[go: up one dir, main page]

JPS5926957A - Method for producing cured calcium silicate hydrate - Google Patents

Method for producing cured calcium silicate hydrate

Info

Publication number
JPS5926957A
JPS5926957A JP13363682A JP13363682A JPS5926957A JP S5926957 A JPS5926957 A JP S5926957A JP 13363682 A JP13363682 A JP 13363682A JP 13363682 A JP13363682 A JP 13363682A JP S5926957 A JPS5926957 A JP S5926957A
Authority
JP
Japan
Prior art keywords
lithium
raw material
calcium silicate
slurry
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13363682A
Other languages
Japanese (ja)
Inventor
雄一 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13363682A priority Critical patent/JPS5926957A/en
Publication of JPS5926957A publication Critical patent/JPS5926957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、珪酸カルシウム水和物硬化体を製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cured calcium silicate hydrate.

従来、珪酸質原料と石灰質原料の混合物を高温高圧下水
熱反応させ、トノクモライト、および(または)ジノト
ラ・イトを主要鉱物とする珪酸カルシウム水和物硬化体
が、多く製造されている。これらの珪酸カルシウム水和
物は、それ自体、プラスチックフィラー、吸着材、触媒
等に使用されるばかりでなく、珪酸カルシウム水和物を
主要成分とする硬化体は、強度、耐熱性、にずぐれてお
り次の様な製品が製造されている。たとえば(1)軽量
保温材、(2)耐火被ff1U、(31間仕切り材、(
4)内、外壁材、(5)A、 L C(オートクレーブ
処理転置気泡コンクリート)、(6)球入レンガ等であ
る。
Conventionally, many hardened calcium silicate hydrates containing tonokumolite and/or dinotraite as main minerals have been produced by subjecting a mixture of silicic raw materials and calcareous raw materials to a hydrothermal reaction under high temperature and pressure. These calcium silicate hydrates are not only used as plastic fillers, adsorbents, catalysts, etc., but also the cured products containing calcium silicate hydrates as the main component have excellent strength, heat resistance, and The following products are manufactured. For example, (1) lightweight heat insulating material, (2) fireproof covering ff1U, (31 partition material, (
4) Interior and exterior wall materials, (5) A, LC (autoclaved transposed aerated concrete), (6) ball-filled bricks, etc.

(1)の軽量保温材や(2)の1耐火被覆材(3)の間
仕切材は、珪酸質原料と石灰質原料とを主原料とし、こ
れに必要に応じて補強材として石綿、粘土等を加えたも
のに水を加えてスラリーとし、このスラリーを型枠に流
し込んで成型し、オートクレーブ中で水熱反応後、脱型
して乾燥する方法、スラリーを予め100℃程度に加熱
して、ゲル状物質をつ〈シ、このゲル状物質を型枠に流
し込んだ後、プレスして得た成形物をオートクレーブで
水熱反応する方法、あるいは、石灰質原料および珪酸質
原料のスラリーをオートクレーブ内で攪拌しながら水熱
反応して、まず自己硬化性を有する珪酸カルシウム水利
物の結晶含有スラリーを得て、七埼そのまま、または補
強材等を加えて成形乾燥する方法等によって得られる。
The lightweight heat insulating material (1) and the partition material (3), fireproof covering material (2), are mainly made of silicic acid raw materials and calcareous raw materials, and if necessary, asbestos, clay, etc. are added as reinforcing materials. Add water to the mixture to make a slurry, pour this slurry into a mold, mold it, perform a hydrothermal reaction in an autoclave, then remove the mold and dry it. After pouring this gel-like material into a mold, the resulting molded product is subjected to a hydrothermal reaction in an autoclave, or a slurry of calcareous raw materials and silicic raw materials is stirred in an autoclave. First, a slurry containing crystals of a self-hardening calcium silicate aquarium is obtained through a hydrothermal reaction, and the slurry is obtained either as it is or by adding a reinforcing material and forming and drying it.

