JPS5933004B2 - Electrodialysis method - Google Patents
Electrodialysis methodInfo
- Publication number
- JPS5933004B2 JPS5933004B2 JP52048214A JP4821477A JPS5933004B2 JP S5933004 B2 JPS5933004 B2 JP S5933004B2 JP 52048214 A JP52048214 A JP 52048214A JP 4821477 A JP4821477 A JP 4821477A JP S5933004 B2 JPS5933004 B2 JP S5933004B2
- Authority
- JP
- Japan
- Prior art keywords
- dialysis
- chamber
- concentration
- tank
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【発明の詳細な説明】
本発明は新規な電気透析方法、特にイオン交換膜を用い
る電気透析脱塩装置の運転に際して透析効率を低下させ
ることなく比較的小さな装置でより高い濃縮率を得るこ
とができる電気透析方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel electrodialysis method, particularly in the operation of an electrodialysis desalination device using an ion exchange membrane, which allows a higher concentration rate to be obtained with a relatively small device without reducing dialysis efficiency. Regarding possible electrodialysis methods.
一組の陽極と陰極との間に多数の陽イオン交換膜と陰イ
オン交換膜とを交互に配して、直流電流のもとに電解質
溶液の濃縮あるいは脱塩を行なう電気透析法は例えばメ
ッキ水洗水の処理再生、海水の淡水化等各種用途が開発
され、既にその多くが実用化されている。Electrodialysis, in which a large number of cation-exchange membranes and anion-exchange membranes are arranged alternately between a set of anodes and cathodes to concentrate or desalinate an electrolyte solution under direct current, is an example of plating. Various applications have been developed, including treatment and regeneration of flush water and desalination of seawater, and many of them have already been put into practical use.
この種の電気透析法には各種方式があるが夫々に一長一
短があり、設備、費用、効率のいずれにもすぐれたもの
がなかった。Although there are various types of electrodialysis methods of this type, each method has its advantages and disadvantages, and none of them are superior in equipment, cost, or efficiency.
従来の代表的な電気透析脱塩方式を第1〜3図について
説明すれば、第1図の方式は回分式又はバッチ式である
。A typical conventional electrodialysis desalination method will be explained with reference to FIGS. 1 to 3. The method shown in FIG. 1 is a batch type or a batch type.
この場合、原波処理溶液貯槽Rから一定量の原波処理溶
液が透析槽の希釈室Aに流され、ここで濃縮液貯槽Cか
ら透析槽の濃縮室Bに流されてきた濃縮液と接して電気
透析脱塩され、元の貯槽Rに戻り処理水Sとして回収さ
れる。In this case, a certain amount of the raw wave processing solution is flowed from the raw wave processing solution storage tank R to the dilution chamber A of the dialysis tank, where it comes into contact with the concentrated liquid that has been flowed from the concentrated liquid storage tank C to the concentration chamber B of the dialysis tank. The water is electrodialyzed and desalinated, returned to the original storage tank R, and recovered as treated water S.
かかる方式は小規模に適し、脱塩効率は高いが、電槽を
流れる電流の変動が大きい。Such a method is suitable for small-scale operation and has high desalination efficiency, but the current flowing through the tank fluctuates widely.
又轟然間欠的な運転であり、大きな貯槽を必要とする。It also operates intermittently and requires a large storage tank.
第2図の方式が内部循環連続式と呼ばれるものであり、
原波処理溶液Qは連続的に同溶液槽Rに供給され、希釈
室Aに送られる。The method shown in Figure 2 is called the internal circulation continuous method.
The raw wave processing solution Q is continuously supplied to the solution tank R and sent to the dilution chamber A.
一方濃縮液槽Cかも濃縮室Bに送られた濃縮液に接して
脱塩されて一部は処理水Sとして回収され、一部は原波
処理溶液槽Rに戻され、前記溶液Qに加えられ、更に透
析処理に供せられる。On the other hand, the concentrated liquid tank C comes into contact with the concentrated liquid sent to the concentration chamber B and is desalted, a part of which is recovered as treated water S, and a part of which is returned to the raw wave processing solution tank R and added to the solution Q. and further subjected to dialysis treatment.
濃縮液も連続的に循環使用される。The concentrate is also continuously recycled.
