[go: up one dir, main page]

JPS5962396A - Treatment of organic waste water containing ammonia - Google Patents

Treatment of organic waste water containing ammonia

Info

Publication number
JPS5962396A
JPS5962396A JP57169896A JP16989682A JPS5962396A JP S5962396 A JPS5962396 A JP S5962396A JP 57169896 A JP57169896 A JP 57169896A JP 16989682 A JP16989682 A JP 16989682A JP S5962396 A JPS5962396 A JP S5962396A
Authority
JP
Japan
Prior art keywords
water
ammonia
stage
treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57169896A
Other languages
Japanese (ja)
Other versions
JPH0135719B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57169896A priority Critical patent/JPS5962396A/en
Publication of JPS5962396A publication Critical patent/JPS5962396A/en
Publication of JPH0135719B2 publication Critical patent/JPH0135719B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/008Driving elements, brakes, couplings, transmissions specially adapted for rotary or oscillating-piston machines or engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To simplify considerably process by treating biologically org. waste water contg. ammonia, evaporating and concentrating the treated water, supplying the condensed water of the evaporated steam to an ammonia stripping stage, and using the outflow water of the stage as the highly treated water of the above-described org. waste water. CONSTITUTION:Org. waste water 1 contg. ammonia is biologically treated in a biological treatment stage 2, and the activated sludge slurry 3 flowed out thereof is subjected to a solid-liquid sepn. in a solid-liquid sepn. stage 4. Separated water 7 is preheated in a heat exchanger 8 and is then fed to an evaporator 9'. Evaporated steam 10 is compressed and heat-up with a steam compressor 11, and is utilized as a heat source for the indirect heating section 12 of the evaporator 9 and is made into condensed water 13. The water 13 is fed to an ammonia stripping stage 14, and is removed of the remaining ammonia, whereby highly treated water 15 is produced. The water is further cooled with the heat exchanger 8 and is utilized.

Description

【発明の詳細な説明】 本発明はし尿、各種産業廃水などアンモニア含有有機性
廃水の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating ammonia-containing organic wastewater such as human waste and various industrial wastewaters.

従来のし尿処理において最も進歩したプロセスとして評
価され、実施例が激増しているプロセスは、例えばし尿
に希釈水(10倍量程度)を添加して生物学的硝化脱窒
処理したのち処理水を凝集沈殿、砂沢過し、さらにオゾ
ン処理、活性炭吸着後、滅菌処理するという方法である
A process that has been evaluated as the most advanced in conventional human waste treatment, and the number of examples of which has been rapidly increasing, is, for example, adding dilution water (approximately 10 times the amount) to human waste, performing biological nitrification and denitrification treatment, and then using the treated water. This method involves coagulating sedimentation, sand filtering, ozone treatment, activated carbon adsorption, and sterilization.

このプロセスは現在力れたプロセスとしてFF 価され
ているが、厳しい視点から技術評価すると、次のような
重大欠点が本質的に内在していることを本発明者は認識
するに至った。
Although this process is currently regarded as a powerful process, upon technical evaluation from a strict viewpoint, the present inventors have come to realize that it inherently has the following serious drawbacks.

すなわち。Namely.

(i)数多くの単位操作を直列的に並べているため、プ
ロセスが複雑で維持管理性も悪い。
(i) Since many unit operations are arranged in series, the process is complicated and maintenance is poor.

■ 凝集沈殿又は凝集浮上工程に多量の無機凝集剤の添
加を必要とし、資源多消費であるほか離脱水性の凝集沈
殿汚泥が発生し、その処理・処分力に@[Q点となると
同時に多大の経費を要する。′まだ、凝集汚泥の存在は
コンポスト製品の品質を低下させる。
■ It is necessary to add a large amount of inorganic flocculant to the coagulation-sedimentation or coagulation-floating process, which consumes a large amount of resources and generates aqueous coagulation-sediment sludge, which requires a large amount of processing and disposal power. Requires expenses. ′However, the presence of flocculated sludge reduces the quality of the compost product.

■ オゾン発生電力に約25IαVfl/Ky−Q、と
いう多址の電力を必要とし、寸だ活性炭処理に500〜
600円/kl−L尿という高額の経費を要する。
■ Ozone generation requires a large amount of power, approximately 25 IαVfl/Ky-Q, and activated carbon treatment requires approximately 500 IαVfl/Ky-Q.
It requires a high cost of 600 yen/kl-L urine.

