JPS5924593A - Diffusion bonding method - Google Patents
Diffusion bonding methodInfo
- Publication number
- JPS5924593A JPS5924593A JP13351082A JP13351082A JPS5924593A JP S5924593 A JPS5924593 A JP S5924593A JP 13351082 A JP13351082 A JP 13351082A JP 13351082 A JP13351082 A JP 13351082A JP S5924593 A JPS5924593 A JP S5924593A
- Authority
- JP
- Japan
- Prior art keywords
- bonding
- cemented carbide
- minutes
- alloy
- iron base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000009792 diffusion process Methods 0.000 title claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 62
- 239000000463 material Substances 0.000 claims description 34
- 229910052742 iron Inorganic materials 0.000 claims description 32
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 21
- 229910001096 P alloy Inorganic materials 0.000 claims description 20
- 238000005304 joining Methods 0.000 claims description 12
- 239000003960 organic solvent Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000003754 machining Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 102220259765 rs766600687 Human genes 0.000 description 8
- 238000005219 brazing Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 241000779819 Syncarpia glomulifera Species 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000009760 electrical discharge machining Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010665 pine oil Substances 0.000 description 2
- 239000001739 pinus spp. Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229940036248 turpentine Drugs 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 239000001293 FEMA 3089 Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102220059023 rs786201869 Human genes 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- JLQFVGYYVXALAG-CFEVTAHFSA-N yasmin 28 Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.C([C@]12[C@H]3C[C@H]3[C@H]3[C@H]4[C@@H]([C@]5(CCC(=O)C=C5[C@@H]5C[C@@H]54)C)CC[C@@]31C)CC(=O)O2 JLQFVGYYVXALAG-CFEVTAHFSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/16—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Laminated Bodies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明にN4−P合金全利用した超硬焼結合金と鉄系基
材との拡散接合方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for diffusion bonding a cemented carbide sintered alloy that fully utilizes an N4-P alloy and an iron base material.
超硬焼結合金で作られた耐摩耗部品、特に打抜き用金型
に於いてはパンチ、ダイは一般に超硬合金一体物が使用
されている序が加工が困蕪な為に穴明けやネジ加工は放
電加工によっている。しかしこの方法で+X加工工数が
かかりすぎ能率が悪い。Wear-resistant parts made of cemented carbide sintered alloys, especially punches and dies for punching dies, are generally made of cemented carbide in one piece, which is difficult to process, so drilling and screwing are difficult. Machining is done by electrical discharge machining. However, this method requires +X machining man-hours and is inefficient.
又、パンチ、ダイに必要個所のみ超硬合金であればよく
、タングステンの省資源の観点からも超硬焼結合金一体
物に問題がある。Further, only the necessary parts of the punch and die need to be made of cemented carbide, and there is a problem in using a cemented carbide sintered alloy integrally from the viewpoint of saving tungsten resources.
一方、超硬合金と鉄系基材との接合方法としては、一般
にはトーチ、高周波加熱等によるロー付方法があり、A
Jロー、Cuローが使用されているが、特に広面積の接
合に於いてはロー付層に1気泡カ生シ、均一にロー付す
る事ができない。又、ロー付層の剪断強度が10〜20
kq / ma である為に接合後残留応力により超
硬焼結合金が離脱するという欠点全方する。更にAfロ
ー、もしくはCuロー等によりロー例して得られたもの
?ワイヤーカット法により加工する場合、これらロー中
に含まれるフラックス成分によりワイヤー切れ音生ずる
という欠点も有する。On the other hand, as a method for joining cemented carbide and iron base materials, there is generally a brazing method using a torch, high frequency heating, etc.
J-row and Cu-row are used, but especially when joining a wide area, it is not possible to uniformly braze the brazed layer with one bubble. In addition, the shear strength of the brazed layer is 10 to 20
kq/ma, there is a drawback that the cemented carbide sintered alloy separates due to residual stress after joining. Furthermore, what was obtained by performing a low example using Af low or Cu low? When processing by the wire cutting method, there is also a drawback that wire cutting noise is produced due to the flux components contained in these waxes.
本発明は上述の諸欠点全解消する接合方法全提供せんと
するものであり、その要旨は、WCTh主成分とする超
硬焼結合金と鉄系基材と全接合するに当り、P’t9〜
16%含有するN i −P合金粉末全有機溶剤と混合
し、ペースト状としたもの* [1,02〜0.07
fllcdの割合で上記超硬焼結合金もしくに鉄系基材
の接合面に塗布した後、上記両材料全型ね荷重をかけな
がら非酸化性雰囲気において1000℃〜1150℃、
60〜90分間加熱すること全特徴とする拡散接合方法
である。The present invention aims to provide a complete joining method that eliminates all of the above-mentioned drawbacks. ~
Ni-P alloy powder containing 16% mixed with a total organic solvent and made into a paste* [1.02 to 0.07
After coating the joint surface of the cemented carbide sintered alloy or iron-based base material at a ratio of fllcd, the above-mentioned both materials were heated at 1000°C to 1150°C in a non-oxidizing atmosphere while applying a mechanical load.
This diffusion bonding method is characterized by heating for 60 to 90 minutes.