このような方式は中規模以上に適し、連続運転が可能で
あり、原水貯槽も小さくてよい。This type of system is suitable for medium-sized or larger scales, allows continuous operation, and requires only a small raw water storage tank.
又透析電流も一定している。Furthermore, the dialysis current is also constant.
しかじ脱塩率な高くとる場合は脱塩能率は劣る。However, if the desalination rate is high, the desalination efficiency will be inferior.
第3図は一過流通多段連続式と呼ばれる方式であり、図
においては三つの透析槽が連結され、原波処理溶液Qは
連続的に第一、第二、第三の透析槽の希釈室Aを経て脱
塩されて処理水Sとして回収され、一方濃縮液は同液槽
Cから順次三つの透析槽の濃縮室Bを通り、再度液槽C
に戻り循環使用される。Figure 3 shows a system called a transient flow multi-stage continuous type. In the figure, three dialysis tanks are connected, and the raw wave processing solution Q is continuously passed through the dilution chambers of the first, second, and third dialysis tanks. A, it is desalinated and recovered as treated water S, while the concentrated liquid sequentially passes through the concentration chambers B of three dialysis tanks from the same liquid tank C, and returns to liquid tank C.
used in circulation.
この方式は大規模な操業に適し、連続運転が可能であり
、又透析電流が一定している。This method is suitable for large-scale operation, allows continuous operation, and has a constant dialysis current.
しかじ脱塩率を大きくとる場合、脱塩能率は回分式と同
じであるが、段数を必要とする。However, when increasing the desalting efficiency, the desalting efficiency is the same as that of the batch method, but the number of stages is required.
上記三方式の改良方法が各種提案されているが、それら
の方法では、原波処理溶液中の電解質濃度によっても影
響されるものの、一般的に希釈水中電解質濃度の下限は
300ppm程度で、それ以上低い濃度のものは利用で
きないとされている。Various methods for improving the above three methods have been proposed, but in those methods, the lower limit of the electrolyte concentration in diluted water is generally around 300 ppm, although it is affected by the electrolyte concentration in the raw wave treatment solution, and it is not recommended to It is said that low concentrations cannot be used.
これは、濃縮液と脱塩水の塩分濃度差による電解質の逆
拡散、水の電気浸透などの物質バランスのすれに起因す
る透析効率の低下のためである。This is because the dialysis efficiency decreases due to an imbalance of substances such as electrolyte back-diffusion and water electroosmosis due to the difference in salt concentration between the concentrated solution and the desalted water.
回収された処理水又は脱塩水を工業用水として使用しよ
うとする場合でも、上水並み(25℃における導電率は
150〜300μ0/cm、以下、TDSとして80〜
1.50ppm程度)の水質が要求される場合が多い。Even when the recovered treated water or desalinated water is used as industrial water, it has a conductivity at the same level as tap water (at 25°C, the conductivity is 150-300μ0/cm, hereinafter referred to as TDS of 80-300μ0/cm).
In many cases, a water quality of about 1.50 ppm) is required.
かつ、上水並とするために脱塩を行なった場合、濃縮液
の濃度は高く、その再利用が要求される場合が多い。Furthermore, when desalting is performed to make the water as good as tap water, the concentration of the concentrated liquid is high, and its reuse is often required.
従来このように電解質の濃度が低い被処理液を脱塩する
技術として電気透析法を適用しても、経済性が悪く、効
率的でなく、濃縮液中塩濃度も再利用できるまでに至ら
なかった。Conventionally, even if electrodialysis was applied as a technology for desalting a treated liquid with a low electrolyte concentration, it was not economical or efficient, and the salt concentration in the concentrated liquid could not be reused. Ta.
本発明者は上記要求を満足させる電気透析法の改良法を
提供することを目的として種々実験、研究を重ねた結果
、濃縮液中塩濃度が5000ppm以下であれば、脱塩
水中塩濃度が50ppm程度までは次式に従うことを実
験的に確認し、本発明に至った。As a result of various experiments and research aimed at providing an improved electrodialysis method that satisfies the above requirements, the present inventor found that if the salt concentration in the concentrated solution is 5000 ppm or less, the salt concentration in the desalinated water is 50 ppm. It has been experimentally confirmed that the following formula is followed to a certain extent, and the present invention has been achieved.
