  値から被分析酸分の濃度に換算して表
示し、−芳容算出値のいずれかがしきい値以下であれば
分析異常であることを表示もしくは通報する手段を具備
し、分析試薬が所定の力価を有し反応が正常に完了した
ことを一試料の分析毎に自動的に確認しなから分析でき
るよう構成したことを特徴とする自動分析装置。
[Claims] 1. Continuous determination of the concentration of the analyte component from the optical properties of the reaction solution produced by adding a predetermined analytical reagent to a large number of sample solutions containing the analyte component and reacting them under predetermined conditions. An automatic analyzer that quantitatively or intermittently determines the optical properties of the reaction solution 8 and the reagent blank solution at an arbitrarily determined time (t, t2, . . . after adding the analytical reagent).
. . . , t n-1, t 2,...
, Atn-□, Atn2 and reagent blank solution measurement values A
Calculate the numerical values expressed by the formula: % formula % for R, AR2, ..., AR, n-0, ARn, and determine whether each numerical value is greater than a predetermined threshold. If each value is above the threshold value, the At value is converted to the concentration of the acid to be analyzed and displayed, and if any of the calculated aromatic values is below the threshold value, the analysis is abnormal. The method is characterized in that it is equipped with a means for displaying or notifying the sample, and is configured so that each sample can be analyzed without automatically confirming that the analytical reagent has a predetermined titer and that the reaction has completed normally. automatic analyzer.
JP5751683A 1983-03-31 1983-03-31 Automatic analytical instrument Granted JPS59182347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5751683A JPS59182347A (en) 1983-03-31 1983-03-31 Automatic analytical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5751683A JPS59182347A (en) 1983-03-31 1983-03-31 Automatic analytical instrument

Publications (2)

Publication Number Publication Date
JPS59182347A true JPS59182347A (en) 1984-10-17
JPH0257863B2 JPH0257863B2 (en) 1990-12-06

Family

ID=13057898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5751683A Granted JPS59182347A (en) 1983-03-31 1983-03-31 Automatic analytical instrument

Country Status (1)

Country Link
JP (1) JPS59182347A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118258A (en) * 1985-11-19 1987-05-29 Olympus Optical Co Ltd Automatic analyzer
JPS6333662A (en) * 1986-07-28 1988-02-13 Shimadzu Corp automatic analyzer
JPS63158459A (en) * 1986-09-05 1988-07-01 ライフトレイク Method of adjusting precision of sensitive assay
JPH0259671A (en) * 1988-08-26 1990-02-28 Hitachi Ltd immunoassay method
JPH0854401A (en) * 1986-03-26 1996-02-27 Smithkline Beckman Corp Optical detector
US6858401B2 (en) 1986-08-13 2005-02-22 Lifescan, Inc. Minimum procedure system for the determination of analytes
US6979571B2 (en) 1999-11-24 2005-12-27 Home Diagnostics, Inc. Method of using a protective test strip platform for optical meter apparatus
US7390665B2 (en) 2001-02-28 2008-06-24 Gilmour Steven B Distinguishing test types through spectral analysis
JP2009174997A (en) * 2008-01-24 2009-08-06 Hitachi High-Technologies Corp Automatic analyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686355A (en) * 1979-12-14 1981-07-14 Jeol Ltd Automatic chemical analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686355A (en) * 1979-12-14 1981-07-14 Jeol Ltd Automatic chemical analysis

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118258A (en) * 1985-11-19 1987-05-29 Olympus Optical Co Ltd Automatic analyzer
JPH0854401A (en) * 1986-03-26 1996-02-27 Smithkline Beckman Corp Optical detector
JPS6333662A (en) * 1986-07-28 1988-02-13 Shimadzu Corp automatic analyzer
US6858401B2 (en) 1986-08-13 2005-02-22 Lifescan, Inc. Minimum procedure system for the determination of analytes
US6881550B2 (en) 1986-08-13 2005-04-19 Roger Phillips Method for the determination of glucose employing an apparatus emplaced matrix
US6887426B2 (en) 1986-08-13 2005-05-03 Roger Phillips Reagents test strip adapted for receiving an unmeasured sample while in use in an apparatus
JPS63158459A (en) * 1986-09-05 1988-07-01 ライフトレイク Method of adjusting precision of sensitive assay
JPH0259671A (en) * 1988-08-26 1990-02-28 Hitachi Ltd immunoassay method
US6979571B2 (en) 1999-11-24 2005-12-27 Home Diagnostics, Inc. Method of using a protective test strip platform for optical meter apparatus
US7390665B2 (en) 2001-02-28 2008-06-24 Gilmour Steven B Distinguishing test types through spectral analysis
JP2009174997A (en) * 2008-01-24 2009-08-06 Hitachi High-Technologies Corp Automatic analyzer

Also Published As

Publication number Publication date
JPH0257863B2 (en) 1990-12-06

Similar Documents

Publication Publication Date Title
Depasse et al. Thrombin generation assays are versatile tools in blood coagulation analysis: A review of technical features, and applications from research to laboratory routine
KR101026073B1 (en) How to shorten the test time for response profile of endpoint type
US5068181A (en) Method of monitoring reagent delivery in a scanning spectrophotometer
EP2096442B1 (en) Automatic analyzer
CN102859366B (en) Automatic analysing apparatus and automatic analysis method
JP2010522336A (en) Whole blood analysis
EP1894017A2 (en) Method for ascertaining interferents in small liquid samples in an automated clinical analyzer
US11287367B2 (en) System and method for optical whole blood hemolysis detection
JPS59182347A (en) Automatic analytical instrument
EP1092978B1 (en) Method for determining the concentration of heparin in a sample of fluid
JPS6350743A (en) Analysis of hemolyzed blood specimen
US4429230A (en) Fluorescence polarization analyzer
US6925391B1 (en) Methods and apparatus for detecting artifactual output from a chemical analyzer
Lott et al. Evaluation of an automated urine chemistry reagent‐strip analyzer
US20040219680A1 (en) Method and apparatus for determining anticoagulant therapy factors
US5025389A (en) Method of analyzing reaction rate in chemical analysis
JPS5863854A (en) Automatic chemical analyzing apparatus
JP4825442B2 (en) Accuracy control method of automatic analyzer for clinical examination, and automatic analyzer
Beckala et al. A Comparison of Five Manually Operated: Coagulation Instruments
Talon et al. Multicenter analytical performance evaluation of the ST Genesia thrombin generation system
Ambus et al. Evaluation of the Beckman Synchron CX4 clinical chemistry analyzer in a hospital laboratory
Ng Selecting Instrumentation for Physician’s Office Testing
Shinton et al. Tentative protocol for the evaluation of coagulometers, based on one‐stage prothrombin time
JPS63271140A (en) automatic rate analysis method
Puukka et al. Evaluation of the new “C” parallel analyser