[go: up one dir, main page]

JPS5957951A - Method for manufacturing ZnS polycrystal - Google Patents

Method for manufacturing ZnS polycrystal

Info

Publication number
JPS5957951A
JPS5957951A JP57169046A JP16904682A JPS5957951A JP S5957951 A JPS5957951 A JP S5957951A JP 57169046 A JP57169046 A JP 57169046A JP 16904682 A JP16904682 A JP 16904682A JP S5957951 A JPS5957951 A JP S5957951A
Authority
JP
Japan
Prior art keywords
zns
pressure
polycrystal
transmittance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57169046A
Other languages
Japanese (ja)
Inventor
一柳 肇
柴田 憲一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57169046A priority Critical patent/JPS5957951A/en
Publication of JPS5957951A publication Critical patent/JPS5957951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イン技術分野 本発明はZnS多結晶体の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing ZnS polycrystals.

(口准術の背景 ZnS多結晶体は良好な赤外光透過性により、赤外線機
器の窓利、レンズ相等として多く用いられている。
(Background of the technique) ZnS polycrystals have good infrared light transmittance, so they are often used as windows and lenses in infrared equipment.

従来、ZnS多結晶体は主に化学蒸着法(Chcmi 
c a 1Vapoy Dcpos i t ion法
、以下CVD法と称する)により製造され市販されてい
る。この方法は、Znの蒸気と1(2Sガスの反応(Z
n −1−H2S →ZnS +)I2)に↓す、基板
上にZnS化合物の多結晶体を堆積させるもので、大型
の反応炉によれば数百am寸法の大型窓材も作製されて
いる。
Conventionally, ZnS polycrystals have been mainly produced by chemical vapor deposition (Chcmi).
It is manufactured by a CVD method (hereinafter referred to as CVD method) and is commercially available. This method involves the reaction of Zn vapor and 1(2S gas) (Z
n -1-H2S → ZnS +) I2) ↓ This method involves depositing polycrystalline ZnS compounds on a substrate, and large-scale window materials with dimensions of several hundred am are also produced using large-scale reactors. .

CVD法によるZnSの代表的な光透過特性を第1図1
に示す。波長2〜10μm範囲では70%以上の良好な
透過性を示すが、6μ?n付近に明瞭な不純物吸収ピー
クのあること、及び2μか2−0.4μ7ノ1の可視光
領域を含む短波長側では何らかの散乱粒子に起因すると
考えられる透過率の漸減傾向が認められることが特徴で
ある。
Typical light transmission characteristics of ZnS produced by CVD method are shown in Figure 1.
Shown below. It shows good transmittance of 70% or more in the wavelength range of 2 to 10 μm, but 6 μm? There is a clear impurity absorption peak near n, and on the short wavelength side including the visible light region of 2μ or 2-0.4μ7, there is a tendency for the transmittance to gradually decrease, which is thought to be caused by some scattering particles. It is a characteristic.

これらの吸収及び散乱による透過率の不均一性は、赤外
線機器用光学系の窓材あるいはレンス等として用いる場
合、使用する波長帯によっては有害であった。特に赤外
光と可視光の両方を用いるシステム(例えば、赤外線検
知機とテレヒヵメラを組み合せたシステム)用の光学素
子としては、可視光域の透過率の改善が望まれた。
Non-uniformity in transmittance due to absorption and scattering is harmful when used as a window material or lens of an optical system for infrared equipment, depending on the wavelength band used. In particular, as an optical element for a system that uses both infrared light and visible light (for example, a system that combines an infrared detector and a telephoto camera), it has been desired to improve the transmittance in the visible light range.

本発明者らは」−記の点に鑑み、CVD法によるZnS
多結晶体の光透過特性の改善方法を種々検討した結果、
吸収及び散乱が著しく減少する処理方法を見出した。
In view of the points mentioned above, the present inventors have developed ZnS by CVD method.
As a result of investigating various ways to improve the light transmission properties of polycrystalline materials, we found that
We have found a treatment method that significantly reduces absorption and scattering.

