JPS648935B2 - - Google Patents
Info
- Publication number
- JPS648935B2 JPS648935B2 JP17709180A JP17709180A JPS648935B2 JP S648935 B2 JPS648935 B2 JP S648935B2 JP 17709180 A JP17709180 A JP 17709180A JP 17709180 A JP17709180 A JP 17709180A JP S648935 B2 JPS648935 B2 JP S648935B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- digital
- amount
- distortion
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Control Of Amplification And Gain Control (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
【発明の詳細な説明】
本発明はデイジタル√AGC方式に関し、よ
り詳しくは減衰歪量が実質的に周波数に対して単
調増加又は減少する特性(この特性を示すものと
してよく知られている√特性を想定し、以下、
√特性と称する)を有する伝送路上で減衰歪量
に応じて自動的に歪を補償する方式に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a digital √AGC method, and more specifically, the present invention relates to a digital √AGC method, and more specifically, a characteristic in which the amount of attenuation distortion substantially monotonically increases or decreases with respect to frequency (a √ characteristic that is well known as exhibiting this characteristic) Assuming that, below,
The present invention relates to a method for automatically compensating for distortion according to the amount of attenuation distortion on a transmission line having a characteristic (referred to as √ characteristic).
音声帯域での信号処理は最近の半導体技術の発
展によつて急速にデイジタル処理により行われる
方向に向かつている。特に通信分野では、送受信
間の伝達特性を基本的問題とするので、実時間処
理を行うデイジタル信号処理用LSIによるデイジ
タルフイルタやFFT(高速フーリエ変換器)など
が用いられる。これらのデイジタル処理技術を適
用して効率的にLSI化を実現したものの1つにデ
ータモデムがある。このモデム(特に4800〜
9600bpsの高速モデム)は送信のベースバンドデ
イジタル信号をナイキストフイルタで波形整形し
た後、音声帯域(0.3KHz〜3.4KHz)に周波数シ
フトして伝送する。この時、回線によつてさまざ
まな歪を受ける。回線上の歪はいわゆる回線特性
と言われているもので、帯域内での減衰量や群遅
延を与えるものと、無装荷ケーブルのように周波
数の平方根に依存する減衰量をもつもの(非対称
減衰歪)に分けられる。前者は復調後自動等化器
等でベースバンド等化ができるが、後者はその非
対称性のため歪が大きい時は等化が困難であり、
このためパスバンドに補正用フイルタを挿入して
いる。 Due to recent developments in semiconductor technology, signal processing in the audio band is rapidly moving toward digital processing. Particularly in the field of communications, where the transfer characteristics between transmitter and receiver are a fundamental issue, digital filters and FFTs (fast Fourier transformers) using digital signal processing LSIs that perform real-time processing are used. Data modems are one of the devices that have been efficiently implemented into LSI by applying these digital processing technologies. This modem (especially 4800 ~
The 9600bps high-speed modem uses a Nyquist filter to shape the transmitted baseband digital signal, then shifts the frequency to the voice band (0.3KHz to 3.4KHz) and transmits it. At this time, various distortions occur depending on the line. Distortion on the line is what is called a line characteristic, and there are those that give attenuation and group delay within the band, and those that have an attenuation that depends on the square root of the frequency (asymmetric attenuation), such as unloaded cables. distortion). The former can be baseband equalized using an automatic equalizer after demodulation, but the latter is difficult to equalize when the distortion is large due to its asymmetry.
For this reason, a correction filter is inserted in the passband.
従来、音声帯域のデータ伝送において非対称減
衰歪を補償するために、固定等化器と呼ぶ一定の
特性を持つ補正用フイルタが用いられていたの
で、伝送周波数に応じて補正用フイルタの数を増
減する必要があつた。従つて、伝送周波数に合わ
せて補正用フイルタの個数を算出するという煩雑
な工程を必要とし、また補正用フイルタの個数の
増大に伴なつて価格が高くなるという問題があつ
た。 Conventionally, correction filters with fixed characteristics called fixed equalizers have been used to compensate for asymmetric attenuation distortion in voice band data transmission, so the number of correction filters can be increased or decreased depending on the transmission frequency. I needed to. Therefore, there is a problem that a complicated process of calculating the number of correction filters according to the transmission frequency is required, and the price increases as the number of correction filters increases.