ここで、超硬焼結合金というのけ、wc全生成分とし結
合材としてのGO1Ni等全多量に含む靭性のある超硬
合金であり、かつ耐摩耗性の優れるもの全指称し、又、
鉄系基材は普通鋼、工具鋼やステンレス鋼等の特殊用途
鋼、鋳鉄、鋳鋼のあらゆるもの全使用し、用途に応じ各
種使い分けるものとする。Ni −P合金粉末ζゴ融点
の低い範囲のP:9〜13%の組成のものでその粒度が
400メツシユ以下のもの音用いる。有機溶剤としては
メチルセ以下に本願方法?開発するに際して行なった一
連の実験及びその結果について述べる。Here, sintered cemented carbide refers to all cemented carbide alloys that are tough and contain a large amount of WC, GO1Ni, etc. as a binder, and have excellent wear resistance.
All types of ferrous base materials shall be used, including ordinary steel, special purpose steel such as tool steel and stainless steel, cast iron, and cast steel, and various types shall be used depending on the purpose. Ni--P alloy powder with a composition of 9 to 13% P in a low melting point range and a particle size of 400 mesh or less is used. As an organic solvent, is the method used in this application lower than methylceta? This section describes a series of experiments conducted during development and their results.
超硬焼結合金として’N G −18Go’ −2,5
TaC(D組成よりなる25 X 25 X 5.3
t (am〕の形状のもの、鉄系材料として25 X
25 X 25 t (am)の形状C7)SK−5(
G: 1.0 、 Si (0,35、Mn <
0.50、P < 0.03 、S<0.03%J 、
N1−P合金粉末として、重量比P −12,0%全含
有する400メツシユ以下の粉末を各々選び、接合温度
1接合時間、接合雰囲気、接合材料、Ni −2合金粉
末量等の接合状態に及ぼす影@全調査した。以下に各々
の接合条件の接合状態に及ぼす影響につりで述べる。'NG -18Go' -2,5 as a cemented carbide sintered alloy
TaC (consisting of D composition 25 x 25 x 5.3
t (am) shape, 25 X as iron-based material
25 x 25 t (am) shape C7) SK-5 (
G: 1.0, Si (0,35, Mn<
0.50, P < 0.03, S < 0.03%J,
As the N1-P alloy powder, powders of 400 mesh or less containing a total weight ratio of P -12.0% were selected, and the bonding conditions were adjusted by adjusting the bonding temperature, bonding time, bonding atmosphere, bonding material, amount of Ni -2 alloy powder, etc. Impact@Complete investigation. The effects of each bonding condition on the bonding condition will be discussed below.
第1図に」二記一連の実験全行なうに際してのWC−1
8Go −2,5TaC超硬合金(以下051:ITと
記すり 、5K−3、N4−P合金粉末の接合準備図分
水す。図中(11G!5K−5、(21cs NIP
合金粉末、(3) GI G 50T?各々示す。又、
第1表【こ基本となる接合条件及び調査した接合条件分
水すが、1つの接合条件について調査する場合、他の条
件に基本となる接合条件とした。Figure 1 shows WC-1 when carrying out the entire series of experiments.
8Go-2,5TaC cemented carbide (hereinafter referred to as 051:IT), 5K-3, N4-P alloy powder. In the figure (11G! 5K-5, (21cs NIP)
Alloy powder, (3) GI G 50T? Each is shown. or,
Table 1 [Basic bonding conditions and investigated bonding conditions]However, when investigating one bonding condition, the basic bonding conditions were set to other conditions.
第 1 表
第1表に示す調査項目のうち接合温度を900℃、95
0°C,1000℃、1050℃、1100°Q、 1
150℃、12’OO℃とした場合の接合強度?第2表
に示す。接合強度に第ζ図Gこ示す如く、接合後、荷重
W全かけて測定し、C30T、5K−3の間で離−脱し
た時の荷重全量す。なお、以下の接合強度の値は5個の
平均値である。Table 1 Among the investigation items shown in Table 1, the bonding temperature was 900°C and 95°C.
0°C, 1000°C, 1050°C, 1100°Q, 1
What is the bonding strength at 150℃ and 12'OO℃? Shown in Table 2. As shown in Figure ζG, the joint strength is measured by applying the full load W after joining, and the total load when separated between C30T and 5K-3. Note that the values of bonding strength below are the average values of five values.
第 2 表
接合温度950℃以下では、接合強度は弱(,900℃
以下でに全く接合しない。また接合温度が1200℃以
上Gこなると、N1−P合金が5K−3を侵食し良好な
接合状態が得られない。これGこより、接合温度は、1
000℃〜1150℃ が最も良い事が分った。Table 2 When the bonding temperature is below 950℃, the bonding strength is weak (,900℃
The following will not be joined at all. Furthermore, if the bonding temperature exceeds 1200° C., the N1-P alloy will corrode 5K-3, making it impossible to obtain a good bonding condition. From this G, the junction temperature is 1
It was found that the temperature between 000°C and 1150°C is best.
第6表に接合時の保持時間を10分間、30分間・60
分間、90分間、120分間とした場合の接合温度1接
す。これ↓り保持時間′¥:3D〜90分間とした場合
に良好な接合状態分水すことが分る。保持時間が30分
間より短かい場合Gl接合せず、90分間より長い場合
に、接合後、残留(心力Gこより、Cr50Tは離脱し
た。Table 6 shows the holding times during bonding for 10 minutes, 30 minutes, and 60 minutes.