(ハ)発明の開示 即ち、CVI)法により得られたZnS多結晶体を熱間
静水圧プレスを用い、温度′750〜1050’(:、
圧力、1ooo気圧以上に昇温、加圧することにより6
μm付近の不純物吸収ピーク及び2〜04μmの散乱が
大幅に減少することを明らかにした。
(C) Disclosure of the Invention (CVI) A ZnS polycrystalline body obtained by the CVI method is heated at a temperature of '750 to 1050' (:,
By raising the temperature and pressurizing the pressure to 100 atmospheric pressure or more, 6
It was revealed that the impurity absorption peak near μm and the scattering in the range of 2 to 04 μm were significantly reduced.

この結果、熱間静水圧プレス(Hot Isostat
icPressing、以下HIPと称する。)後のZ
nSは外観的に無色透明となり、)I I P前の黄色
〜オレンジ色の外観色が全く変化してしまうことも判っ
た。
As a result, a hot isostat press (Hot Isostat)
icPressing, hereinafter referred to as HIP. ) after Z
It was also found that nS became colorless and transparent in appearance, and the yellow to orange appearance color before IIP completely changed.

こ5てiII I)について簡単に説明する。HIPと
は第2図に示す通り、[]的の試料4を封入容器5中に
旧人し、あるいは試料内部にガスの侵入の恐れがなく変
質、汚染の恐れもない場合にはそのまま、ヒーター6に
て加熱しながら封入容器あるいは試料全体を高圧カス7
(主として、アルゴン、窒素、ヘリウム等の不活性カス
)にて等方的に加圧するこちにより、空孔の1111:
い高密度の試料を得る方法である。
5.III I) will be briefly explained. As shown in Figure 2, HIP is a process in which a target sample 4 is placed in a sealed container 5, or if there is no risk of gas entering the sample and there is no risk of deterioration or contamination, the sample 4 is placed in a heater. While heating at step 6, the enclosure container or the entire sample is heated under high pressure at step 7.
By isotropically pressurizing (mainly inert gas such as argon, nitrogen, helium, etc.), the vacancies 1111:
This is a method to obtain high-density samples.

高圧ガスを用いるためヒーター6、断熱層8等は高圧容
器9の中に収納されている。
Since high pressure gas is used, the heater 6, heat insulating layer 8, etc. are housed in a high pressure container 9.

■IIP法は高温と、ガスによる等方的な加圧力とを同
時に被加工物に加えることができるため、空孔、巣等の
内部欠陥の除去効果が優れており、また型を用いたホッ
トプレス法に比較し複雑形状(例えばレンズ形状、球面
形状等)の製造が容易である特徴がある。この利点を生
かし、従来上として金属系材料で粉末の加圧焼結、鋳造
利の巣の除去、粉末焼結体(超硬合金等)の内部欠陥除
去等に用いられ、機械的特性の向」二に寄与している。
■The IIP method can apply high temperature and isotropic pressurizing force from gas to the workpiece at the same time, so it has an excellent effect of removing internal defects such as pores and voids. Compared to the press method, this method has the advantage of being easier to manufacture complex shapes (for example, lens shapes, spherical shapes, etc.). Taking advantage of this advantage, it has been conventionally used for pressure sintering of powder in metal-based materials, removing cavities from casting, and removing internal defects in powder sintered bodies (cemented carbide, etc.) to improve mechanical properties. ” contributes to the second.

本発明者らは、このFI I P法をCV I)法によ
り得られたZnS多結晶体材料に初めて適用し、著しく
光学的特性が改善されることを見出したものである。
The present inventors applied this FIIP method for the first time to a ZnS polycrystalline material obtained by the CVI) method and found that the optical properties were significantly improved.