即ち、膜単位面積邑すの脱塩量は、濃度の低下とともに
減少するが、回収水利用の面で有効であり、透析電力効
率は上記濃度範囲ではかわらないのである。That is, although the amount of desalination per membrane unit area decreases as the concentration decreases, it is effective in terms of the use of recovered water, and the dialysis power efficiency does not change within the above concentration range.
Cτ−Ce−にτ
ここに
Cτ :透析時間τ後における脱塩水中塩分濃度Co:
原波処理溶液中塩分濃度
e:自然数
に:透析槽加電圧、温度、液流速、装置の特性により定
まる定数
τ:透析槽中滞留時間
本発明はこの知見に基づくものであって、電極室、希釈
室及び濃縮室を有する二つ又はそれ以上の電気透析槽を
連結し、各透析槽各室ごとに液の循環を行ないながら透
析処理を行ない、第一段又はそれ以降の段の濃縮室に通
す濃縮水を更に次の段の希釈室にも通すことにより、塩
分濃度の比較的低い液の脱塩を行ない、かつより高濃度
の濃縮液を得ることを特徴とするものである。Cτ−Ce−τ Here Cτ: Salinity concentration Co of desalinated water after dialysis time τ:
Salt concentration in the raw wave treatment solution e: A natural number: A constant determined by the dialysis tank applied voltage, temperature, liquid flow rate, and device characteristics τ: Residence time in the dialysis tank The present invention is based on this knowledge, and the present invention is based on this knowledge. Two or more electrodialysis tanks having a dilution chamber and a concentration chamber are connected, and the dialysis process is performed while circulating the liquid in each chamber of each dialysis tank. This system is characterized in that by passing the concentrated water through the dilution chamber in the next stage, a liquid with a relatively low salt concentration is desalted and a concentrated liquid with a higher concentration is obtained.
本発明を一実施例を示す第4図について更に詳しく説明
すれば、陰極1、陽極2を具え、その間に陰イオン交換
膜7、陽イオン交換膜8を複数個交互に設けて、電極室
3,4、濃縮室5、希釈室6を形成してなる二つの電気
透析槽I、IIを連結して用いる。To explain the present invention in more detail with reference to FIG. 4 showing one embodiment, the present invention is provided with a cathode 1 and an anode 2, and a plurality of anion exchange membranes 7 and cation exchange membranes 8 are alternately provided between them, and an electrode chamber 3 is provided. , 4, two electrodialysis tanks I and II each having a concentration chamber 5 and a dilution chamber 6 are connected and used.
連続的に供給される原波処理溶液Qは同溶液貯槽Rに一
旦貯えられた後、第一透析槽■の希釈室6に送られる。The continuously supplied raw wave processing solution Q is once stored in the same solution storage tank R, and then sent to the dilution chamber 6 of the first dialysis tank (2).
貯槽C1,C2,El、E2には必要に応じてあらかじ
め一定量の水が前記貯槽Rから供給される。A certain amount of water is supplied in advance from the storage tank R to the storage tanks C1, C2, El, and E2 as needed.
貯槽E、 、 E2の水には適光な塩(望ましくはNa
2SO4のような電解されない塩)を加えて5000p
prn程度の濃度にしておく。The water in storage tanks E, , and E2 is filled with suitable salt (preferably Na).
2SO4 (non-electrolyzed salt) and 5000p
Keep the concentration around prn.
E。の電極液は第一透析槽■の電極室3及び4に供給さ
れる。E. The electrode solution is supplied to the electrode chambers 3 and 4 of the first dialysis tank (2).
C1の液は第一透析槽Iの濃縮室5に供給され、更にま
た第二透析槽の希釈室6に供給される。The liquid C1 is supplied to the concentration chamber 5 of the first dialysis tank I, and further to the dilution chamber 6 of the second dialysis tank.
E2 の電極液は第二透析槽の電極室3及び4に供給さ
れる。The E2 electrode solution is supplied to electrode chambers 3 and 4 of the second dialysis tank.
C2の液は第二透析槽■の濃縮室5に供給される。The liquid C2 is supplied to the concentration chamber 5 of the second dialysis tank (2).