The bonding temperature is 1 contact for 1 minute, 90 minutes, and 120 minutes. It can be seen that when the holding time is set to 3D to 90 minutes, a good bonding state can be obtained. If the holding time was shorter than 30 minutes, Gl bonding was not performed, and if the holding time was longer than 90 minutes, Cr50T remained after bonding (due to the mental force G, Cr50T was released).
第 5 表
第4表に接合雰囲気全真空中1O−2torr 、10
’torr・水素中、アルゴン中とした場合の接合強
度分水すが、これらの雰囲気においては、全て25ky
、/−以上の接合強度が得られた。Table 5 Table 4 shows the bonding atmosphere in full vacuum, 1O-2torr, 10
The bonding strength in 'torr, hydrogen, and argon is divided, but in these atmospheres, the bonding strength is 25ky.
A bonding strength of ,/- or more was obtained.
第 4 表
第5表Gこ接合面Oこ塗布するN1−P合金粉末、i’
を各々001.0.02.003.0.07.0.1
、+7 / CJI+とした場合の接合強度分水す。N
1−P合金粉末殴が0.011 /c+d 。Table 4 Table 5 N1-P alloy powder to be applied to joint surface O, i'
001.0.02.003.0.07.0.1 respectively
, +7/CJI+. N
1-P alloy powder punch is 0.011/c+d.
および、 0.117cイでに全く接合せず、0.02
〜007F/ /c+4の範囲において、良好な接合強
度が得られた。And, 0.117c is not joined at all, 0.02
Good bonding strength was obtained in the range of ~007F//c+4.
また、G5oTSSK−1の接合前の接合面の表面荒さ
は、Rmax : 2〜3μmfこむいて最ち良好な接
合状態が得られた。Moreover, the surface roughness of the bonding surface of G5oTSSK-1 before bonding was Rmax: 2 to 3 μmf, and the best bonding condition was obtained.
以上述べてきた如< 、G5oTと5K−3との接合に
ついて一連の実験全行なった結果、最良の接合条件は第
6表に示すとおりであることが分った。As mentioned above, as a result of conducting a series of experiments on bonding G5oT and 5K-3, it was found that the best bonding conditions are as shown in Table 6.
第 6 表
第6表に示す接合条件にて、超硬合金として、W C−
14Go −2,5TaC、W C−22Co、鉄系基
材とシテ5KD−11,5US304ステンレス鋼、F
25 G鋳鉄全還び、各々の組合わせで接合全行なっ
た結果、全て、良好な接合状態が得られた。Table 6 Under the joining conditions shown in Table 6, W C-
14Go-2,5TaC, W C-22Co, iron base material and 5KD-11,5US304 stainless steel, F
25G cast iron was fully returned, and as a result of all the joints performed in each combination, a good joint state was obtained in all cases.
また、有機溶剤として、メチルセルローズ、テレピン油
、パイン油のいずれを用いた場合Gこおいても第6表に
示す条件にて、同様に良好な接合状態が得られた。Furthermore, similarly good bonding conditions were obtained under the conditions shown in Table 6 when using any of methylcellulose, turpentine oil, and pine oil as the organic solvent.
次に第6表に示す条f1にて接合した(G50T)−(
SK−6) の接合部のようす全E、 P、 M、 A
、 &こより調査したが、接合部に、ピンホールは見ら
れず、また、W、 Fe 、 Ni、P1各々が相互に
良く拡散していることが分った。これらの事実から高い
接合強度(25kg/ IIIJ以上) が得られたも
のと考えられる。Next, (G50T) - (
SK-6) All joints E, P, M, A
, & was investigated, and it was found that no pinholes were observed in the joint, and that W, Fe, Ni, and P1 were well diffused into each other. It is thought that these facts led to the high joint strength (25 kg/IIIJ or more).
以下に本願発明の実施例?示す。Below are examples of the claimed invention? show.
〈実施例1〉
50 X 50 X 5.5 t (mmJ )超硬合
金GsoT種と50×50 X 50 t (mm)の
鉄系基Aオ5K−5種と全、温度1100℃保持時間6
0分、真空中(1D ’ torr) 、N1−P合金
塗布量0.031 / cnlの接合条件にて接合した
後、ワイヤーカット放電加工法Qこよりφ10闘の打抜
パンチおよび打抜ダイ全製作し10耶厚みの冷間圧延鋼
板(SPC−0種)全クリアランス7%にて打J友加工
を行なった。打抜枚@3万枚においても、接合部に異常
は認められず、また超硬合金G50Tcこも欠は等の異
常は認められなかった。<Example 1> 50 x 50 x 5.5 t (mmJ) cemented carbide GsoT type, 50 x 50 x 50 t (mm) iron-based Ao 5K-5 type, temperature 1100°C holding time 6
After bonding under the bonding conditions of 0 minutes, vacuum (1D' torr), and N1-P alloy coating amount of 0.031/cnl, wire-cut electric discharge machining method (Q) was used to complete the fabrication of φ10 punches and punching dies. A cold-rolled steel plate (SPC-0 type) with a thickness of 10 mm was subjected to stamping with a total clearance of 7%. No abnormalities were observed in the joints of the punched sheets @ 30,000 sheets, and no abnormalities such as cracks in the cemented carbide G50Tc were observed.