(4)の内、外壁材は、(1)〜(3)の製品と同様の
方法の他に、押出成形や抄造成形が用いられる事もある
。(5〕のALCは、珪石等の珪酸質原料とセメント、
生石灰、水砕スラグ等の石灰質原料に1各種添加剤およ
び少計の発泡剤や起泡剤または界面活比剤等で製造した
気泡を加えて、型枠に注入し、放置する事によυ気泡を
含んだ半可塑物質を得、これを鋼線等で切断成形後、オ
ートクレーブ中で水熱反応して製造される。
Among (4), for the external wall material, in addition to the same methods as those for products (1) to (3), extrusion molding or paper forming may be used. (5) ALC consists of siliceous raw materials such as silica stone, cement,
By adding air bubbles made from various additives and a small amount of foaming agent, foaming agent, surfactant, etc. to calcareous raw materials such as quicklime and granulated slag, pouring into a mold and leaving it for a while. It is produced by obtaining a semi-plastic material containing bubbles, cutting it with steel wire, etc., and then subjecting it to a hydrothermal reaction in an autoclave.

(6)の球入レンガは、珪酸質原料と石灰質原料に水を
加えスラリーとし、これを加圧成型後、オートクレーブ
中で水熱反応して製造される。
The ball-filled brick (6) is produced by adding water to a silicate raw material and a calcareous raw material to form a slurry, molding the slurry under pressure, and then subjecting it to a hydrothermal reaction in an autoclave.

以上の様に、軽量保温材、耐火被覆材、間仕切シ材、内
、外壁材、ALC,球入レンガの製造方法は多少の工程
土の差異はあるものの、いずれも珪酸質原料および石灰
質原料を主原料としこれに水を加えてつくったスラリー
をオートクレーブ中で高温高圧飽和水蒸気圧下で水熱反
応する事により、トノ9モライト、ゾノトライト等の珪
酸カルシウム水和物系鉱物を生成させ、この珪酸カルシ
ウム水利物によって硬化体の強度や熱的安定性が得られ
るものと認められる。しかしながら、これらの珪酸カル
シウム水和物系鉱物を生成させるには、非常に長時藺の
反応が必要であり、製品によっても異なるが、通常、最
低10時間抜度の高温高圧水熱反応が必要とされている
As mentioned above, although there are some differences in the manufacturing method of lightweight insulation materials, fireproof covering materials, partition materials, interior and exterior wall materials, ALC, and ball-filled bricks, all methods use silicic and calcareous raw materials. A slurry made by adding water to the main raw material is subjected to a hydrothermal reaction under high temperature, high pressure, and saturated steam pressure in an autoclave to produce calcium silicate hydrate minerals such as tono9molite and xonotrite. It is recognized that the strength and thermal stability of the cured product can be obtained by using water supplies. However, producing these calcium silicate hydrate minerals requires a very long-term reaction, and although it varies depending on the product, it usually requires a high-temperature, high-pressure hydrothermal reaction for at least 10 hours. It is said that

そこで本発明者らは、前記技術の欠点を改良する為鋭意
研究を進め、本発明に到ったのである。
Therefore, the present inventors conducted intensive research to improve the drawbacks of the above-mentioned technology, and arrived at the present invention.

本発明によれば、珪酸質原料と石灰質原料にリチウム含
有物質を添加して水を加えて、水熱反応すれば、珪酸カ
ルシウム水和物のトバモライトやゾノトライトが添加し
ない場合と比較し、短時間で、また低温低圧条件下で生
成する。さらに、同じ条件下で反応を行えば、添加しな
いものと比較し、高強度の硬化体が得られる。
According to the present invention, if a lithium-containing substance is added to a silicate raw material and a calcareous raw material, water is added, and a hydrothermal reaction is performed, the time is reduced compared to the case where tobermorite or xonotlite, which are calcium silicate hydrates, is not added. It also forms under low temperature and low pressure conditions. Furthermore, if the reaction is carried out under the same conditions, a cured product with higher strength can be obtained than that without addition.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

本発明は、石灰質原料と珪酸質原料と水を高温高圧飽和
水蒸気下で水熱反応するに際し、リチウム含有物質を存
在させて反応することを特徴とする珪酸カルシウムの水
和物硬化体の製造方法である。
The present invention provides a method for producing a cured hydrate of calcium silicate, characterized in that the reaction is carried out in the presence of a lithium-containing substance when a calcareous raw material, a silicate raw material, and water are subjected to a hydrothermal reaction under high-temperature, high-pressure saturated steam. It is.