本発明者は、このような現状に強い疑問を持ち、J1記
従来プロセスの諸欠点を解消しイ4する方法を開発する
べく検討を進め本発明を完成した。
The present inventor had strong doubts about the current state of the art, and conducted studies to develop a method to eliminate the various drawbacks of the conventional process described in J1 and A4, and completed the present invention.

本発明の効果は驚くべきものと言ってよく、従来の凝集
沈殿、砂濾過、オゾン処理、活性炭吸着、滅菌処理の各
工程が全く不要になり、しかも処理水質は著しく向上す
る。さらに、生物処理工程の運転管理も容易になり、所
要容積も節減される。
The effects of the present invention can be said to be surprising; the conventional steps of coagulation and sedimentation, sand filtration, ozonation, activated carbon adsorption, and sterilization are completely unnecessary, and the quality of treated water is significantly improved. Furthermore, operational management of the biological treatment process becomes easier and the required volume is reduced.

すなわち本発明は、アンモニア含有有機性廃水を生物処
理したのち、該生物処理水を蒸発濃縮処理し、該蒸発水
蒸気の凝縮水をさらにアンモニアストリノビング工程に
供給し、該工程流出水を前記有機性廃水の高度処理水と
なすことを′[、〒徴とするアンモニア含有有機性廃水
の処理方法である。
That is, in the present invention, after biologically treating ammonia-containing organic wastewater, the biologically treated water is subjected to evaporative concentration treatment, the condensed water of the evaporated steam is further supplied to an ammonia strinovating process, and the effluent of the process is treated with the organic wastewater. This is a method for treating ammonia-containing organic wastewater, which is characterized by highly treated wastewater.

以下に、本発明の一実施態様を図面を参照しながら説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

除’lJt l/たし尿(浄化槽汚泥が混入している場
合が多い)1を、これに希釈水を添加することんく生物
学的硝化脱窒床法又は生物学的硝化法による生物処理工
程2に流入せしめ主としてBOI)、NH3−Nなどの
窒素成分を大部分除去する。生物処理工程2に希釈水を
多1[に添加することは、水温の低下を招くばかりでな
く蒸発濃縮対象液量が増加するので極めて好−4しくな
い。
A biological treatment process using the biological nitrification denitrification bed method or biological nitrification method, in which human waste (often contaminated with septic tank sludge) is added to it with dilution water. 2 to remove most of the nitrogen components such as BOI) and NH3-N. Adding a large amount of dilution water to the biological treatment step 2 is extremely undesirable because it not only causes a drop in water temperature but also increases the amount of liquid to be evaporated and concentrated.

しかして、生物処理工程2から流出する活性汚泥ヌラI
J −31r:I、遠心ム゛↓縮機などを使用する固液
分離工程4において固液分離され、分離汚泥5の大部分
は返送汚泥5′として生物処理工程2にリサイクルされ
、余剰活性汚泥6はフィルタプレス、スクリュープレス
などの汚泥脱水工程(図示せず)で処理される。
Therefore, activated sludge nulla I flowing out from biological treatment process 2
J-31r: I, solid-liquid separation is performed in the solid-liquid separation process 4 using a centrifugal compressor, etc., and most of the separated sludge 5 is recycled to the biological treatment process 2 as return sludge 5', and excess activated sludge is 6 is processed in a sludge dewatering process (not shown) using a filter press, screw press, or the like.

生物処理水7は、BOD、窒≠成分は良好に除去されて
いるが非生物分解性COD、リン酸、色度、有機性窒素
が多量に残留し、またアンモニア性窒素もか在り残留し
ている。このため、従来プロセスでは生物処理水7に対
し凝集沈殿、砂f過、オゾン処理、活性炭処理を行ない
COD 、色度、リン酸、有機性窒素を除去しているの
であるが、本発明はこのような問題点の多い常套手段は
採用しない。
In biologically treated water 7, although BOD and nitrogen components have been successfully removed, large amounts of non-biodegradable COD, phosphoric acid, chromaticity, and organic nitrogen remain, and ammonia nitrogen also remains. There is. For this reason, in the conventional process, the biologically treated water 7 is subjected to coagulation sedimentation, sand filtration, ozone treatment, and activated carbon treatment to remove COD, chromaticity, phosphoric acid, and organic nitrogen. Do not use conventional methods that have many problems.

