JPS645634B2 - - Google Patents
Info
- Publication number
- JPS645634B2 JPS645634B2 JP3090885A JP3090885A JPS645634B2 JP S645634 B2 JPS645634 B2 JP S645634B2 JP 3090885 A JP3090885 A JP 3090885A JP 3090885 A JP3090885 A JP 3090885A JP S645634 B2 JPS645634 B2 JP S645634B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- nach
- coo
- heat
- sodium acetate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005338 heat storage Methods 0.000 claims description 30
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 26
- 239000011232 storage material Substances 0.000 claims description 19
- 235000017281 sodium acetate Nutrition 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 claims description 8
- 229940087562 sodium acetate trihydrate Drugs 0.000 claims description 8
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 5
- 239000001632 sodium acetate Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 description 10
- 238000004781 supercooling Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
Description
産業上の利用分野
本発明は、酢酸ナトリウム3水塩を主体とする
潜熱蓄熱材に関するものである。
従来の技術
従来より酢酸ナトリウム3水塩
(NaCH3COO・3H2O融点58℃)は蓄熱量は大き
く、たとえば暖房用の蓄熱材として有望視されて
いた。しかしNaCH3COO・3H2Oは一度融解す
ると、非常に過冷却状態になりやすため、その融
解液は、通常−20℃程度まで冷却されないと過冷
却が破れない。そして、過冷却状態は、凝固点ま
で冷却されても、融解潜熱を放出せず、その温度
以下に冷却されてしまう現象であるから、融解潜
熱を利用した蓄熱材にとつて致命的欠点となる。
この問題を解決するために、NaCH3COO・
3H2Oの結晶化を促進する各種の添加物が提案さ
れている(特開昭57―147580)。
発明が解決しようとする問題点
しかし現在提案されている結晶核形成材の耐熱
温度は85℃以下であるので、これらの結晶核形成
材を含有したNaCH3COO・3H2Oを90℃程度で
加熱すると、短期間にその蓄熱材としての機能を
失なつてしまう(Bull.Chem.Soc.Jpn.,57,561
―563(1984))。つまり、現在の酢酸ナトリウム3
水塩系潜熱蓄熱材では、85℃以上の熱源を用いた
急速蓄熱が出来ず、このことが実用上大きな問題
になつていた。
問題点を解決するための手段
本発明の特徴とするところは、NaCH3COOを
55重量%から73重量%の範囲で含有する
NaCH3COOとH2Oより成る系にNaCH3COO・
3H2Oの結晶化の際の過冷却を防止するための結
晶核形成材として、少なくとも表面の1部が酢酸
ナトリウム3水塩でおおわれたフツ化リチウムを
含有させることにある。望ましくは、酢酸ナトリ
ウムと水より成る系100重量部に対してフツ化リ
チウムの含有量が0.1重量部から40重量部の範囲
にある場合である。
作 用
本発明の蓄熱材は、過冷却現象がほとんどな
く、しかも耐熱性が高く、第1回目の蓄放熱時か
ら、その性能のきわめて安定している単位重量当
り、もしくは単位体積当りの蓄熱量の大きいもの
である。
実施例
市販の特級NaCH3COO・3H2O60gを80℃ま
で加熱して融解し、その中に市販の特級LiFを40
g加え、十分撹拌して粘調な液体を得た。この粘
調液体を冷却して、種結晶を用いて
NaCH3COO・3H2Oを結晶化させ、
NaCH3COO・3H2OとLiFを含む組成物を得た。
この組成物を十分に粉砕して、NaCH3COO・
3H2O用の過冷却防止材を得た。この過冷却防止
材を用いて、第1表に示した組成になるように各
試料を調整した。それぞれの試料の融解潜熱を示
差走査熱量計を用いて測定し、その結果を用いて
各試料1g当りの潜熱量を算出した。それを第2
表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a latent heat storage material mainly composed of sodium acetate trihydrate. Conventional Technology Sodium acetate trihydrate (NaCH 3 COO.3H 2 O melting point: 58°C) has a large amount of heat storage, and has been seen as a promising heat storage material for heating, for example. However, once NaCH 3 COO.3H 2 O is melted, it is very likely to become supercooled, so the supercooling cannot be broken unless the molten liquid is cooled to about -20°C. The supercooled state is a phenomenon in which even if the material is cooled to the freezing point, the latent heat of fusion is not released and the material is cooled below that temperature, which is a fatal drawback for heat storage materials that utilize the latent heat of fusion. To solve this problem, NaCH 3 COO・