本発明で用いられるリチウム含有物質とは、水酸化リチ
ウム、各種のリチウム塩、リチウム含有量がL120換
算で3%以上の鉱物等である。例えば水酸化リチウム、
リチウムのノ・ロゲン化物の塩化物の塩化リチウム、フ
ッ化リチウム、臭化リチラム、ヨウ化リチウム、寸だ水
酸化リチウムと鉱酸との塩である硝酸リチウム、硫酸リ
チウム、炭酸リチウム、リン酸リチウム、チオシアン酸
リチウム、さらにカルメン酸塩の酢酸リチウム、ステア
リン酸リチウムがあげられる。これらのリチウム塩以外
にリチウム含有量がL120換算で3%以上の鉱物のリ
シア雲母(レビドライト)、チンワルド雲母、アンブリ
ゴ石(ペタライト)、リシア輝石(スボジュメン)など
があげられる。これらリチウム含有物質の添加鼠として
は、リチウム含有物質中のリチウム含有量をLi2Oに
換算して、ケイ酸質原料と石灰質原料の合計の0.10
〜15.0%添加するのが望ましい。特に望甘しくけ0
.15〜10.0%添加するのが良い。これ塀上添加し
ても実質的な効果の増加はみられず、また、これ以下の
添加敞では効果の発現がみられな′い。
The lithium-containing substances used in the present invention include lithium hydroxide, various lithium salts, minerals with a lithium content of 3% or more in terms of L120, and the like. For example, lithium hydroxide,
The chlorides of lithium include lithium chloride, lithium fluoride, lithium bromide, lithium iodide, salts of lithium hydroxide and mineral acids, such as lithium nitrate, lithium sulfate, lithium carbonate, and lithium phosphate. , lithium thiocyanate, and carmenates such as lithium acetate and lithium stearate. In addition to these lithium salts, examples include minerals having a lithium content of 3% or more in terms of L120, such as spodumene (lebidolite), Chinwald mica, ambrigoite (petalite), and spodumene (subodumene). The amount of addition of these lithium-containing substances is 0.10 of the total of siliceous raw materials and calcareous raw materials, when the lithium content in the lithium-containing substances is converted to Li2O.
It is desirable to add up to 15.0%. Particularly undesirable 0
.. It is preferable to add 15 to 10.0%. No substantial increase in effect was observed even when added above this level, and no effect was observed when added below this level.

本発明に用いられるケイ酸質原料としては、通常の水熱
反応に用いられるものであれば良い。例えば、珪石、ケ
イソウ土、白土、ゼオライト、フライアッシュ、フエロ
ンリコンダスト、シラテスラグその他式シラlイ物質や
5i02含有量が、40%以上の物質が使える。また、
石灰質原料としては、ポルトランPセメント、アルミナ
セメント、生石灰、消石灰、スラグ等が使用出来る。
The silicic acid raw material used in the present invention may be any material used in ordinary hydrothermal reactions. For example, silica, diatomaceous earth, china clay, zeolite, fly ash, ferron recondust, silate slag and other types of silicate materials and materials with a 5i02 content of 40% or more can be used. Also,
As the calcareous raw material, portolan P cement, alumina cement, quicklime, slaked lime, slag, etc. can be used.