すなわち、生物処理水7を熱交換器8にて予熱したのち
、蒸発濃縮工程9の蒸発缶9′に供給し蒸発水蒸気10
を蒸気圧縮機11によって圧縮昇温したのち、蒸発缶9
′内の間接加熱部12に導き、水蒸気の凝縮潜熱を蒸発
用加熱源として再利用する。
That is, after the biologically treated water 7 is preheated in the heat exchanger 8, it is supplied to the evaporator 9' of the evaporation concentration step 9, and the evaporated water vapor 10 is
After being compressed and heated by the vapor compressor 11, the evaporator 9
', and the latent heat of condensation of the water vapor is reused as a heat source for evaporation.

凝縮水13はアンモニアのストリノビング工程14に流
入したのち熱交換器8を経由し高度処理水15となる。
The condensed water 13 flows into the ammonia strinobing step 14 and then passes through the heat exchanger 8 to become highly treated water 15.

凝縮水13は蒸留水であるから無色透明でCOD、 B
OD、  リン酸、SSは痕跡量であり、し尿の無希釈
処理水として従来プロセスでは望むべくもない最高級の
水質を示すが、生物処理水7中のアンモニア性窒素は蒸
発しやすいだめ、凝縮水13巾に含丑れてくるのでスト
リノピング工程14によりアンモニアを除去する。アン
モニアは温度が高いほど放散されやすいが、本発明では
凝縮水13の温度は約100℃(蒸発缶9′内の圧力は
ほぼ常圧)と高いので、非常に効率的にアンモニアがス
トリノピ/グ除去される。
Since the condensed water 13 is distilled water, it is colorless and transparent and COD, B
OD, phosphoric acid, and SS are in trace amounts, and the water quality is of the highest quality that could not be expected in conventional processes as undiluted human waste treated water. However, ammonia nitrogen in biologically treated water 7 easily evaporates and condenses. Since the water is contained in the water, the ammonia is removed by the strinoping step 14. The higher the temperature, the more easily ammonia is dissipated, but in the present invention, the temperature of the condensed water 13 is as high as about 100°C (the pressure inside the evaporator 9' is almost normal pressure), so ammonia is very efficiently dissipated into the Strinopyrite/Group. removed.

一方、アンモニア含有水蒸気18は、硫酸かとにヨルア
ンモニア吸収工程、燃焼によるアンモニア分解工程(い
ずれも図示せず)などで処分される。
On the other hand, the ammonia-containing steam 18 is disposed of through a sulfuric acid or ioammonia absorption step, an ammonia decomposition step by combustion (none of which are shown), and the like.

次に、この実施態様には重要概念の一つとして、次の点
が含まれる。すなわち、し尿1を生物処理する際に発生
する微生物酸化熱(本発明者の実測によれば30000
〜40000に高し′n−シ尿の発熱量がある)によっ
て、生物処理槽内液温、したがって、生物処理水7の温
度が、流入するし尿1の温度よりも20〜30℃上昇す
る効果に着目し、微生物酸化熱によ−・て温度上昇され
たものを蒸発濃縮することが重要概念と寿っている。こ
のことにより、蒸発用の外部熱エネルギーが節約できる
Next, this embodiment includes the following points as one of the important concepts. In other words, the microbial oxidation heat generated when human waste 1 is biologically treated (according to the inventor's actual measurements, 30,000
The effect is that the temperature of the liquid in the biological treatment tank, and therefore the temperature of the biologically treated water 7, rises by 20 to 30 degrees Celsius over the temperature of the inflowing human waste 1. Focusing on this, evaporation and concentration of materials whose temperature has been raised by microbial oxidation heat has been an important concept. This saves external thermal energy for evaporation.

しかして、少量の蒸発源m液16は噴緋燃焼、蒸発乾固
々との任意の処分工程17にて処分される。
Therefore, a small amount of the evaporation source m liquid 16 is disposed of in an optional disposal process 17 including combustion, evaporation and drying.

以−ヒのような実施態様では、蒸発濃縮工程9として蒸
気圧縮法によるものを採用した場合を説明したが、多重
効用法又は蒸気圧縮法と多重効用法の併用によるものと
しても効果的であることは言うまでもない。
In the above-described embodiments, the vapor compression method is used as the evaporation concentration step 9, but it is also effective to use the multiple effect method or a combination of the vapor compression method and the multiple effect method. Needless to say.

以上の如き本発明の重要効果は、下記のとおりである。The important effects of the present invention as described above are as follows.