本発明法によるH I P加工後のZnS多結晶体の代
表的な光透過特性を第1図2に示す。波長6μ772付
近にHJP加工前に認められた不純物吸収ピーク(Zn
1I、、によるものと考えられる)がか消滅しているこ
と及び0.4〜2μmの短波長側での透過率が大幅に改
善され、2〜10ILm範囲とほぼ同等の70%近い透
過率に達していることが明らかである。しかも、2〜1
0μη1範囲の透過率も全般に数%以」二改善されてい
る。更に注月すべき現象として、吸収端が11 I P
加工前に0.4μ〃zであったものが1−1 I P加
工後0.65μ772に変化しており、これが可視光透
過率の大幅な改善(目視で無色透明になる)に寄与して
いると考えられる。
FIG. 1 shows typical light transmission characteristics of the ZnS polycrystalline material after HIP processing according to the method of the present invention. The impurity absorption peak (Zn
1I, .) has disappeared, and the transmittance on the short wavelength side of 0.4 to 2 μm has been significantly improved, reaching a transmittance of nearly 70%, which is almost the same as in the 2 to 10 ILm range. It is clear that this has been achieved. Moreover, 2-1
The transmittance in the 0 μη range is generally improved by several percent or more. Another phenomenon that should be noted is that the absorption edge is 11 I P
What was 0.4μッz before processing changed to 0.65μ772 after 1-1 IP processing, which contributed to a significant improvement in visible light transmittance (visually colorless and transparent). It is thought that there are.

この改善効果の原因は未だ解明されていないが、不純物
としてはZnH2の除去、散乱要因としては微細空孔の
除去が効いているものと推察される。これらの不純物及
び微細空孔が除去される原因は、II I P加工時の
温度と圧力の相乗効果lこより、結晶粒界を通して不純
物及び微細空孔が拡散消失されるためではないかと考え
られる。
Although the cause of this improvement effect has not yet been elucidated, it is presumed that the removal of ZnH2 as an impurity and the removal of micropores as a scattering factor are effective. It is thought that the reason why these impurities and micropores are removed is that the impurities and micropores are diffused and disappeared through grain boundaries due to the synergistic effect of temperature and pressure during IIIP processing.

−1−記の効果を出すためには、温度と圧力の両方が必
要である。すなわち、CVD法により得られたZnS多
結晶体をHIPと同じ不活性雰囲気が2(ex゛Ar)
中ニテ、750〜1050℃ニテ単ニ昇温のみ行った(
焼鈍した)場合の代表的な光透過特性を第1図6に示す
。波長6μη2付近の不純物吸収ピークの減少は認めら
れるが、04〜2 lb 772の短波長側での透過率
が返って悪くなっており、外観的にも薄黄色に濁った半
透明なものになってしまう。
In order to produce the effect described in -1-, both temperature and pressure are necessary. That is, the ZnS polycrystal obtained by the CVD method was heated in the same inert atmosphere as HIP with 2(ex゛Ar)
The temperature was raised only in medium temperature and 750 to 1050℃ in single temperature (
Typical light transmission characteristics in the case of annealing are shown in FIG. 16. Although a decrease in the impurity absorption peak near the wavelength of 6 μη2 is observed, the transmittance on the short wavelength side of 04 to 2 lb 772 has worsened, and the appearance has become pale yellow, cloudy, and translucent. I end up.

ZnS多結晶体のHIP加工条件を詳細に検討した結果
、温度条件としては750〜1050’C1圧力条件と
しては500気圧以」二が、光学特性の改善効果、その
他の点て適当であることが判った。
As a result of a detailed study of the HIP processing conditions for ZnS polycrystals, it was found that temperature conditions of 750 to 1050'C, pressure conditions of 500 atm or more''2 are appropriate for improving optical properties and other aspects. understood.