本発明で生成が促進される珪酸カルシウム水和物(Ca
OS log  H20系鉱物)には、ゾノトライト(
6CaO・6SiO2・H2C);ホシャジャイト(4
CaOa 3Si02 # H2C); ) /’モラ
イト(5CaO・6SIOi e5H2O) ;ジャイ
ロライト(8Ca(112SiO1・9)I、01  
等があげられる。これら目的とする鉱物によって原料組
成(Cao/S tow )モル比を選択しなければな
らない。囲えば、ジャイロライトを生成させようとする
ならばCaO/SiO2モル比は、0.3〜07が好ま
しい。トバモライトを生成させようとすれば、0.6〜
1.0が好ましく、ゾノライトを生成させようとするな
らば、0.8〜1.2が好ましく、ホシャジャイトを生
成させようとするならば10〜1,5が好ましい。
Calcium silicate hydrate (Ca
OS log H20 minerals) include xonotrite (
6CaO・6SiO2・H2C); hoshagite (4
CaOa 3Si02 #H2C); ) /'molite (5CaO・6SIOi e5H2O); gyrolite (8Ca(112SiO1・9)I, 01
etc. can be mentioned. The raw material composition (Cao/Stow) molar ratio must be selected depending on these target minerals. In other words, if gyrolite is to be produced, the CaO/SiO2 molar ratio is preferably 0.3 to 07. If you want to generate tobermorite, 0.6~
1.0 is preferable, 0.8 to 1.2 is preferable if zonolite is to be produced, and 10 to 1.5 is preferable if hoschagite is to be produced.

本発明でいう水熱反応とは、120℃の飽和水蒸気圧以
上の高温高圧下での珪酸カルシウム水和物系鉱物の生成
反応の事であシ、通常120℃以上250℃以下が望ま
しい。反応条件は目的とする鉱物により適宜決定せねば
ならないが、例えば、トノクモライトの生成を目的とす
る時は、160℃〜200℃の飽和水蒸気圧、ゾノトラ
イトの生成を目的とする時は、180℃〜220℃の飽
和水蒸気圧下で行うのが好ましい。通常2時間〜6時間
の水熱反応で鉱物結晶の生成が起り、従来の方法の約半
分の反応時間で製造が可能となる。また珪酸カルシウム
水利物の生成が促進される為、同灸件で反応させた場合
、リチウム含有物質を添加した方が硬化体の強度が大き
くなるという効果がある事を見出した。
The hydrothermal reaction in the present invention refers to a reaction for producing calcium silicate hydrate minerals at a high temperature and pressure higher than the saturated water vapor pressure of 120°C, and preferably at a temperature of 120°C or higher and 250°C or lower. The reaction conditions must be appropriately determined depending on the mineral of interest; for example, when the purpose is to produce tonokumorite, the saturated water vapor pressure is 160°C to 200°C, and when the aim is to produce xonotrite, the saturated water vapor pressure is 180°C to 200°C. It is preferable to carry out under saturated steam pressure of 220°C. Mineral crystals are formed in a hydrothermal reaction that usually takes 2 to 6 hours, and can be produced in about half the reaction time of conventional methods. In addition, since the production of calcium silicate aqueous products is promoted, it has been found that when a lithium-containing substance is added in the same moxibustion reaction, the strength of the cured product is increased.

以下、実施例によりさらにitF 卸1に本発明を説明
するが、本発明d1これらの実施例に限定されるもので
はない。
Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1〜5 石灰質原料として特撰消石灰(吉沢石灰製)、珪酸質原
料として、ち屋根珪石を用い、そgぞれ170メツシユ
(8871)全通に粉砕し、CaO/5iO2f  モ
ル比)を105に調合し、これにアモサイト石綿を全固
型分の外削で5重量、e−セント、リチウム含有物質を
所定量加えて混合する。全固形分の重量に対し10倍量
の水を加えて充分攪拌して均一なスラリーとし、これを
95〜100℃で2時間加熱してゲル状物質を造り、こ
れをプレスモールドに充填し加圧脱水して成型する。成
形物をオートクV−ブに入れ所定の時間水熱反応後11
0℃で5時間乾燥した。成形体のかさ比重は0.35で
あった。この様にして製造した成形体の性質を表1に示
す。
Examples 1 to 5 Specially selected slaked lime (manufactured by Yoshizawa Lime) was used as the calcareous raw material, and Chiyane silica was used as the silicate raw material, each of which was ground to a total of 170 mesh (8871), and CaO/5iO2f molar ratio) 105, and a predetermined amount of amosite asbestos by weight of 5 weight of total solids, e-cent, and lithium-containing material are added and mixed. Add 10 times the amount of water to the weight of the total solid content and stir thoroughly to make a uniform slurry. Heat this at 95 to 100°C for 2 hours to create a gel-like substance, which is then filled into a press mold and processed. Pressure dehydrated and molded. The molded product was placed in an autoclave and subjected to hydrothermal reaction for a predetermined period of time.
It was dried at 0°C for 5 hours. The bulk specific gravity of the molded article was 0.35. Table 1 shows the properties of the molded product thus produced.