第一、第二各透析槽I、IIの各室毎に上記合液の循環
を行ないながら透析処理を受ける。The combined solution is circulated in each chamber of the first and second dialysis tanks I and II to undergo dialysis treatment.
貯槽Rから第一透析槽Iの希釈室6に送られた原波処理
溶液Q中の電解質は希釈室に移動して脱塩、希釈された
後、処理水乃至脱塩水貯槽りに送られ、処理水Sとして
回収される。The electrolyte in the raw wave treatment solution Q sent from the storage tank R to the dilution chamber 6 of the first dialysis tank I is transferred to the dilution chamber, where it is desalted and diluted, and then sent to the treated water or desalinated water storage tank. It is recovered as treated water S.
一方C1の液は第一透析槽■の濃縮室5にて前記溶液Q
の電解質を受けて濃縮されて再び貯槽C1に戻るが、こ
の槽の液はまた第二透析槽の希釈室6にも送られて透析
処理を受けてその中の塩はその槽の濃縮室5に送られて
きた貯槽C2の液に移動して希釈される。On the other hand, the liquid C1 is transferred to the solution Q in the concentration chamber 5 of the first dialysis tank (■).
The liquid in this tank is also sent to the dilution chamber 6 of the second dialysis tank and undergoes dialysis treatment, and the salt therein is sent to the concentration chamber 5 of the second dialysis tank. The liquid is transferred to the liquid in the storage tank C2 and diluted.
C2の液は第二透析槽■の濃縮室で濃縮されて後、濃縮
液Uとして取り出される。The liquid C2 is concentrated in the concentration chamber of the second dialysis tank (2) and then taken out as a concentrated liquid U.
電極室の塩分が電気透析処理を続けるのに適しない種類
の成分になったり、また濃度に達したとき、この電極液
はC1又はC2に送られて処理されるか、又は別途に処
分される。When the salt content in the electrode chamber becomes of a type or reaches a concentration that is unsuitable for continuing the electrodialysis process, this electrode solution is sent to C1 or C2 for treatment or to be disposed of separately. .
その結果、濃縮室の溶液は次第に濃縮され、また希釈室
の溶液は次第に希薄化される。As a result, the solution in the concentration chamber is gradually concentrated, and the solution in the dilution chamber is gradually diluted.
そこで両透析槽■と■の脱塩量を同じにとれば、貯槽C
1の塩分は第一透析槽Iでは濃縮されるが、第二透析槽
では希釈されてその濃度が一定化される。Therefore, if the desalination amount of both dialysis tanks ■ and ■ is the same, storage tank C
Although the salt of No. 1 is concentrated in the first dialysis tank I, it is diluted in the second dialysis tank to keep its concentration constant.
そして貯槽C2の液の塩分は濃縮され、貯槽り中の処理
水は希釈化される。Then, the salt content of the liquid in the storage tank C2 is concentrated, and the treated water in the storage tank is diluted.
かくして本発明によれば、比較的塩分濃度の低い原波処
理溶液でも透析効率を低下させることなく脱塩を行なっ
て、その処理水を工業用水とじて再利用し、濃縮液を再
利用可能な濃度まで濃縮することが可能となる。Thus, according to the present invention, it is possible to desalinate even a raw wave treatment solution with a relatively low salt concentration without reducing dialysis efficiency, reuse the treated water as industrial water, and reuse the concentrated liquid. It becomes possible to concentrate up to a certain concentration.
しかも第二透析槽の規模は第一透析槽の規模の約10%
又はそれ以下で済み、比較的小さな装置で濃縮率を上げ
ることができて有利である。Moreover, the scale of the second dialysis tank is approximately 10% of the scale of the first dialysis tank.
or less, which is advantageous because it is possible to increase the concentration rate with a relatively small device.
尚以上二つの透析装置を用(・て二段の透析処理を行な
う場合について述べてきたが、この段数は二段に限らず
、目的に応じて更に多段にすることができる。Although the case where two dialysis machines are used to perform two-stage dialysis treatment has been described above, the number of stages is not limited to two stages, and can be further increased depending on the purpose.
次に本発明の実施例をあげる。Next, examples of the present invention will be given.