すなわち、750’c未満の温度では拡散効果が不活発
てありましたZnSの軟化が不十分なため、圧力により
微細空孔が潰れ雑いのて改善効果が十分でない。一方、
1050′Cを越える温度では、粒成長が著しくなり機
械的強度の極端な低下が認められるため実用上不適当で
ある。また、500 気圧未満ては十分な改善効果が確
認できず、微細空孔を潰す圧力に足りないものと考えら
ノ]だ。
That is, at temperatures below 750'C, the diffusion effect is inactive.Since the softening of ZnS is insufficient, the micropores are crushed by pressure and the improvement effect is not sufficient. on the other hand,
Temperatures exceeding 1050'C are unsuitable for practical use because grain growth is significant and mechanical strength is extremely reduced. Furthermore, if the pressure is less than 500 atm, a sufficient improvement effect cannot be confirmed, and it is considered that the pressure is insufficient to collapse the micropores.

実施例 CVD法により得られたZnS多結晶体を20×20X
2+u+tに切り出し、両面を研磨加工し0.2〜20
μm波長範囲の透過スペクトルを測定した。
Example: ZnS polycrystal obtained by CVD method at 20×20X
Cut out 2+u+t and polish both sides to 0.2~20
Transmission spectra in the μm wavelength range were measured.

第1図1と同様のグラフを得た。この試料をArガスを
圧力媒体とした■11 P装置にてカプセルなしで85
0 ’C11500気圧、60分の条件にて加工した。
A graph similar to FIG. 1 was obtained. This sample was processed at 85°C without a capsule using a 11P apparatus using Ar gas as a pressure medium.
Processing was carried out under conditions of 0'C, 11,500 atmospheres, and 60 minutes.

加工後、表面を再び研磨加工し加工前と同様の透過スペ
クトルを測定した。この結果、第1図2と同様のグラフ
を得、外観的にも無色透明のZnS多結晶体が得られた
After processing, the surface was polished again and the same transmission spectrum as before processing was measured. As a result, a graph similar to that shown in FIG. 1 and 2 was obtained, and a ZnS polycrystal that was colorless and transparent in appearance was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法及び本発明法による光学特性4改善効
果の代表例を示す光透過スペクトルチャートを示し、第
2図はI−11P法の一例を示す。 1:cvl)法によるZnSの透過スペクトル2:本発
明法によるZnSの透過スペクトル3 : Arガス中
焼鈍後のZnSの透過スペクトル4:試  料 5:刺
入容器 6:ヒーター手続補正書 1.事件の表示 昭和57年特許願第169046号 2発明の名称 ZnS多結晶体の製造方法 3 補正をする者 事件との関係   特許出願人 住所   大阪市東区北浜5丁目15番地名称(213
)住友電気工業株式会社 社 長  川  上  哲  部 生成 理 人 住所    大阪市此花区島屋1丁目1番3号住友電気
工業株式会社内 6補正の対象 図面 7補正の内容 図面、第1図及び第2図を別紙の通り訂正します。
FIG. 1 shows a light transmission spectrum chart showing a typical example of the effect of improving optical properties 4 by the conventional method and the method of the present invention, and FIG. 2 shows an example of the I-11P method. 1: Transmission spectrum of ZnS by cvl) method 2: Transmission spectrum of ZnS by the method of the present invention 3: Transmission spectrum of ZnS after annealing in Ar gas 4: Sample 5: Piercing container 6: Heater procedure amendment document 1. Display of the case 1982 Patent Application No. 169046 2 Name of the invention Process for producing ZnS polycrystalline material 3 Person making the amendment Relationship to the case Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (213
) President of Sumitomo Electric Industries, Ltd. Tetsu Kawakami Department Director Address 1-1-3 Shimaya, Konohana-ku, Osaka City Sumitomo Electric Industries, Ltd. Drawings subject to 6 amendments Contents of 7 amendments Drawings, Figures 1 and 2 Correct the diagram as shown in the attached sheet.