(以下余り) 表1 実施例及び比較例の結果 高さを100%とした。) 比較例1〜2 リチウム含有物質を加えない事は除き実施例1〜5と全
く同様に成形体の製造を行った。その成実施例 石灰質原料として特撰消石灰(吉沢石灰!り、珪酸質原
料として島屋根珪石を用い、それぞれ170メツシユ(
88μ)全通に粉砕し混合する。
(Remainder below) Table 1 Results of Examples and Comparative Examples The height was set as 100%. ) Comparative Examples 1-2 Molded bodies were produced in exactly the same manner as in Examples 1-5, except that no lithium-containing substance was added. Examples of its production: Specially selected slaked lime (Yoshizawa lime!) was used as the calcareous raw material, and Shimayane silica stone was used as the silicate raw material.
88μ) Grind and mix thoroughly.

これに全固型分の□外削で5チの水酸化リチウムを添加
し、原料のCab/S i02モル比を0.95に配合
したものに水を重量で全固凰分の10倍量加えて攪拌し
スラリーを造った。これをオートクレーブ中に入れ、2
00℃で45r、p、m の回転速度で攪拌しながら6
時間水熱反応後、オートクレーブから反応物を取出した
。これに1アモサイト石綿トセルロース繊維をそれぞれ
固を分の外削で、5重量パーセントと2重量パーセント
添加し、混合後、これをプレスモールドに充填し加圧脱
水成形した後、105℃で乾燥した。成形体のかさ比重
は、0.36であった。また、曲げ強度は、12.8K
>+/ * 、 100 ’O℃、2時間処理後の残存
収縮率は、1.09チであった。
To this, 5 parts of lithium hydroxide was added by external cutting of the total solid content, and the raw material Cab/Si02 molar ratio was blended to 0.95, and water was added in an amount 10 times the total solid content by weight. The mixture was added and stirred to create a slurry. Put this in an autoclave and
6 with stirring at a rotational speed of 45 r, p, m at 00 °C.
After an hour of hydrothermal reaction, the reactants were removed from the autoclave. To this, 5% by weight and 2% by weight of amosite asbestos tocellulose fibers were added by external cutting of the hardness, and after mixing, this was filled into a press mold, dehydrated under pressure, and then dried at 105°C. . The bulk specific gravity of the molded article was 0.36. In addition, the bending strength is 12.8K
>+/*, the residual shrinkage rate after treatment at 100'O<0>C for 2 hours was 1.09cm.

比較例3 実施例6と水酸化リチウムを加えない点を除き全く同様
に行ったところ、がさ比重0.35の成形体が得られた
。この成形体の曲げ強度は7゜IKP/mであつ7co
また、1oOo℃で2時間処理したところ、収縮が激し
く、ひび割れてしまった。
Comparative Example 3 The same procedure as in Example 6 was carried out except that lithium hydroxide was not added, and a molded article having a bulk specific gravity of 0.35 was obtained. The bending strength of this molded body is 7°IKP/m and 7co
In addition, when it was treated at 100°C for 2 hours, it contracted violently and cracked.

実施例7 普通ポルトランドセメント80重量部、生石灰20重量
部、宇久須珪石(粉末度ブレーン2900cJ/g−)
t i o重量部、硫酸リチウム8重量部、ニ水150
重量部を加えスラリーとする。これに金属アルミニウム
粉末1.6重量部を加えて補強鉄筋を配設した型枠中に
流し込む。数時間放置し7て、半可塑状となったところ
で鋼線で切断成形する。
Example 7 80 parts by weight of ordinary Portland cement, 20 parts by weight of quicklime, Ukusu silica (powderability 2900 cJ/g-)
parts by weight of tio, 8 parts by weight of lithium sulfate, 150 parts by weight of diwater
Add parts by weight to make slurry. To this was added 1.6 parts by weight of metallic aluminum powder, and the mixture was poured into a formwork provided with reinforcing reinforcing bars. After leaving it for several hours, it becomes semi-plastic and is then cut and shaped with a steel wire.