陰陽イオン交換膜(市販の標準膜、有効膜面積2 d
rrj )を1%の間隔をあげて、白金メッキした暑チ
タン陽極およびステンレス陰極の間に交互に多数配夕l
ルで、濃縮室、希釈室および電極室を形成した二つの電
気透析槽を構成し、各室毎に液を夫夫循環させながら種
々の濃度の食塩水について第4図のフローシートの如く
電気透析を行なう。Anion-cation exchange membrane (commercially available standard membrane, effective membrane area 2 d
rrj) were placed alternately between a platinum-plated hot titanium anode and a stainless steel cathode at 1% intervals.
Two electrodialysis tanks were constructed with a concentrating chamber, a diluting chamber, and an electrode chamber, and while the solution was being circulated in each chamber, electricity was applied to saline solutions of various concentrations as shown in the flow sheet in Figure 4. Perform dialysis.
第一透析槽■における滞留時間をτ1、脱塩速度をvl
とし、第二透析槽■における滞留時間をτ2、脱塩速度
をv2 とする。Residence time in the first dialysis tank ■ is τ1, desalination rate is vl
Assume that the residence time in the second dialysis tank ① is τ2, and the desalination rate is v2.
各透析槽は限界電流密度で操作し、貯槽C1の容量を希
釈室流量の1/10としたときの実験値による各透析槽
規模の比較例を表1に示す。Table 1 shows a comparative example of the scale of each dialysis tank based on experimental values when each dialysis tank is operated at the limiting current density and the capacity of the storage tank C1 is set to 1/10 of the dilution chamber flow rate.
この結果より、本発明の方法によれば、1段目の透析槽
の10%以下の規模の2段目の透析槽を組合わせること
により、透析効率を低下させることな(、比較的低濃度
における連続脱塩を行なうことができ、かつ濃縮液を再
利用可能な濃度まで濃縮できることが判るであろう。From this result, according to the method of the present invention, by combining the second-stage dialysis tank with a size of 10% or less of the first-stage dialysis tank, dialysis efficiency can be avoided (relatively low concentration It will be appreciated that continuous desalination can be carried out at 100 mL and the concentrate can be concentrated to a concentration that can be reused.
本発明はこのような食塩水の脱塩処理のみでなく、例え
ば金属メッキの廃液処理にも有効に利用しうろこと勿論
である。It goes without saying that the present invention can be effectively used not only for desalination treatment of saline water, but also, for example, for treatment of waste liquid from metal plating.
かくて本発明はこの種種電気透析法として誠に有効な方
法を提供しうるのである。Thus, the present invention can provide a truly effective method for this type of electrodialysis.
図面第1〜3図は従来の電気透析方法の代表的な例のフ
ローシートであり、第4図は本発明の方法の一実施例を
示すフローシートである。
第1〜4図においてA・・・・・・希釈室、B・・・・
・・濃縮室、C・・・・・・濃縮液貯槽、Q・・・・・
・原波処理溶液、R・・・・・・同溶液貯槽、L・・・
・・・処理水(脱塩水)貯槽、El、 E2・・・・・
・電極液貯槽、C1,C2・・・・・・濃縮液貯槽、S
・・・・・・処理水、U・・・・・・濃縮液。
第4図において1・・・・・・陰極、2・・・・・・陽
極、3・・・・・・陰極室、4・・・・・・陽極室、5
・・・・・・濃縮室、6・・・・・・希釈室(脱塩室)
、7・・・・・・陰イオン交換膜、8・・・・・・陽イ
オン交換膜。Figures 1 to 3 are flow sheets showing typical examples of conventional electrodialysis methods, and Figure 4 is a flow sheet showing one embodiment of the method of the present invention. In Figures 1 to 4, A...... dilution chamber, B...
・・Concentration chamber, C・・Concentrate storage tank, Q・・・・
- Raw wave processing solution, R...Same solution storage tank, L...
...Treatment water (desalinated water) storage tank, El, E2...
・Electrode solution storage tank, C1, C2... Concentrated solution storage tank, S
... Treated water, U ... Concentrate. In Fig. 4, 1... cathode, 2... anode, 3... cathode chamber, 4... anode chamber, 5
...Concentration room, 6...Dilution room (desalination room)
, 7... Anion exchange membrane, 8... Cation exchange membrane.