本発明の目的は、上述の従来技術における問題
にかんがみ、補正用フイルタの特性を回線特性に
応じて変化させるという構想に基づき、音声帯域
のデータ伝送において非対称減衰歪を補償するた
めの補正用フイルタを1個ですませる事により補
正用フイルタの価格を低減する事にある。 In view of the problems in the prior art described above, an object of the present invention is to provide a correction filter for compensating for asymmetric attenuation distortion in voice band data transmission, based on the concept of changing the characteristics of the correction filter according to the line characteristics. The purpose is to reduce the cost of the correction filter by requiring only one.
上述の目的を達成するために、本発明において
は、減衰歪量が実質的に周波数に対して単調に増
加又は減少する特性を有する伝送路上でこの減衰
歪を補正フイルタにより補正する方式において、
伝送路における減衰歪量を表わすパラメータを抽
出し、そのパラメータに応じて、予め定められた
関係式を基にして補正フイルタの特性を変化させ
る係数を、パラメータが零のときは零でパラメー
タが大になる程−1に近づくような値に決定し、
この係数に応じて補正フイルタの特性を変えるよ
うにした事を特徴とするデイジタル√AGC方
式が提供される。 In order to achieve the above object, the present invention provides a method for correcting attenuation distortion using a correction filter on a transmission path having a characteristic that the amount of attenuation distortion increases or decreases substantially monotonically with respect to frequency.
A parameter representing the amount of attenuation distortion in the transmission path is extracted, and according to the parameter, a coefficient that changes the characteristics of the correction filter is set based on a predetermined relational expression. Decide on a value that approaches -1 as
A digital √AGC method is provided which is characterized in that the characteristics of the correction filter are changed according to this coefficient.
以下、添付の図面に基づき、本発明の実施例を
詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
第1図は本発明に適用される補正フイルタの概
略ブロツク回路図であり、1次の巡回型フイルタ
を示している。第1図において、相手モデムの送
信部(図示せず)から送出された音声帯域のデー
タは回線1を介してデータxとして乗算器1―1
を介して補正フイルタ2に入力される。データx
は回線1によつて一般にさまざまな歪を受けてい
るので、補正フイルタ2によつて補正された後、
データyとして補正フイルタ2からモデム受信部
(図示せず)に引渡される。補正フイルタ2にお
いては、加算器3を通つたデータは帰還要素4を
通して乗算器5に入力され、乗算器5において、
本発明により伝送周波数に応じて変化する補正係
数bによつて、回線1で受けた歪の補正値を得、
これを加算器3に入力する事により、加算器3の
出力に歪が補正されたデータyが得られる。一
方、補正係数1―bが乗算器1―1に与えられ、
それにより補正フイルタ2の直流利得が一定に保
たれる。本発明においては、上述の補正係数bを
伝送周波数に応じて変化させる事により、自動的
に伝送周波数に適合した歪補正を行わせる。伝送
損失|y/x|は
|y/x|=1/(Hb2−2bcos2πk/N)1/2
と表わされる。ここでNはデイジタル信号のサン
プル数であり、kはデイジタル信号の波数であ
る。 FIG. 1 is a schematic block circuit diagram of a correction filter applied to the present invention, and shows a first-order recursive filter. In FIG. 1, voice band data sent from a transmitting section (not shown) of the other party's modem is sent to a multiplier 1-1 as data x via a line 1.
The signal is inputted to the correction filter 2 via. data x
is generally subjected to various distortions by the line 1, so after being corrected by the correction filter 2,
The data y is delivered from the correction filter 2 to the modem receiving section (not shown). In the correction filter 2, the data passing through the adder 3 is inputted to the multiplier 5 through the feedback element 4, and in the multiplier 5,
According to the present invention, a correction value for distortion received on the line 1 is obtained by a correction coefficient b that changes depending on the transmission frequency,
By inputting this to the adder 3, distortion-corrected data y is obtained as the output of the adder 3. On the other hand, the correction coefficient 1-b is given to the multiplier 1-1,
Thereby, the DC gain of the correction filter 2 is kept constant. In the present invention, by changing the above-mentioned correction coefficient b according to the transmission frequency, distortion correction suitable for the transmission frequency is automatically performed. The transmission loss |y/x| is expressed as |y/x|=1/(Hb 2 −2bcos2πk/N) 1/2 . Here, N is the number of samples of the digital signal, and k is the wave number of the digital signal.