Various additives have been proposed to promote the crystallization of 3H 2 O (Japanese Patent Application Laid-Open No. 147580-1983). Problems to be Solved by the Invention However, the heat resistance temperature of currently proposed crystal nucleation materials is 85°C or lower, so NaCH 3 COO 3H 2 O containing these crystal nucleation materials is heated to about 90°C. When heated, it loses its function as a heat storage material in a short period of time (Bull.Chem.Soc.Jpn., 57, 561
―563 (1984)). In other words, the current sodium acetate 3
Water-salt-based latent heat storage materials cannot rapidly store heat using a heat source of 85°C or higher, and this has become a major problem in practical use. Means for solving the problems The feature of the present invention is that NaCH 3 COO is
Contains in the range of 55% to 73% by weight
In a system consisting of NaCH 3 COO and H 2 O, NaCH 3 COO・
As a crystal nucleation material for preventing supercooling during crystallization of 3H 2 O, lithium fluoride whose surface is at least partially covered with sodium acetate trihydrate is included. Preferably, the content of lithium fluoride is in the range of 0.1 parts by weight to 40 parts by weight based on 100 parts by weight of the system consisting of sodium acetate and water. Effect The heat storage material of the present invention has almost no supercooling phenomenon, has high heat resistance, and has an extremely stable performance from the first heat storage/release.The amount of heat stored per unit weight or per unit volume This is a large one. Example 60 g of commercially available special grade NaCH 3 COO・3H 2 O was heated to 80°C and melted, and 40 g of commercially available special grade LiF was poured into it.
g was added and thoroughly stirred to obtain a viscous liquid. Cool this viscous liquid and use seed crystals to
Crystallize NaCH 3 COO・3H 2 O,
A composition containing NaCH 3 COO.3H 2 O and LiF was obtained.
Thoroughly grind this composition to form NaCH 3 COO・
A supercooling prevention material for 3H 2 O was obtained. Using this supercooling prevention material, each sample was adjusted to have the composition shown in Table 1. The latent heat of fusion of each sample was measured using a differential scanning calorimeter, and the amount of latent heat per 1 g of each sample was calculated using the results. It is the second
Shown in the table.
【表】【table】
【表】【table】
【表】
また、各試料10gをプラスチツク製容器中に封
入した。この蓄熱材を封入した容器10個を恒温器
中で加熱処理を10時間行い、その後40℃まで冷却
して、2時間以内に容器内部でNaCH3COO・
3H2Oが結晶化するかどうかで蓄熱材の耐熱性を
評価した。耐熱温度としては、10個の試料すべて
において、NaCH3COO・3H2Oの結晶化が観測
された上限温度とした。そのようにして求めた各
試料の耐熱温度も第2表に示した。つまり、第2
表で示した耐熱温度を越えてそれぞれの試料の加
熱を行うと、10個の試料のうちの何個かが凝固せ
ずに過冷却してしまう。例えば試料3の場合に
は、94℃で加熱処理を行つたところ、10個の試料
のうち6個が過冷却してしまつた。
ところで、潜熱量が40cal/g以上でしかも、
耐熱温度が85℃以上の試料は、蓄熱量が十分に大
きくしかも耐熱性を十分に高いので、急速蓄熱が
可能な潜熱蓄熱材として十分実用化が可能である
と考えられるものである。望ましい組成範囲とし
ては、第2表から明らかなように、NaCH3COO
を55重量%から73重量%の範囲で含有する
NaCH3COOとH2Oより成る系100重量部に対し
て、LiFを0.1重量部から50重量部の範囲で含有さ
せた範囲である。
試料9と同じ組成の試料1Kgを内径100mm、長