これをオートクレーブに入れ、180℃の飽和水蒸気圧
下で、4時間水熱反応して、絶乾比重0.51のALC
を製造した。このALCの圧縮強度は59 K9/d、
曲げ強度1”t 16KP/cAであった。
This was placed in an autoclave and subjected to a hydrothermal reaction for 4 hours under saturated steam pressure at 180°C, resulting in an ALC with an absolute dry specific gravity of 0.51.
was manufactured. The compressive strength of this ALC is 59 K9/d,
The bending strength was 1"t 16 KP/cA.

比較例4 硫酸リチウムを加えない点を除き実施例7と全く同様に
してAI、Cを製造した。得られたAL’Cの絶乾比重
は0,50であった。また圧縮強度は、31Kp/cr
I、曲げ強度は6に5’/crIであった。実施例7と
比較例4で得たALCのX線回折測定を行ったところ、
実施例7ではトバモライトピークが鋭く現われたのに対
し、比較列4ではトバモライトのピークは観察されず、
幅広のC8Hゲルの−一りが観察されたのみであった。
Comparative Example 4 AI and C were produced in exactly the same manner as in Example 7 except that lithium sulfate was not added. The absolute dry specific gravity of the obtained AL'C was 0.50. Also, the compressive strength is 31Kp/cr
I, the bending strength was 6 to 5'/crI. When X-ray diffraction measurements were performed on the ALC obtained in Example 7 and Comparative Example 4,
In Example 7, the tobermorite peak appeared sharply, whereas in comparison row 4, no tobermorite peak was observed.
Only one broad C8H gel was observed.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、 石灰質原料と珪酸質原料と水を高温高圧飽和水蒸
気下で水熱反応するに際し、リチウム含有物質を存在さ
せて反応させることを特徴とする珪酸カルシウム水和物
硬化体の製造方法2 リチウム含有物質が、水酸化リチ
ウム、リチウムのハロゲン化物、炭酸リチウム、硝酸リ
チウム、硫酸リチウム、珪酸リチウム、リン酸リチウム
、チオシアン酸リチウム、リチウムのカルゼン酸塩、リ
チウム含有量がL i20 換算で3%以上の鉱物の中
から選ばれた一種又は2種以上である特許請求の範囲第
1項記載の製造方法 1 石灰質原料と珪酸質原料の混合物中の酸化カルシウ
ム含有量と酸化珪素含有量のモル比(Ca o/s i
o2モル比)が、0.3ないし1.5テあシ、リチウム
含有物質の添加量が、Li2Oに換算して、石灰質原料
と珪酸質原料の合計重量の外削で、0.15ないし10
.0重量パーセントである特許請求の範囲第1項記載の
製造方法4、 粉末状の珪酸質原料と石灰質原料にリチ
ウム含有物質、その他添加剤および水を加え、スラリー
を作シこれを高温高圧下水熱反応を行って珪酸カルシウ
ム永和物含有スラリーを得た後、繊維状補強材等を加え
、加圧脱水成型して珪酸カルシウム水和物硬化体を製造
することを特徴とする特許請求の範囲第1項記載の製造
方法5、 粉末状の珪酸原料と石灰質原料にリチウム含
有物質、石綿等の繊維状補強材、その低添加物および水
を加えてスラリー状とし、そのままあるいは予備反応を
した後型枠に流し込み、プレス等によシ成形してこれを
高温高圧下水熱反応を行って珪酸カルシウム水和物硬化
体を製造する特許請求の範囲第1項記載の製造方法6、
 粉末状の珪酸質原料と石灰質原料にリチウム含有物質
、その他添加剤および水を加えた後、金属アルミニウム
等の発泡剤又は、起泡剤、あるいは、界面活殴剤等で製
造した泡を混合し、気泡を含んだ半可塑物質を得て、こ
れを成型後、高温高圧下水熱反応を行う、珪酸カルシウ
ム水利物を含有する軽量気泡コンクリートを製造する特
許請求の範囲第1m記載の製造方法
[Claims] 1. A hardened calcium silicate hydrate, characterized in that a calcareous raw material, a silicate raw material, and water are subjected to a hydrothermal reaction under high-temperature, high-pressure saturated steam, and the reaction is carried out in the presence of a lithium-containing substance. Production method 2 The lithium-containing substance is lithium hydroxide, lithium halide, lithium carbonate, lithium nitrate, lithium sulfate, lithium silicate, lithium phosphate, lithium thiocyanate, lithium calzenate, and the lithium content is L i20 Calcium oxide content and silicon oxide content in the mixture of calcareous raw material and silicic raw material. molar ratio of amounts (Ca o/s i