第2図は補正係数bをパラメータとした時のデ
イジタル周波数と伝送損失の関係を示すグラフで
ある。第2図に示されるように、補正係数bの絶
対値が大きい程、周波数πにおける伝送損失は小
となり周波数0及び2πにおける伝送損失は大と
なつている。 FIG. 2 is a graph showing the relationship between digital frequency and transmission loss when correction coefficient b is used as a parameter. As shown in FIG. 2, the larger the absolute value of the correction coefficient b, the smaller the transmission loss at frequency π, and the larger the transmission loss at frequencies 0 and 2π.
第3図はサンプル値系列の受信信号xに補正フ
イルタ2の特性を重畳した場合の周波数特性を示
すグラフである。第3図において、音声帯域Aは
周波数πの近傍で√減衰歪を受けるが、この歪
は補正フイルタの特性Bによつて補償される。 FIG. 3 is a graph showing the frequency characteristics when the characteristics of the correction filter 2 are superimposed on the received signal x of the sample value series. In FIG. 3, the audio band A is subjected to √ attenuation distortion near the frequency π, but this distortion is compensated by the characteristic B of the correction filter.
第4図は本発明によるデイジタル√AGC方
式を実現するための回路の1実施例を示すブロツ
ク図である。第4図において、受信データxは補
正フイルタ2に入力されると共にΔ検出回路41
にも入力され、Δ検出回路41において√減衰
歪量Δが検出される。検出された√減衰歪量Δ
に基づいて補正係数回路42において補正係数b
が求められ、この補正係数が補正フイルタ2に与
えられる。これにより、補正フイルタ2の出力に
√減衰歪が補償された出力データyが得られ
る。 FIG. 4 is a block diagram showing one embodiment of a circuit for realizing the digital √AGC method according to the present invention. In FIG. 4, received data x is input to a correction filter 2 and a Δ detection circuit 41
is also input, and the √attenuation distortion amount Δ is detected in the Δ detection circuit 41. Detected √attenuation distortion amount Δ
The correction coefficient circuit 42 calculates the correction coefficient b based on
is determined, and this correction coefficient is given to the correction filter 2. As a result, output data y is obtained in which the output of the correction filter 2 is compensated for the √ attenuation distortion.
Δ検出回路41において√減衰歪量Δを抽出
する方法には次のようなものがある。 There are the following methods for extracting the √attenuation distortion amount Δ in the Δ detection circuit 41.
信号帯域の両端における信号成分の差を√
減衰歪量とする。この方法は、もし信号が√
減衰歪を受けておれば、例えば第3図に示され
ている音声帯域Aの両端における減衰の傾きは
異なつたものとなる筈である事を利用してい
る。 The difference between the signal components at both ends of the signal band is √
Let it be the amount of attenuation distortion. This method works if the signal is √
This is based on the fact that if the signal is subjected to attenuation distortion, the slopes of attenuation at both ends of the audio band A shown in FIG. 3, for example, should be different.
伝送路歪のない時の信号が本来持つている成
分と、高帯域側の帯域端の信号成分との差を√
f減衰歪量とする。 The difference between the original component of the signal when there is no distortion in the transmission path and the signal component at the edge of the band on the high band side is √
Let f be the amount of attenuation distortion.
信号が本来持つている成分と、受信した信号
の成分との差を√減衰歪量とする。 Let the difference between the original component of the signal and the component of the received signal be the amount of attenuation distortion.
上記、及びにおいて信号成分とは基本的
には電力であるが、歪量を表わし得るものであれ
ば何でもよい。 In the above and above, the signal component is basically electric power, but it may be anything that can represent the amount of distortion.