さ100mmの円筒形容器に収納し、熱電対挿入管を
付した栓で密封した。その容器をウオーターバス
中に入れ、90℃と40℃の間で加熱冷却を1000回連
続して行つたところ、第1回目から安定した蓄熱
放熱特性が得られ、全然劣化が認められず、本発
明の蓄熱材が、急速蓄熱可能な潜熱蓄熱材として
十分な特性を有していることが確認出来た。
今まで説明したのは、NaCH3COO・3H2Oと
LiFを含む組成物を過冷却防止材として用いて調
整したNaCH3COO・3H2O系潜熱蓄熱材である。
同様の蓄熱材は、それぞれの組成になるような比
率で酢酸ナトリウム3水塩とフツ化リチウムを混
合した後、加熱して酢酸ナトリウム3水塩を融解
し、その後冷却して種結晶を用いて、フツ化リチ
ウムのまわりの酢酸ナトリウム3水塩を結晶化さ
せることによつても製造することが出来る。
このような製造方法によつてつくつた蓄熱材
も、NaCH3COO・3H2OとLiFを含む組成物を過
冷却防止材として用いた場合と、同様の潜熱蓄熱
量及び耐熱特性を示した。
発明の効果
以上で示したように、本発明の蓄熱材は、
NaCH3COOを55重量%から73重量%の範囲で含
有するNaCH3COOとH2Oより成る系に、少なく
とも表面の1部がNaCH3COO・3H2Oでおおわ
れたフツ化リチウムを含有させたものであるの
で、耐熱温度が高く、そのため高温熱源からの急
速蓄熱が可能であり、第1回目から安定した蓄
熱・放熱性能を示し、しかも安価で、単位重量当
り、もしくは単位体積当りの蓄熱量の大きなもの
となつている。したがつて、本発明の蓄熱材は空
調用の蓄熱装置だけでなく、蓄熱式保温器等の蓄
熱を利用したあらゆる方面に応用可能なものであ
る。[Table] In addition, 10 g of each sample was sealed in a plastic container. 10 containers filled with this heat storage material were heated in a constant temperature chamber for 10 hours, then cooled to 40℃, and within 2 hours NaCH 3 COO・
The heat resistance of the heat storage material was evaluated based on whether 3H 2 O crystallized. The upper limit temperature at which crystallization of NaCH 3 COO·3H 2 O was observed in all 10 samples was used as the heat-resistant temperature. Table 2 also shows the heat resistance temperature of each sample determined in this way. In other words, the second
If each sample is heated above the heat-resistant temperature shown in the table, some of the 10 samples will become supercooled without solidifying. For example, in the case of sample 3, when heat treatment was performed at 94°C, 6 out of 10 samples were supercooled. By the way, the amount of latent heat is 40 cal/g or more, and
Samples with a heat resistance temperature of 85°C or higher have a sufficiently large amount of heat storage and a sufficiently high heat resistance, so they are considered to be fully practical as latent heat storage materials capable of rapid heat storage. As is clear from Table 2, the desirable composition range is NaCH 3 COO
Contains in the range of 55% to 73% by weight
LiF is contained in a range of 0.1 to 50 parts by weight based on 100 parts by weight of the system consisting of NaCH 3 COO and H 2 O. 1 kg of a sample having the same composition as Sample 9 was placed in a cylindrical container with an inner diameter of 100 mm and a length of 100 mm, and the container was sealed with a stopper equipped with a thermocouple insertion tube. When the container was placed in a water bath and heated and cooled 1000 times between 90°C and 40°C, stable heat storage and heat dissipation characteristics were obtained from the first time, and no deterioration was observed. It was confirmed that the heat storage material of the invention has sufficient characteristics as a latent heat storage material capable of rapidly storing heat. What I have explained so far is NaCH 3 COO・3H 2 O and
This is a NaCH 3 COO/3H 2 O-based latent heat storage material prepared using a composition containing LiF as a supercooling prevention material.