以上述べてきたように、本願方法によれば、広面積の超
硬合金と鉄系基材の接合も可能であり、接合部は、Ws
Fe、N1、Pが相互Gこよく拡散しまた接合強度、2
5に97mA以上が得られる。得られた接合品は、ワイ
ヤーカット放電1111工法によってもワイヤー切れは
発生せず、鉄系基材への穴明けやネジ加工も容易に出来
る。これらの理由により例えば、打抜パンチ1ダイ等の
ように耐摩耗性の必要個所のみ超硬とし、他の部分は加
工しやすい鉄系材料とする部品の製造方法として有効な
方法である。As described above, according to the method of the present application, it is possible to join a wide area of cemented carbide and iron base material, and the joint part is
Fe, N1, and P diffuse well into each other, and the bonding strength is 2.
5, more than 97mA can be obtained. The obtained bonded product does not cause wire breakage even when using the wire cut discharge 1111 method, and can be easily drilled into iron base materials and screwed. For these reasons, this is an effective method for manufacturing parts such as the punch 1 die, in which only the parts that require wear resistance are made of carbide, and the other parts are made of iron-based material that is easy to process.
【図面の簡単な説明】
第1図に拡散接合準備方法の説明図0第2図C1接合強
度測定方法の説明図○
図 中 1 鉄系基材
2 ・ NiP@金粉末
ろ ・ 超硬焼結合金
W 荷 重
特許出願人
日本タングステン株式会社
第 1 図
↑
手続補正書
昭和58年1月 7FJ
特YI庁長官若 杉 和犬 殿
1事1′1.の表示
昭和57年 待 註 円 第133510号2、発明
の名L1、拡散接合方決
:3.1ilijlをするバ
事(′1.とのl/l係 待 許 出願人
住所
氏名 日木タングステン株式会社
4、代 理 人
G1+li i[’、の対象
c3) 外5八)りL称とrkr乃ダXし倶)鑓X及O
ン−1り燦ルVス」−又ス山よ−55−明 細
書
1、発明の名称 耐摩耗用部キイ及びその?Il造方法
2、特許請求の範囲
1、鉄系基材上に、Pを9〜13重景%含有するN1−
p合金層を介して超硬合金層が存在し、しかも上記N1
−P合金は鉄系基キイ及び超硬合金層のいずれとも拡散
結合状態をなしていることを特徴とする耐摩耗用部材。
2、 WCを主成分とする超硬焼結合金と鉄系基材とを
接合するに当り、■)を9〜13重景%含有するN1−
2合金粉末を有機溶剤と混合し、ペースト状としたもの
を0.02〜0.07g / crKの割合で上記超硬
焼結合金もしくは鉄系基材の接合部に塗布した後、上記
両材料を重ね、荷重をかけながら非酸化性雰囲気におい
て1000℃〜1150℃、30′−90分回加熱する
ことを特徴とする耐摩耗用部材の製造方法。
3、発明の詳細な説明
本発明は打抜パンチやグイ等の様な耐摩耗用部キイ及び
その製造方法に関するものである。
これらのfiJ摩耗摩耗材部材般に超硬合金一体物が用
いられているが、その加工が困難な為に穴明けやネジ加
工は7I3[型加工によってなされており加工工数が多
く能率が悪い。ところでこの様な耐摩耗用部材の多くは
その耐摩耗性が必要な部所のみが超硬合金製であればよ
く、タングステンの省資源の観点からも超硬合金の一体
物は望ましくないのである。
そして超硬合金と鉄系基材との接合方法としては、一般
にはトーチ、高周波加熱等によるロー付方法があり、へ
gロー、Cuローが使用されているが、特に広面積の接
合に於いてはロー付層に気泡が牛し、均一にロー付する
事ができない。又、ロー付層の剪断強度が10〜20k
g / w’である為に接合後残留応力により超硬焼結
合金が離脱ずろという欠点を有する。更にへ90−、も
しくはCUL−1−等によりロー付して得られたものを
ワイヤーカット法により加工する場合、これらロー中に
含まれろフラックス成分によりワイヤー切れを生ずると
いう欠点も有する。
本発明は上述の欠点を解消する耐摩耗用部材及びその製
造方法を提供せんとずろものであり、その要旨(よ鉄系
基材上に、Pを9〜13重量%含有ずろN1−P合金層
を介して超硬合金層が存在し、しかも上記N1−P合金
は鉄系基材及び超硬合金層のいずれとも拡敷結合状態を
なしていることを特徴とする耐摩耗用部材及びWCを主
成分とする超硬焼結合金と鉄系基材とを接合するに当り
、Pを9〜13重景%含有するNi −P合金粉末を有
機溶剤と混合し、ペースト状としtこものを0.02−
0.07g / cwtの割合で上i!if硬焼結合金
もしくは鉄系基材の接合面に塗布した後、上記画材木!