O2 molar ratio) is 0.3 to 1.5%, and the amount of lithium-containing material added is 0.15 to 10% in terms of Li2O, based on the total weight of calcareous raw material and silicic raw material.
.. Manufacturing method 4 according to claim 1, in which the lithium-containing material, other additives, and water are added to the powdered silicate raw material and calcareous raw material to form a slurry, and the slurry is heated under high temperature and high pressure under hydrothermal heat. After performing the reaction to obtain a slurry containing calcium silicate hydrate, a fibrous reinforcing material, etc. is added, and pressure dehydration molding is performed to produce a cured calcium silicate hydrate. Manufacturing method 5 described in Section 5, a lithium-containing substance, a fibrous reinforcing material such as asbestos, a low additive thereof, and water are added to the powdered silicic acid raw material and calcareous raw material to form a slurry, and the slurry is formed as it is or after preliminary reaction. 6. A manufacturing method according to claim 1, which comprises pouring the calcium silicate hydrate into a mold, molding it using a press or the like, and subjecting it to a hydrothermal reaction at high temperature and pressure to produce a cured calcium silicate hydrate.
After adding a lithium-containing substance, other additives, and water to powdered siliceous raw materials and calcareous raw materials, foam produced using a foaming agent such as metal aluminum, a foaming agent, or a surfactant is mixed. The manufacturing method according to claim 1m for manufacturing lightweight cellular concrete containing a calcium silicate aquarium, which involves obtaining a semi-plastic material containing air bubbles, molding the material, and then subjecting it to a hydrothermal reaction under high temperature and pressure.
JP13363682A 1982-08-02 1982-08-02 Method for producing cured calcium silicate hydrate Pending JPS5926957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13363682A JPS5926957A (en) 1982-08-02 1982-08-02 Method for producing cured calcium silicate hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13363682A JPS5926957A (en) 1982-08-02 1982-08-02 Method for producing cured calcium silicate hydrate