A similar heat storage material is made by mixing sodium acetate trihydrate and lithium fluoride in proportions that give the respective compositions, then heating to melt the sodium acetate trihydrate, then cooling and using seed crystals. , can also be produced by crystallizing sodium acetate trihydrate around lithium fluoride. The heat storage material produced by such a manufacturing method also showed the same amount of latent heat storage and heat resistance characteristics as when a composition containing NaCH 3 COO.3H 2 O and LiF was used as a supercooling prevention material. Effects of the Invention As shown above, the heat storage material of the present invention has
A system consisting of NaCH 3 COO and H 2 O containing NaCH 3 COO in a range of 55% to 73% by weight contains lithium fluoride whose surface is at least partially covered with NaCH 3 COO・3H 2 O. It has a high heat resistance temperature, and therefore can rapidly store heat from a high-temperature heat source, exhibits stable heat storage and heat dissipation performance from the first use, is inexpensive, and has low heat storage per unit weight or unit volume. The quantity is becoming large. Therefore, the heat storage material of the present invention can be applied not only to heat storage devices for air conditioning, but also to all fields that utilize heat storage, such as heat storage type heat insulators.
Claims (1)
から73重量%の範囲で含有する酢酸ナトリウムと
水(H2O)より成る系に、少なくとも表面の1
部が酢酸ナトリウム3水塩でおおわれたフツ化リ
チウムを含有させたことを特徴とする蓄熱材。 2 酢酸ナトリウムと水より成る系100重量部に
対してフツ化リチウムの含有量が0.1重量部から
40重量部の範囲にある特許請求の範囲第1項記載
の蓄熱材。 3 少なくとも酢酸ナトリウム3水塩とフツ化リ
チウムを含む組成物を、酢酸ナトリウムと水より
成る系に添加混合する蓄熱材の製造方法。[Claims] 1. 55% by weight of sodium acetate (NaCH 3 COO)
At least one portion of the surface of the
A heat storage material characterized in that part of the material contains lithium fluoride covered with sodium acetate trihydrate. 2 The content of lithium fluoride is from 0.1 part by weight to 100 parts by weight of the system consisting of sodium acetate and water.
The heat storage material according to claim 1 in a range of 40 parts by weight. 3. A method for producing a heat storage material, which comprises adding and mixing a composition containing at least sodium acetate trihydrate and lithium fluoride to a system consisting of sodium acetate and water.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60030908A JPS61190583A (en) | 1985-02-19 | 1985-02-19 | Heat-accumulation material and production thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60030908A JPS61190583A (en) | 1985-02-19 | 1985-02-19 | Heat-accumulation material and production thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS61190583A JPS61190583A (en) | 1986-08-25 |
| JPS645634B2 true JPS645634B2 (en) | 1989-01-31 |
Family
ID=12316809
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60030908A Granted JPS61190583A (en) | 1985-02-19 | 1985-02-19 | Heat-accumulation material and production thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS61190583A (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3774530B2 (en) * | 1997-02-28 | 2006-05-17 | 住化プラステック株式会社 | Manufacturing method of heat storage material |
-
1985
- 1985-02-19 JP JP60030908A patent/JPS61190583A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS61190583A (en) | 1986-08-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5591374A (en) | Salt mixtures for storing thermal energy in the form of heat of phase transformation | |
| US4292189A (en) | Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate | |
| KR830001736B1 (en) | Hydrated Calcium Chloride Reversible Phase Change Composition with Nucleation Additives | |
| EP1215259A1 (en) | Thermal storage composition | |
| JPS645634B2 (en) | ||
| EP0146304B1 (en) | Heat storage material | |
| JPS6367836B2 (en) | ||
| JPH0860141A (en) | Heat storage material composition | |
| JPS5922986A (en) | heat storage material | |
| JPS6367837B2 (en) | ||
| EP0092199B1 (en) | Heat storage material | |
| JPS59170179A (en) | Heat storage material | |
| JPS60155285A (en) | Thermal energy storage material composition | |
| JPS6151079A (en) | Thermal energy storage material | |
| JPS6121579B2 (en) | ||
| JPH0443949B2 (en) | ||
| JPS617376A (en) | Activation method of crystal nucleation material | |
| JPH06220436A (en) | Heat storage composition | |
| JPS61278588A (en) | Heat storing material | |
| JPS5941381A (en) | Heat storage material | |
| JPS60203689A (en) | Thermal energy storage material | |
| JPS6022031B2 (en) | Heat storage agent composition | |
| JPS60130673A (en) | Thermal energy storage material | |
| JPS6367832B2 (en) | ||
| JPS588712B2 (en) | Heat storage agent composition |