(を重ね、荷重をかけながら非酸化性雰囲気において1
000℃〜1150℃、30〜90分間加熱することを
特徴どずろ耐摩耗用部材の製造方法である。
ここで超硬焼結合金というの(よ、WCを主成分とし結
合材としての60% N1等を多量に含む靭性のあろ超
硬合金であり、かつ耐摩耗性の圓れるものを指称し、又
、鉄系基材は酋通参呵、工具鋼やステンレス綱等の特殊
用途用、8々鉄、鈎鉋のあらゆろものを使用し、用途に
応じ各種間い分けろものとする。N1−P合金粉末は融
点の低い範囲のP: 9〜13重景%の組成のものでそ
の粒度が400メツシユ以下のものを用いる。有機溶剤
としてはメチルセルローズ、テレピンh11、パイン油
等を用いる。又加熱時に加える荷重は30F、/ ct
とする。
以下に本願発明を1111発するに際して行った一連の
実験及びその結果ζこついて述べる。
超硬焼結合金としてWC−18Co 2.5TaCの
組成よりなる25X 25X 5.3t (mm+の形
状のもの、鉄系材料としT25X25X25t(nun
) (7)形状0) 5K−3(C: 10゜Si<
0.35、Mn<0.50、P<0.03、S<0.0
3%)、N1−P合金粉末として、Pを12.0重景%
含有する400メツシユ以下の粉末を各々選び、接合温
度、接合時間、接合雰囲気、接合材料、N1−P合金粉
末旦等の接合状態に及ぼず影響を調査した。以下に各々
の接合条件の接合状態に及ぼず[Jについて述べる。
第1図に上記一連の実験を行なうに際してのwc−18
c′o −2,5TaC超硬合金(以下G50Tと記す
) 、5K−3、N1−P合金粉末の接合t$備図を示
す。図中(1)は5K−3、(2)はN1−P合金粉末
、 (3)はG50Tを各々示す。又、第1表に基本と
なる接合条件及び調査した接合条件を示すが、1つの接
合条件につい−て調査する場合、他の条件は基本となる
接合条件とした。
第1表
第1表に示す調査項目のうち接合温度を900℃、95
0℃、1000℃、1050℃、1100℃、1150
℃、1200℃とした場合のそれぞれの接合強度を第2
表に示す。接合強度は第2図に示“す如く、接rシ後、
荷重Wをかけて測定し、G50T、 5K−3の間で離
脱した時た時の荷重を示す。なお、以下の接合強度の値
は5個の平均値である。
接合高度950℃以下では、接合強度は弱く、900℃
以下では全く接合しない。また接合温度が1200℃以
上(こなると、N1−P合金が5K−3を侵食し良好な
接合状態がITJられない。これにより、接合温度は、
1000℃〜1150℃が最も良い事が分った。60分
間、90分間、120分間とした場合の接合強度を示す
。これより保持時間を30〜90分間とした場合に良好
な接合状態を示すことが分る。保持時間か30分間より
短い場合は接合せず、90分間より長い場合(よ、接合
後、残留応力によす、G50Tは離脱した。
第3表
水素中、アルゴン中とした場合の接合強度を示すが、l
liう(1)雰rffJ4AR:オイテLt、 全テ2
5kH/++mi’以上の接合強度が得られた。
第4表
第5表に接合面に塗布するN1−P合金粉末景を各々0
.01.0.02.0.03.0.07、o、1g/c
イとした場合の接合強度を示す。N1−P合金粉末及が
0.01g/ cJ、および、0.1g/cイでは全く
接合せず、0.02〜0.07g/cfの範囲において
、良好な接合強度が得られた。
第5表
また、G50T、 5K−3の接合前の接合面の表面荒
さは、Rmax: 2〜3μmにおいて最も良好な接
合状態が得られた。
以上述べてきた如(、G50Tと5K−3との接合につ
いて一連の実験を行った結果、最良の接合条件は第6表
に示すとおりであることが分った。
第6表
第6表に示す接合条件にて、超硬合金として、WC−1
4Co−2,5TaC,WC−22Co、鉄系基材とし
て5KD−11,5US304ステンレス鋼、F25C
#鉄を選び、各々の組1合わせて接合を行っt:結果、
全て、良りrな接合状態が得られた。
また、有機溶剤として、メヂルセルローズ、テレピン油
、パインilbのいずれを用いた場合においても第6表
に示す条件にて、同様に良好な接合状態が得られた。
次に第6表に示す条件にて接合したCG50T)−(S
K−3)の接合部のようすをE、 P、 M、^、によ
り調査したのが、第3図以下に示す写真である、即ち第
3図は接合部の組織写真、第4図〜第7図がそれぞれW
、 Fe、 Ni、P 、につぃての特性X線像である
がその各々が相互に良く拡散していることが判る。
これらの事実から高い接合強度(25kg / mm
以上)が得られたものと考えられろ。
以下に本願発明の実施例を示1゜
〈実施例1〉
50X 50X 5.5t(mm+)超硬合金G5or
affと50X50X50t (mm+の鉄系基材SK
−3gとを、l晶度1100℃保持時間60分、真空中
(10torr)、Ni P合金塗布量0.03g
/ Cイの接合条件にて接合した後、ワイヤーカッ)・
放電加工法によりφ10mmの打1友パンチおよび打抜
ダイを製作し1.0mm厚みの冷間圧延3n板(5pc
−c種)をクリアランス7%にて打抜ノ」1工を行った
。打抜枚数3万枚にJJいでも、接合部に異常は認めら
れず、まIこ超硬合金G50Tにも欠は等の異ガζは認
められなかった。
異常述べてきたJ:うに、本願方法によれば、広面積の
超硬合金と鉄系基材の接合も可能であり、接合部は、W
、 Fe、 Ni、 Pが相互にJ、<拡敷しまノコ接
合強度、25kg / mmL 以」二が掛られる。掛
られろ耐摩耗用部材は、ワイヤーカッj−放電加工法に
よってもワイヤー切れは発生ぜず、鉄系基材への穴明け
やネジ加工も容易に出来ろ。これらの理由により、例え
ば、打抜バンチ、グイ等のように耐摩耗性の必要個所の
み超硬とし、他の部分は加工しや1い鉄系材料とずろ耐
摩耗用部オJ及びその製造方法として有効なものである
。
4、図面の簡単な説明
第1図は本発明耐摩耗用部オイの製造方法の準備状態の
説明図、第2図:よ接合強度測定方法の説明図、第3図
〜第7図はそれぞれ本発明耐摩耗用前月の接合部のE、
P、 M、 八、を示−寸。
図中、(1)j鉄系基オイ
+2)iNi P合金粉末
(3)X超硬焼結合金
W:荷重
特許出願人 日木タングステン株式会社代 理 人
有 吉 !!i 聞手続補正書(自発
)
昭和58年1月28日
特許庁長官若 杉 和 夫 殿
1、事件の表示
昭和57年 特 許 願 第133510号2、発明
の名称拡散接合方法
3補正をする者
事件との関係 特 許 出願人住所
氏名 日木タングステン株式会社
(1)昭和58年1月7日付で提出の手続補正書に添付
の全文補正明細書中、第4貞第10行目のjc+to、
JをjC!1・0、」に補正する。[Brief explanation of the drawings] Figure 1 is an explanatory diagram of the diffusion bonding preparation method 0 Figure 2 C1 is an explanatory diagram of the bonding strength measurement method Gold W Load Patent Applicant Japan Tungsten Co., Ltd. Figure 1 ↑ Procedural Amendment January 1981 7FJ Special YI Agency Director Wakasugi Wanu 1 Matter 1'1. Indication of 1981 Note No. 133510 2, Name of the invention L1, Diffusion bonding method: 3.1ilijl process ('1. L/L section with Applicant address Name Nikki Tungsten Co., Ltd.) Company 4, agent G1 + li i [', subject c3) outside 58) ri L name and rkrnoda