Publications (1)

Publication Number Publication Date
JPS5926957A true JPS5926957A (en) 1984-02-13

Family

ID=15109447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13363682A Pending JPS5926957A (en) 1982-08-02 1982-08-02 Method for producing cured calcium silicate hydrate

Country Status (1)

Country Link
JP (1) JPS5926957A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256951A (en) * 1985-05-02 1986-11-14 日産化学工業株式会社 Degradation prevention for set concrete
JPS62278151A (en) * 1986-05-28 1987-12-03 日産化学工業株式会社 Degradation prevention of set concrete
JPS63147851A (en) * 1986-12-12 1988-06-20 宇部興産株式会社 Calcium silicate formed body
WO1999058469A1 (en) * 1998-05-13 1999-11-18 Commissariat A L'energie Atomique Cement material containing lithium with improved mechanical properties, useful for retaining cations, and methods for making same
FR2778653A1 (en) * 1998-05-13 1999-11-19 Commissariat Energie Atomique Cement material comprising hydrated calcium silicate with lithium used for e.g. the retention of cations, for nuclear waste storage containing e.g. cesium, for improving the mechanical strength of material in civil engineering
US6251178B1 (en) * 1999-01-29 2001-06-26 Mineral Resource Technologies, Llc Fly ash composition
JP2014080305A (en) * 2012-10-14 2014-05-08 Tomita Pharmaceutical Co Ltd Calcium silicate-based material and method for producing the same
CN104926248A (en) * 2015-06-12 2015-09-23 赤峰金辉科技有限公司 Method for producing light calcium silicate boards through high-silicon coal ash
JP2021075439A (en) * 2019-11-13 2021-05-20 学校法人日本大学 Method for producing tobermorite-containing housing material, tobermorite, and tobermorite-containing housing material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256951A (en) * 1985-05-02 1986-11-14 日産化学工業株式会社 Degradation prevention for set concrete
JPS62278151A (en) * 1986-05-28 1987-12-03 日産化学工業株式会社 Degradation prevention of set concrete
JPS63147851A (en) * 1986-12-12 1988-06-20 宇部興産株式会社 Calcium silicate formed body
WO1999058469A1 (en) * 1998-05-13 1999-11-18 Commissariat A L'energie Atomique Cement material containing lithium with improved mechanical properties, useful for retaining cations, and methods for making same
FR2778652A1 (en) * 1998-05-13 1999-11-19 Commissariat Energie Atomique Cement material comprising hydrated calcium silicate with lithium used for e.g. the retention of cations, for nuclear waste storage containing e.g. cesium, for improving the mechanical strength of material in civil engineering
FR2778653A1 (en) * 1998-05-13 1999-11-19 Commissariat Energie Atomique Cement material comprising hydrated calcium silicate with lithium used for e.g. the retention of cations, for nuclear waste storage containing e.g. cesium, for improving the mechanical strength of material in civil engineering
US6251178B1 (en) * 1999-01-29 2001-06-26 Mineral Resource Technologies, Llc Fly ash composition
JP2014080305A (en) * 2012-10-14 2014-05-08 Tomita Pharmaceutical Co Ltd Calcium silicate-based material and method for producing the same
CN104926248A (en) * 2015-06-12 2015-09-23 赤峰金辉科技有限公司 Method for producing light calcium silicate boards through high-silicon coal ash
JP2021075439A (en) * 2019-11-13 2021-05-20 学校法人日本大学 Method for producing tobermorite-containing housing material, tobermorite, and tobermorite-containing housing material

Similar Documents

Publication Publication Date Title
US4824811A (en) Lightweight ceramic material for building purposes, process for the production thereof and the use thereof
JPH03237051A (en) High strength calcium silicate formed body and its manufacture
CN106747174A (en) Water-resistant type air-entrained concrete building block prepared by a kind of utilization ardealite hydraulicity composite gel material
JPS5926957A (en) Method for producing cured calcium silicate hydrate
CN106082884B (en) A kind of insulating light wall slab and preparation process containing solid waste cinder
US4310358A (en) Composition for forming inorganic hardened products and process for producing inorganic hardened products using the same
RU2341483C2 (en) Raw mix for foam silicate heat-insulating material production and associated method of production
JP2763929B2 (en) Method for producing high-strength calcium silicate compact
EA005771B1 (en) Lightweight, heat insulating, high mechanical strength shaped product and method of producing the same
RU2536693C2 (en) Crude mixture for producing non-autoclaved aerated concrete and method of producing non-autoclaved aerated concrete
JPH0524102B2 (en)
JPH0627022B2 (en) Method for producing calcium silicate-based compact
JPS5945953A (en) Method for producing calcium silicate hydrate molded product
JP2773904B2 (en) Manufacturing method of lightweight refractories
JP2665942B2 (en) Calcium silicate hydrate compact and method for producing the same
JP2875839B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JPS6213300B2 (en)
JP2757878B2 (en) Manufacturing method of zonotorite-based compact calcium silicate hydrate
JP2755447B2 (en) Manufacturing method of zonotorite-based compact calcium silicate hydrate
JP2631304B2 (en) Method for manufacturing calcium silicate compact
SU893943A1 (en) Raw mixture for producing porous concrete
JP2875838B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JPH03141172A (en) Method for producing xonotlite-based lightweight calcium silicate hydrate molded bodies
JPH0158147B2 (en)
RU1830058C (en) Mixture for manufacturing heat-insulating cellular concrete