■ アンモニアなどの窒素成分が非常に合理的に除去さ
れるほか、従来プロセスでは望むべくもない最高級の処
理水質が得られると同時に、プロセスも著しく簡略化さ
八る。
■ Nitrogen components such as ammonia are removed in a very rational manner, and the highest quality treated water that could not be expected with conventional processes is obtained, and at the same time, the process is significantly simplified.

(ン)凝集剤、オゾン発生電力、活性炭、滅菌剤、活性
炭の再生用エネルギーのすべてが不要になる。
(n) Flocculants, ozone generation electricity, activated carbon, sterilizers, and activated carbon regeneration energy are all unnecessary.

■ 難脱水性汚泥として周知の凝集汚泥(Al(OH)
3Fe (OH)3 を主体とする)が全く発生し々い
ので、処理すべき汚泥は余剰生物汚泥だけですみ汚泥処
理・処分経費が著しく節減できる。
■ Coagulated sludge (Al(OH)
Since 3Fe (OH)3 is the main component) is not generated at all, the sludge that must be treated is only surplus biological sludge, resulting in a significant reduction in sludge treatment and disposal costs.

■ アンモニアの完全な除去を生物処理工程のみで達成
する必要がなく、アンモニアヌトリノピング工程で補助
するので、生物処理工程の運転管理が容易であるほか、
生物処理工程の所要芥積も大幅に節減できろ。
■ Complete removal of ammonia does not need to be achieved through the biological treatment process alone; it is assisted by the ammonia nutrinoping process, making the operational management of the biological treatment process easy.
The amount of waste required for the biological treatment process can also be significantly reduced.

■ 脱水ケーキ中に難脱水性無機凝集汚泥が混入してい
ないので、脱水ケーキの発熱量が約4000 ki/に
7−D、S、と高く、含水率も65チ以下にすることが
容易であるため燃料的性状に秀れている。従って、自燃
するので重油などの補助燃料を必要としない13この効
果が省エネルギーに大きく寄与する。
■ Since the dewatered cake does not contain inorganic flocculated sludge that is difficult to dewater, the calorific value of the dehydrated cake is as high as approximately 4000 ki/7-D, S, and the water content can be easily reduced to 65 ki or less. Because of this, it has excellent fuel properties. Therefore, since it self-combusts, it does not require auxiliary fuel such as heavy oil.13 This effect greatly contributes to energy saving.

■ 蒸発対象水け、生物処理水であり、し尿を直接蒸発
処理するのではないから臭気発生、アンモニア、揮発性
有機酸の飛散がなく、しかも、し尿中の高濃度のSS成
分による蒸発缶内の目詰t リ、および液の流動不能ト
ラブルも起きない。
■ The water to be evaporated is biologically treated water, and the human waste is not directly evaporated, so there is no odor generation, ammonia, or volatile organic acids scattering, and the high concentration of SS components in the human waste inside the evaporator No problems such as clogging or inability to flow the liquid.

■ 従来のし尿処理水の塩素イオン濃度は300〜30
00 Ir7/を程度と高いため山林・田畑のかんがい
用水にすることは塩類障害のため困難であるが、本発明
の処理水塩素イオンはO〜1mg/L程度であるため、
容易にがんが゛、へ用水に再利用できる、。
■ The chloride ion concentration of conventional human waste water is 300-30
00 Due to the high level of Ir7/, it is difficult to use the water for irrigation in mountains and fields due to salt damage, but since the chlorine ions in the treated water of the present invention are about 0 to 1 mg/L,
Water can be easily reused for cancer treatment.

■ さらVこ、し尿をIM接熱蒸発処理ると、し尿中に
存在する(Gに化物、有8!酸のため蒸発缶の腐蝕の可
能性が大きいが、本発明は、生物処理によって硫化物及
び有機酸を除去しであるので、上記の問題は解消される
■ Furthermore, when human waste is subjected to IM direct heat evaporation treatment, there are compounds present in the human waste (G).There is a high possibility of corrosion of the evaporator due to the acid, but the present invention eliminates sulfurization by biological treatment. Since organic acids and organic acids are removed, the above problem is solved.

次に、本発明の実施例について記す。Next, examples of the present invention will be described.