N-1 Risanru Vs”-Matasuyama-yo-55-Details
Book 1, title of the invention Wear-resistant part key and its? Il manufacturing method 2, claim 1, N1- containing 9 to 13 weight percent of P on an iron base material
A cemented carbide layer exists through the p alloy layer, and the above N1
- A wear-resistant member characterized in that the P alloy is in a diffusion bonded state with both the iron-based key and the cemented carbide layer. 2. When joining a cemented carbide sintered alloy mainly composed of WC and an iron base material, N1- containing 9 to 13% of ■)
2 alloy powder is mixed with an organic solvent to form a paste and applied at a ratio of 0.02 to 0.07 g/crK to the joint of the cemented carbide sintered alloy or iron base material, and then the two materials are mixed. 1. A method for manufacturing a wear-resistant member, which comprises heating the layers at 1000 DEG C. to 1150 DEG C. for 30' to 90 minutes in a non-oxidizing atmosphere while applying a load. 3. Detailed Description of the Invention The present invention relates to a wear-resistant key such as a punch or a gouer, and a method for manufacturing the same. Although cemented carbide integral parts are generally used for these fiJ abrasion materials, machining is difficult, so drilling and screw machining are done by 7I3 mold machining, which requires a large number of machining steps and is inefficient. By the way, in many of these wear-resistant parts, only the parts that require wear resistance need to be made of cemented carbide, and from the perspective of saving tungsten resources, it is not desirable to use cemented carbide in one piece. . As a method for joining cemented carbide and iron base materials, there are generally brazing methods using a torch, high-frequency heating, etc., and heg brazing and Cu brazing are used, but this method is particularly useful for joining large areas. Otherwise, air bubbles will form in the brazing layer, making it impossible to braze uniformly. In addition, the shear strength of the brazed layer is 10 to 20k.
g/w', there is a drawback that the cemented carbide sintered alloy may come off due to residual stress after joining. Furthermore, when a material obtained by brazing with He90- or CUL-1- or the like is processed by a wire cutting method, there is a drawback that wire breakage occurs due to the flux component contained in the brazing. The present invention aims to provide a wear-resistant member and a method for manufacturing the same that eliminates the above-mentioned drawbacks. A wear-resistant member and WC characterized in that a cemented carbide layer exists between the layers, and the N1-P alloy is in an extended bonding state with both the iron base material and the cemented carbide layer. When joining a cemented carbide sintered alloy mainly composed of P to an iron base material, Ni-P alloy powder containing 9 to 13% P is mixed with an organic solvent and made into a paste. 0.02-
Top i at the rate of 0.07g/cwt! If after applying it to the joint surface of hard sintered alloy or iron base material, use the above art material wood!
(1) in a non-oxidizing atmosphere while applying a load.