√減衰歪量Δに対応した補正係数bは、次の
ようにして求められる。すなわち、基本的には√
f減衰歪量Δが零であれば補正係数bは零となる
べきであり、√減衰歪量Δが大になる程補正係
数bは−1に近づくようにする。√減衰歪量Δ
と補正係数bは予めさまざまな√特性について
求める事ができるので、読取専用メモリ
(ROM)などのテーブル・ルツクアツプによつ
て決定する事も可能である。しかし、ROMの容
量が充分でない場合は、ROMに代えて、何らか
の予め定められた関係式により直接演算して補正
係数bを求める事もできる。この処理はデイジタ
ル処理で行う事ができるので、本来の機能処理と
同類のものとして扱う事ができる。上記関係式は
一般には次のようにΔの高次式で近似できる。 The correction coefficient b corresponding to the amount of attenuation distortion Δ is obtained as follows. That is, basically √
If the f-attenuation distortion amount Δ is zero, the correction coefficient b should be zero, and the larger the √ attenuation distortion amount Δ, the closer the correction coefficient b is to −1. √Attenuation distortion amount Δ
Since the correction coefficient b and the correction coefficient b can be determined in advance for various √ characteristics, they can also be determined by looking up a table in a read-only memory (ROM) or the like. However, if the capacity of the ROM is not sufficient, the correction coefficient b can also be obtained by directly calculating using some predetermined relational expression instead of using the ROM. Since this processing can be performed digitally, it can be treated as similar to the original functional processing. The above relational expression can generally be approximated by a higher-order expression of Δ as follows.
bo=−M
〓i=0
αiΔi、0≦|bo|<1
以上の説明から明らかなように、本発明により
単一の補正用フイルタで非対称減衰歪を周波数に
応じて自動的に補償できるので、特に音声帯域の
データ伝送に有益である。又、この補正フイルタ
のそれぞれの利得の変動に対して正確な抑圧が必
要ならば後置の平坦AGC43において吸収する
ことも可能である。 b o = − M 〓 i=0 α i Δ i , 0≦|b o |<1 As is clear from the above explanation, the present invention automatically corrects asymmetric attenuation distortion according to the frequency using a single correction filter. This is especially useful for voice band data transmission. Furthermore, if accurate suppression of the variation in the gain of each of the correction filters is required, it is also possible to absorb it in the flat AGC 43 provided afterwards.
第1図は本発明に適用される補正フイルタの概
略ブロツク回路図、第2図は補正係数bをパラメ
ータとした時のデイジタル周波数と伝送損失の関
係を示すグラフ、第3図は受信信号に補正フイル
タの特性を重畳した場合の周波数特性を示すグラ
フ、そして第4図は本発明によるデイジタル√
AGC方式を実現するための回路の1実施例を示
すブロツク図である。
1:回線、2:補正フイルタ、3:加算器、
4:帰還素子、5:乗算器、A,A′:音声帯域、
B:補正フイルタの特性、41:√減衰歪量検
出回路、42:補正補数回路、b:補正係数、
x:受信信号、y:出力信号。
Figure 1 is a schematic block circuit diagram of the correction filter applied to the present invention, Figure 2 is a graph showing the relationship between digital frequency and transmission loss when correction coefficient b is used as a parameter, and Figure 3 is a correction to the received signal. A graph showing the frequency characteristics when the filter characteristics are superimposed, and FIG. 4 shows the digital √
FIG. 2 is a block diagram showing one embodiment of a circuit for implementing the AGC method. 1: Line, 2: Correction filter, 3: Adder,
4: Feedback element, 5: Multiplier, A, A': Audio band,
B: Characteristics of correction filter, 41: √ Attenuation distortion amount detection circuit, 42: Correction complement circuit, b: Correction coefficient,
x: received signal, y: output signal.