実施例 神奈川基糸し尿処理場に搬入されるし尿(浄化槽汚泥1
0係混入)をロータリスクリーンによって除渣したのち
、し尿処理量1 u/a+の規模で硝化液循環型の生物
学的硝化脱窒素工程VCより無希釈処理した。生物学的
硝化脱窒累工程のMLSSは18000〜20000 
rng/l 、、滞留日数3日間とした。生物処理槽内
の水温は微生物酸化熱のため33〜42℃となった。
Example: Human waste transported to the Kanagawa Moito human waste treatment plant (septic tank sludge 1)
After removing the sludge using a rotary screen, the waste was treated without dilution in a biological nitrification and denitrification process VC with nitrification liquid circulation at a processing volume of 1 u/a+. MLSS of biological nitrification and denitrification process is 18,000 to 20,000
rng/l, the residence time was 3 days. The water temperature in the biological treatment tank was 33 to 42°C due to heat of microbial oxidation.

生物処理槽流出スラリーの固液分離には無薬注型遠心濃
縮機(巴工業製品)を使用し、濃縮汚泥1!If5〜6
係)の大部分を脱窒槽にリサイクルさせ、一部を余剰汚
泥として脱水工程に供給した。
A chemical-free pouring type centrifugal concentrator (Tomoe Kogyo products) is used for solid-liquid separation of the biological treatment tank effluent slurry, resulting in a concentration of 1! If5~6
Most of the sludge was recycled to the denitrification tank, and a portion was supplied to the dewatering process as surplus sludge.

脱水機には全自動フィルタプレスを採用した。A fully automatic filter press was used for the dehydrator.

脱水ケーキの含水率は63〜64チであり、ケーキ発熱
量は約4000 kd/Kp−D、S、であり、流動層
焼却炉で容易に自燃した。
The moisture content of the dehydrated cake was 63 to 64 inches, the cake calorific value was about 4000 kd/Kp-D,S, and it easily self-combusted in a fluidized bed incinerator.

しかして、遠心濃縮分離水(SS100〜120ηA)
を蒸気圧縮蒸発缶に供給して濃縮比50倍に濃縮し、2
0酢の濃縮液と180ノ/日の水蒸気凝縮水を得て、次
にスチームによるアンモニアストリソビング工程にて残
留アンモニアを除去した。
Therefore, centrifugal concentrated separated water (SS100-120ηA)
is supplied to a vapor compression evaporator and concentrated to a concentration ratio of 50 times, and
A concentrated solution of 0 vinegar and 180 g/day of steam condensate were obtained, and then residual ammonia was removed in a steam ammonia stripping step.

除渣し尿、生物学的硝化脱窒素処理水、凝縮水およびス
トリノビング工程流出水の水質は次表のとおりであった
The water quality of the filtered human waste, biological nitrification and denitrification treated water, condensed water, and effluent from the Strinobing process is shown in the table below.

(単位はすべて・す2りA)(All units are 2 A)

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施態様を示すフローシートである。 1・・・し尿、2・・・生物処理工程、3・・・活性汚
泥スラリー、4・・・固液分離工程、5・・・分離汚泥
、5′・・・返送汚泥、6・・・余剰活性汚泥、7・・
・生物処理水、8・・・熱交換器、9・・蒸発濃縮工程
、9′・・・蒸発缶、10・・・蒸発水蒸気、11・・
・蒸気圧縮機、12・・・間接加熱部、13・・・凝縮
水、14・・・ス) IJノビング工程、15・・・高
度処理水、16・・・蒸発濃縮液、17・・・処分工程
、18・・・アンモニア含有水蒸気。 特許出願人 荏原インフィルコ株式会社代理人弁理士 
端  山  五  − 同  弁理士 千  1)   稔
The drawings are flow sheets illustrating embodiments of the invention. 1... Human waste, 2... Biological treatment process, 3... Activated sludge slurry, 4... Solid-liquid separation process, 5... Separated sludge, 5'... Returned sludge, 6... Surplus activated sludge, 7...
・Biological treatment water, 8... Heat exchanger, 9... Evaporation concentration process, 9'... Evaporator, 10... Evaporation steam, 11...
・Vapor compressor, 12...Indirect heating section, 13...Condensed water, 14...S) IJ nobbing process, 15...Highly treated water, 16...Evaporation concentrate, 17... Disposal step, 18...Ammonia-containing steam. Patent applicant: Patent attorney representing Ebara Infilco Co., Ltd.
Go Hayama - Patent attorney Sen 1) Minoru

Claims (1)