This is a method for producing a muddy wear-resistant member, which is characterized by heating at 000° C. to 1150° C. for 30 to 90 minutes. Here, sintered cemented carbide refers to a tough cemented carbide whose main component is WC and a large amount of 60% N1 as a binder, and which has wear resistance. In addition, all kinds of iron base materials are used, such as special purpose materials such as special purpose steel, tool steel and stainless steel, 8 iron, and hook planes, and are classified into various types depending on the purpose.N1- The P alloy powder used has a low melting point P content of 9 to 13% by weight and a particle size of 400 mesh or less.As the organic solvent, methyl cellulose, turpentine H11, pine oil, etc. are used. The load applied during heating is 30F, / ct
shall be. Below, a series of experiments conducted to develop the present invention and their results will be described. 25X 25X 5.3t (mm+ shape) made of WC-18Co 2.5TaC as a cemented carbide sintered alloy, T25X25X25t (nun) as an iron-based material
) (7) Shape 0) 5K-3 (C: 10°Si<
0.35, Mn<0.50, P<0.03, S<0.0
3%), as N1-P alloy powder, P is 12.0%
Each powder containing 400 meshes or less was selected, and the influence of bonding temperature, bonding time, bonding atmosphere, bonding material, N1-P alloy powder temperature, etc. on the bonding condition was investigated. Below, we will discuss the bonding state under each bonding condition [J]. Figure 1 shows the WC-18 used in the above series of experiments.
The figure shows the bonding diagram of c'o-2,5TaC cemented carbide (hereinafter referred to as G50T), 5K-3, and N1-P alloy powder. In the figure, (1) shows 5K-3, (2) shows N1-P alloy powder, and (3) shows G50T. Further, Table 1 shows the basic bonding conditions and the investigated bonding conditions, but when investigating one bonding condition, the other conditions were set as the basic bonding conditions. Table 1 Among the investigation items shown in Table 1, the bonding temperature was 900℃, 95℃.
0℃, 1000℃, 1050℃, 1100℃, 1150
℃ and 1200℃, the respective bonding strengths are the second
Shown in the table. As shown in Figure 2, the bonding strength was determined after bonding.
It was measured by applying a load W and shows the load when it separated between G50T and 5K-3. Note that the values of bonding strength below are the average values of five values. At bonding heights below 950℃, bonding strength is weak;
The following will not be joined at all. Also, if the bonding temperature is 1200℃ or higher (if this happens, the N1-P alloy will corrode 5K-3 and a good bonding condition will not be achieved by ITJ. As a result, the bonding temperature will be
It was found that 1000°C to 1150°C is best. The bonding strength is shown for 60 minutes, 90 minutes, and 120 minutes. It can be seen from this that a good bonding state is exhibited when the holding time is 30 to 90 minutes. If the holding time was shorter than 30 minutes, no bonding was performed, and if it was longer than 90 minutes, G50T separated due to residual stress after bonding. Table 3: Bonding strength when held in hydrogen or argon. As shown, l
liu (1) Atmosphere ffJ4AR: Oite Lt, Zente 2
A bonding strength of 5 kHz/++mi' or more was obtained. Table 4 and Table 5 show the details of the N1-P alloy powder applied to the joint surface.
.. 01.0.02.0.03.0.07, o, 1g/c
This shows the bonding strength when A is set. When the N1-P alloy powder was 0.01 g/cJ and 0.1 g/c, no bonding occurred at all, and good bonding strength was obtained in the range of 0.02 to 0.07 g/cf. Table 5 Also, regarding the surface roughness of the bonded surfaces of G50T and 5K-3 before bonding, the best bonding condition was obtained at Rmax: 2 to 3 μm. As mentioned above, as a result of a series of experiments on bonding G50T and 5K-3, it was found that the best bonding conditions are as shown in Table 6. Under the bonding conditions shown below, WC-1 was bonded as a cemented carbide.
4Co-2, 5TaC, WC-22Co, 5KD-11, 5US304 stainless steel, F25C as iron base material
#Choose iron and join each pair 1: Result,
In all cases, a good bonding state was obtained. Furthermore, similarly good bonding conditions were obtained under the conditions shown in Table 6, regardless of whether cellulose, turpentine, or pine ilb was used as the organic solvent. Next, CG50T)-(S
The state of the joint of K-3) was investigated by E, P, M, ^, and the photographs shown in Figure 3 and below are the photographs shown in Figure 3 and below. 7 figures are each W
This is a characteristic X-ray image of , Fe, Ni, and P, and it can be seen that each of them is well diffused into each other. These facts result in high joint strength (25kg/mm
The above) can be considered to have been obtained. Examples of the present invention are shown below 1゜〈Example 1〉 50X 50X 5.5t (mm+) cemented carbide G5or
aff and 50X50X50t (mm+ iron base material SK
-3g and l crystallinity 1100℃ holding time 60 minutes in vacuum (10torr) NiP alloy coating amount 0.03g
/ After bonding under the bonding conditions of C, wire cut)・
A φ10mm punch and punching die were manufactured using the electrical discharge machining method, and cold rolled 3N plates (5pcs) with a thickness of 1.0mm were manufactured.
-C type) was punched with a clearance of 7%. Even though 30,000 sheets were punched, no abnormalities were observed in the joints, and no defects such as chips were observed in the cemented carbide G50T. According to the method of the present invention, it is possible to join a wide area of cemented carbide and iron base material, and the joint part is made of W.