Claims (1)
上の電気透析槽を連結し、各透析槽各室毎に液の循環を
行ないながら透析処理を行ない、第一段又はそれ以後の
段の透析槽の濃縮室に通す濃縮液を更に次の段の透析槽
の希釈室に通すことにより、塩分濃度の低い液の脱塩を
行ない、かつ高濃度の濃縮液を得ることを特徴とする電
気透析方法。1 Two or more electrodialysis tanks having an electrode chamber, a dilution chamber, and a concentration chamber are connected, and the dialysis treatment is performed while circulating the liquid in each chamber of each dialysis tank, and the first stage or subsequent stages are performed. The concentrated solution passed through the concentration chamber of the dialysis tank is further passed through the dilution chamber of the next stage dialysis tank, thereby desalting the solution with a low salt concentration and obtaining a concentrated solution with a high concentration. Electrodialysis method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP52048214A JPS5933004B2 (en) | 1977-04-26 | 1977-04-26 | Electrodialysis method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP52048214A JPS5933004B2 (en) | 1977-04-26 | 1977-04-26 | Electrodialysis method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS53132481A JPS53132481A (en) | 1978-11-18 |
| JPS5933004B2 true JPS5933004B2 (en) | 1984-08-13 |
Family
ID=12797150
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP52048214A Expired JPS5933004B2 (en) | 1977-04-26 | 1977-04-26 | Electrodialysis method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5933004B2 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5638106A (en) * | 1979-09-06 | 1981-04-13 | Kiyoteru Takayasu | Electrolytic method |
| JPS5638105A (en) * | 1979-09-06 | 1981-04-13 | Kiyoteru Takayasu | Electrolytic cell |
| JP7163274B2 (en) * | 2019-12-27 | 2022-10-31 | 株式会社 東邦アーステック | How to obtain iodine-based substances |
| JP2025130394A (en) * | 2024-02-27 | 2025-09-08 | 栗田工業株式会社 | Method of operating a two-stage electrodeionization system |
-
1977
- 1977-04-26 JP JP52048214A patent/JPS5933004B2/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS53132481A (en) | 1978-11-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1347823B3 (en) | A method and apparatus for isolation of ionic species from a liquid | |
| US4969983A (en) | Apparatus and process for the removal of acidic and basic gases from fluid mixtures using bipolar membranes | |
| Strathmann | Ion-exchange membrane processes in water treatment | |
| EP3765174B1 (en) | Multi-stage bipolar electrodialysis system for high concentration acid or base production | |
| US5376250A (en) | Method of producing water having a reduced salt content | |
| EA025677B1 (en) | Low energy system and method of desalinating seawater | |
| JPH03207487A (en) | Water purification | |
| US20210276892A1 (en) | Electrodialysis processes using an organic solvent for separating dissolved species | |
| Bai et al. | Study on the recovery of ionic liquids from dilute effluent by electrodialysis method and the fouling of cation-exchange membrane | |
| Graillon et al. | Development of electrodialysis with bipolar membrane for the treatment of concentrated nitrate effluents | |
| JP3164970B2 (en) | Treatment of wastewater containing neutral salts of monovalent ions | |
| JPS5933004B2 (en) | Electrodialysis method | |
| CN108452681A (en) | A kind of electrodialysis plant for Industrial Wastewater Treatment | |
| JP2001191080A (en) | Electrodeionization apparatus and electrodeionization treatment method using the same | |
| JP4599668B2 (en) | Operation method of electrodeionization equipment | |
| JPS5850791B2 (en) | Device that changes salt concentration in liquid | |
| CHUKWU et al. | Concentration of vinegar by electrodialysis | |
| Audinos et al. | Electrodialysis | |
| Thampy et al. | Concentration of sodium sulfate from pickle liquor of tannery effluent by electrodialysis | |
| US3136710A (en) | Electrodialysis | |
| Balakina | Electrolysis in complex processing of leachate of solid waste landfills | |
| JP3473472B2 (en) | Treatment method for fluorine-containing water | |
| CN113233662A (en) | Integrated membrane process treatment system and method for seawater desalination concentrated seawater | |
| JP4660890B2 (en) | Operation method of electrodeionization equipment | |
| JPS5850763B2 (en) | water generator |