Claims (1)
又は減少する特性を有する伝送路上で該減衰歪を
補正フイルタにより補正する方式において、該伝
送路における減衰歪量を表すパラメータを抽出
し、該パラメータに応じて、該補正フイルタの特
性を変化させる係数を、該パラメータが零のとき
は零で該パラメータが大になる程−1に近づくよ
うな値に決定し、該係数に応じて該補正フイルタ
の特性を変えるようにした事を特徴とするデイジ
タル√AGC方式。 2 前記減衰歪量を表すパラメータは、信号帯域
の高域端の成分と低域端の信号成分の差である事
を特徴とする特許請求の範囲第1項記載のデイジ
タル√AGC方式。 3 前記減衰歪量を表すパラメータは、信号帯域
の高帯域の成分と信号の本来の持つ成分との差で
ある事を特徴とする特許請求の範囲第1項記載の
デイジタル√AGC方式。 4 前記減衰歪量を表すパラメータは、受信信号
の成分と信号の本来持つ成分との差である事を特
徴とする特許請求の範囲第1項記載のデイジタル
√AGC方式。 5 前記補正フイルタは√補償用の高域通過形
デイジタルフイルタである事を特徴とする特許請
求の範囲第1項ないし第4項のいずれかに記載の
デイジタル√AGC方式。[Claims] 1. In a system in which the attenuation distortion is corrected by a correction filter on a transmission path having a characteristic that the amount of attenuation distortion substantially monotonically increases or decreases with respect to frequency, it represents the amount of attenuation distortion in the transmission path. A parameter is extracted, and a coefficient for changing the characteristics of the correction filter is determined according to the parameter to a value that is zero when the parameter is zero and approaches -1 as the parameter becomes larger. A digital √AGC method characterized by changing the characteristics of the correction filter according to the coefficient. 2. The digital √AGC method according to claim 1, wherein the parameter representing the amount of attenuation distortion is a difference between a signal component at a high end of a signal band and a signal component at a low end of a signal band. 3. The digital √AGC method according to claim 1, wherein the parameter representing the amount of attenuation distortion is a difference between a high band component of a signal band and a component originally included in the signal. 4. The digital √AGC method according to claim 1, wherein the parameter representing the amount of attenuation distortion is a difference between a component of a received signal and a component originally included in the signal. 5. The digital √AGC system according to claim 1, wherein the correction filter is a high-pass digital filter for √ compensation.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP17709180A JPS57101439A (en) | 1980-12-17 | 1980-12-17 | Digital root.f-agc system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP17709180A JPS57101439A (en) | 1980-12-17 | 1980-12-17 | Digital root.f-agc system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS57101439A JPS57101439A (en) | 1982-06-24 |
| JPS648935B2 true JPS648935B2 (en) | 1989-02-15 |
Family
ID=16024966
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP17709180A Granted JPS57101439A (en) | 1980-12-17 | 1980-12-17 | Digital root.f-agc system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS57101439A (en) |
-
1980
- 1980-12-17 JP JP17709180A patent/JPS57101439A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS57101439A (en) | 1982-06-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6563868B1 (en) | Method and apparatus for adaptive equalization in the presence of large multipath echoes | |
| US7978799B2 (en) | Adaptive digital filter, FM receiver, signal processing method, and program | |
| US6845125B2 (en) | xDSL transceiver | |
| US4731800A (en) | Raised-cosine filtering for modems | |
| JPH0362628A (en) | Digital equalizer | |
| US6879639B1 (en) | Data transceiver with filtering and precoding | |
| JPH0728319B2 (en) | Apparatus and method for estimating phase jitter, receiving apparatus, communication system, and method used in receiving apparatus or communication system | |
| US5789993A (en) | Amplitude/frequency correcting device and corresponding frequency equalizer | |
| CN101808058B (en) | Single carrier/multi-carrier sharing receiver and its signal processing method | |
| US11290306B2 (en) | Signal processing devices and signal processing methods | |
| US5517523A (en) | Bridge-tap equalizer method and apparatus | |
| JPS648935B2 (en) | ||
| EP0621712B1 (en) | Distortion canceller for line receivers | |
| US6324232B1 (en) | Adaptive DC-compensation | |
| US10091030B2 (en) | Blind channel equaliser | |
| JP3132175B2 (en) | Adaptive method and adaptive circuit for coefficients of modem equalizer. | |
| KR950012821B1 (en) | VHF car radio with equalizer in digital acyclic filter type | |
| US6920471B2 (en) | Compensation scheme for reducing delay in a digital impedance matching circuit to improve return loss | |
| US7333558B2 (en) | Digitally pre-equalizing signals | |
| JPH0365058B2 (en) | ||
| WO1992009147A1 (en) | A method and arrangement for use in the elimination of echoes in a subscriber line circuit | |
| JP4297573B2 (en) | Digital signal processing method | |
| US7656977B2 (en) | Method and system of frequency domain equalization | |
| EP1040627B1 (en) | Group delay equalizer | |
| EP1698130A1 (en) | Method and system for adaptive prefiltering of a signal for transmission |