, Fe, Ni, and P are mutually multiplied by J, < spread stripe joint strength, 25 kg/mmL or less. Hangable wear-resistant members do not cause wire breakage even when using the wire cutter electric discharge machining method, and can be easily drilled and screwed into iron base materials. For these reasons, for example, only the parts that require wear resistance, such as punching bunches and gouers, are made of carbide, and the other parts are made of iron-based materials that are easy to process. This is an effective method. 4. Brief explanation of the drawings Fig. 1 is an explanatory diagram of the preparation state of the method for manufacturing the wear-resistant part oil of the present invention, Fig. 2 is an explanatory diagram of the method for measuring the joint strength, and Figs. 3 to 7 are respectively E of the joint part of the front month for wear resistance of the present invention,
Dimensions indicate P, M, 8. In the figure, (1) J iron base metal + 2) iNi P alloy powder (3) ! i Written amendment (voluntary) January 28, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the case 1988 Patent Application No. 133510 2. Name of the invention Diffusion bonding method 3. Person making the amendment Relationship to the case Patent Applicant address Name Hiki Tungsten Co., Ltd. (1) jc+to in the 10th line of the 4th page in the full text of the amended specification attached to the procedural amendment filed on January 7, 1985.
J to jC! Correct it to 1.0.
Claims (1)
全接合するGこ当り、PTh重量比9〜13%含有する
N1−P合金粉末全有機溶剤と混合し・ペースト状とし
たものt’0.02〜0.079/cmの割合で上記超
硬焼結合金ちしくは鉄系基材の接合面(こ塗布した後、
上記両材料全型ね荷重?かけながら非酸化性雰凹気にお
いて1000℃〜1150℃、30−90分間加熱する
こと全特徴とする拡散接合方法。/, G-button that completely joins the cemented carbide sintered alloy mainly composed of WCv and the iron base material, N1-P alloy powder containing 9 to 13% by weight of PTh was mixed with an all-organic solvent and made into a paste. After applying the above-mentioned cemented carbide sintered alloy or the joining surface of the iron base material at a ratio of t'0.02 to 0.079/cm,
Load for all types of both materials above? 1. A diffusion bonding method characterized by heating in a non-oxidizing atmosphere at 1000 DEG C. to 1150 DEG C. for 30 to 90 minutes.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13351082A JPS5924593A (en) | 1982-07-29 | 1982-07-29 | Diffusion bonding method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13351082A JPS5924593A (en) | 1982-07-29 | 1982-07-29 | Diffusion bonding method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS5924593A true JPS5924593A (en) | 1984-02-08 |
Family
ID=15106460
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP13351082A Pending JPS5924593A (en) | 1982-07-29 | 1982-07-29 | Diffusion bonding method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5924593A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20030052618A (en) * | 2001-12-21 | 2003-06-27 | 대우종합기계 주식회사 | Method for joining cemented carbide to base metal |
| WO2005115677A1 (en) * | 2004-05-26 | 2005-12-08 | Miba Sinter Austria Gmbh | Method for welding a sintered shaped body |
| CN110170729A (en) * | 2019-06-14 | 2019-08-27 | 哈尔滨工业大学 | The method for preparing spinelle coating for ferrite stainless steel surface |
-
1982
- 1982-07-29 JP JP13351082A patent/JPS5924593A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20030052618A (en) * | 2001-12-21 | 2003-06-27 | 대우종합기계 주식회사 | Method for joining cemented carbide to base metal |
| WO2005115677A1 (en) * | 2004-05-26 | 2005-12-08 | Miba Sinter Austria Gmbh | Method for welding a sintered shaped body |
| CN110170729A (en) * | 2019-06-14 | 2019-08-27 | 哈尔滨工业大学 | The method for preparing spinelle coating for ferrite stainless steel surface |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0166144B1 (en) | Homogeneous low melting temperatures brazing filler metal for joining ferrous and non-ferrous alloys | |
| EP1586402A4 (en) | Tip of soldering iron, process for producing the same, and electrical soldering iron and electrical solder sucking iron including the iron tip | |
| TW201033375A (en) | A method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition | |
| US4431465A (en) | Brazing alloy paste | |
| JPS5924593A (en) | Diffusion bonding method | |
| US5579533A (en) | Method of making a soldering iron tip from a copper/iron alloy composite | |
| EP0397515B1 (en) | Wire drawing die | |
| JPS6218275B2 (en) | ||
| JPH07185789A (en) | Double layered sliding member and its production | |
| CN103231054A (en) | Sintering-brazing method of metal matrix diamond segments | |
| CN111687405B (en) | Diamond bit matrix powder and method for manufacturing diamond bit | |
| JP2000153325A5 (en) | ||
| JPS60210382A (en) | Manufacturing method of composite sintered tool | |
| JPS6218276B2 (en) | ||
| JPS6053098B2 (en) | Wear-resistant Cu alloy with high strength and toughness | |
| JPS63242635A (en) | Vibration-damping metallic plate | |
| US2958937A (en) | Hard soldering of difficultly solderable materials | |
| JPH0676753B2 (en) | Tool element | |
| JPS6150713B2 (en) | ||
| JPS6056041A (en) | Cermet | |
| US2303250A (en) | Metal alloy | |
| JPS6126574A (en) | Super hard sintered body with sandwich structure | |
| JPH0428714Y2 (en) | ||
| JPS614609A (en) | Materials for tools and their manufacturing method | |
| JPS6254004A (en) | Production of carbide tool |