Claims (2)

【特許請求の範囲】[Claims] (1)化学蒸着法により得られたZnS多結晶体を熱間
静水圧プレスにより昇温加圧することを特徴とするZn
S多結晶体の製造方法。
(1) Zn characterized in that a ZnS polycrystal obtained by a chemical vapor deposition method is heated and pressurized by hot isostatic pressing.
Method for producing S polycrystal.
(2)ZnS多結晶体の熱間静水圧プレス条件が、温度
750〜1050℃、圧力 500気圧以上であること
を特徴とする特許請求の範囲第1項記載のZnS多結晶
体の製造方法。
(2) The method for producing a ZnS polycrystalline body according to claim 1, wherein the hot isostatic pressing conditions for the ZnS polycrystalline body are a temperature of 750 to 1050°C and a pressure of 500 atm or more.
JP57169046A 1982-09-27 1982-09-27 Method for manufacturing ZnS polycrystal Pending JPS5957951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169046A JPS5957951A (en) 1982-09-27 1982-09-27 Method for manufacturing ZnS polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169046A JPS5957951A (en) 1982-09-27 1982-09-27 Method for manufacturing ZnS polycrystal

Publications (1)

Publication Number Publication Date
JPS5957951A true JPS5957951A (en) 1984-04-03

Family

ID=15879313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169046A Pending JPS5957951A (en) 1982-09-27 1982-09-27 Method for manufacturing ZnS polycrystal

Country Status (1)

Country Link
JP (1) JPS5957951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134309A (en) * 2009-03-13 2009-06-18 Sumitomo Electric Ind Ltd Polycrystalline zinc sulfide optical component and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132046A (en) * 1979-03-31 1980-10-14 Sumitomo Electric Ind Ltd Manufacture of high density poly-crystal
JPS57135723A (en) * 1980-12-29 1982-08-21 Raytheon Co Polycrystal zinc sulfide and zinc selenide products with improved optical properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132046A (en) * 1979-03-31 1980-10-14 Sumitomo Electric Ind Ltd Manufacture of high density poly-crystal
JPS57135723A (en) * 1980-12-29 1982-08-21 Raytheon Co Polycrystal zinc sulfide and zinc selenide products with improved optical properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134309A (en) * 2009-03-13 2009-06-18 Sumitomo Electric Ind Ltd Polycrystalline zinc sulfide optical component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5075267A (en) Light transmitting yttria sintered body and its preparation
JP4304733B2 (en) Polycrystalline zinc sulfide optical component and manufacturing method thereof
US11667579B2 (en) Polycrystalline chalcogenide ceramic material
US4761390A (en) Optically transparent yttrium oxide
GB2125023A (en) Optical element especially of zinc sulphide or selenide having improved optical quality
JPH02180714A (en) Preparation of optically- transparent yttrium oxide
JPS5957951A (en) Method for manufacturing ZnS polycrystal
GB2056496A (en) Forming surface layers of hg/cd/te alloy on cd/te substrate
US5658504A (en) Method of producing an infrared transmitting barium fluoride sintered body
JPH0218354A (en) Transparent spinel sintered body and its manufacturing method
JP3000685B2 (en) Translucent yttria sintered body and method for producing the same
EP0447390B1 (en) Transparent polycrystalline body with high ultraviolet transmittance, process for making, and applications thereof
JPH01100057A (en) Manufacture of superconductive material
US4282024A (en) Apparatus for making polycrystalline articles
JPH04291201A (en) Zinc sulfide body improved light transmissivity and mechanical property
JP2952978B2 (en) Transparent yttria sintered body and method for producing the same
RU2559974C1 (en) Method of producing calcium fluoride-based optical ceramic and optical ceramic made using said method
JP5876798B2 (en) ZnSe polycrystal and method for producing the same
JP4539780B2 (en) Polycrystalline zinc sulfide optical component and manufacturing method thereof
JPH04202051A (en) Transparent ggg sintered body and its production
JPS6350285B2 (en)
JPS5826072A (en) Manufacture of magnesium fluoride polycrystal body
JPS60176969A (en) Manufacture of plzt
JP2015141202A (en) Zinc selenide optical element and manufacturing method thereof