【特許請求の範囲】 ] アンモニア含有有機性廃水を生物処理したのち、該
生物処理水を蒸発濃縮処理し、該蒸発水蒸気の凝縮水を
さらにアンモニアストリノピング工程に供給し、該工程
流出水を前記有機性廃水の高度処理水となすことを特徴
とするアンモニア含有有機性廃水の処理方法。 2 前記生物処理工程が、少なくとも生物学的硝化反応
が生起する工程である特許請求の範囲第1項記載の方法
。 3、 前記蒸発濃縮工程が、間接加熱型のものである特
許請求の範囲第1項又は第2項記載の方法。
[Claims]] After biologically treating ammonia-containing organic wastewater, the biologically treated water is subjected to evaporative concentration treatment, the condensed water of the evaporated water vapor is further supplied to an ammonia strinoping process, and the process effluent is A method for treating ammonia-containing organic wastewater, which is characterized in that the organic wastewater is treated as highly treated water. 2. The method according to claim 1, wherein the biological treatment step is a step in which at least a biological nitrification reaction occurs. 3. The method according to claim 1 or 2, wherein the evaporation concentration step is of an indirect heating type.
JP57169896A 1982-09-30 1982-09-30 Treatment of organic waste water containing ammonia Granted JPS5962396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169896A JPS5962396A (en) 1982-09-30 1982-09-30 Treatment of organic waste water containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169896A JPS5962396A (en) 1982-09-30 1982-09-30 Treatment of organic waste water containing ammonia

Publications (2)

Publication Number Publication Date
JPS5962396A true JPS5962396A (en) 1984-04-09
JPH0135719B2 JPH0135719B2 (en) 1989-07-26

Family

ID=15894968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169896A Granted JPS5962396A (en) 1982-09-30 1982-09-30 Treatment of organic waste water containing ammonia

Country Status (1)

Country Link
JP (1) JPS5962396A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160597A (en) * 1983-03-04 1984-09-11 Ebara Infilco Co Ltd Process for disposing night soil
WO2001032561A1 (en) * 1999-11-02 2001-05-10 Shell Internationale Research Maatschappij B.V. Process for the purification of industrial waste water from a propylene oxide production process
KR100449417B1 (en) * 2002-09-12 2004-09-22 주식회사 세화엔스텍 Combined treatment for removal of nitrogen from mixed wastewater
WO2006094437A1 (en) * 2005-02-03 2006-09-14 Depei Liu A method and an multi-effect evaporation for waste water of alkylene oxides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160597A (en) * 1983-03-04 1984-09-11 Ebara Infilco Co Ltd Process for disposing night soil
WO2001032561A1 (en) * 1999-11-02 2001-05-10 Shell Internationale Research Maatschappij B.V. Process for the purification of industrial waste water from a propylene oxide production process
US6712882B1 (en) 1999-11-02 2004-03-30 Shell Oil Company Process for the purification of industrial waste water from a propylene oxide production process
KR100742017B1 (en) 1999-11-02 2007-07-23 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 Process for Purifying Industrial Wastewater from Propylene Oxide Manufacturing Process
KR100449417B1 (en) * 2002-09-12 2004-09-22 주식회사 세화엔스텍 Combined treatment for removal of nitrogen from mixed wastewater
WO2006094437A1 (en) * 2005-02-03 2006-09-14 Depei Liu A method and an multi-effect evaporation for waste water of alkylene oxides

Also Published As

Publication number Publication date
JPH0135719B2 (en) 1989-07-26

Similar Documents

Publication Publication Date Title
CN101734820B (en) Method for treating high slat-containing wastewater
JP3477526B2 (en) Wastewater recovery equipment
CN1155521A (en) Methods of treating waste gas and sewage
KR20200055191A (en) Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater
JP4018667B2 (en) Desalination method and apparatus for salt-containing treated water
CN210620514U (en) A flexible landfill leachate treatment system
KR102083441B1 (en) Waste water treatment method containing organic solvent
KR100467396B1 (en) Discharged water treatment method
JPS5962396A (en) Treatment of organic waste water containing ammonia
JPH0114836B2 (en)
JPH0124558B2 (en)
CN206156979U (en) High processing apparatus who contains salt difficult degradation saccharin industrial waste water waste gas
JPH0114833B2 (en)
JPH0114839B2 (en)
JPS5919598A (en) Treatment of organic liquid waste
JPS6366593B2 (en)
JPS5962391A (en) Treatment of organic waste water
JPH0114835B2 (en)
KR102787494B1 (en) A method for purifying wastewater with high salinity and purification system using the same
JPH0114832B2 (en)
JPS6121792A (en) Treatment of organic waste water
JPS58223498A (en) Treatment of organic waste water
JPH0114838B2 (en)
CA2114583C (en) Waste activated sludge treatment system
JPH0114840B2 (en)