[go: up one dir, main page]

JPS60184668A - Heat treatment method for titanium alloy - Google Patents

Heat treatment method for titanium alloy

Info

Publication number
JPS60184668A
JPS60184668A JP4030084A JP4030084A JPS60184668A JP S60184668 A JPS60184668 A JP S60184668A JP 4030084 A JP4030084 A JP 4030084A JP 4030084 A JP4030084 A JP 4030084A JP S60184668 A JPS60184668 A JP S60184668A
Authority
JP
Japan
Prior art keywords
heat treatment
titanium alloy
temperature
strength
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4030084A
Other languages
Japanese (ja)
Inventor
Atsuhiko Kuroda
篤彦 黒田
Tomio Nishikawa
西川 富雄
Minoru Okada
稔 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4030084A priority Critical patent/JPS60184668A/en
Publication of JPS60184668A publication Critical patent/JPS60184668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a Ti alloy for high temp. service having superior ductility and strength by hot working an alpha+beta type Ti alloy and subjecting it to soln. heat treatment, water hardening, process annealing and aging under specified conditions. CONSTITUTION:An ingot of an alpha+beta type Ti alloy for high temp. service such as Ti-6Al-2Sn-4Zr-2Mo is cast, hot worked, and subjected to soln. heat treatment at 960 deg.C for 1hr, water hardening, process annealing at 750-800 deg.C for <=1hr and aging by holding at 593 deg.C for 8hr. Hardening is carried out by the aging to manufacture a Ti alloy for high temp. use having superior mechanical properties such as strength and ductility.

Description

【発明の詳細な説明】 産業上の利用性 本発明は高温用チタン合金の熱処理方法に関する。更に
詳しくは、本発明は高温用のα十β型チタン合金を熱処
理し、延性を維持すると共に強度が改善された高温用チ
タン合金を製造するだめの方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Industrial Applicability The present invention relates to a method for heat treating titanium alloys for high temperature use. More specifically, the present invention relates to a method of heat treating a high temperature α-decade titanium alloy to produce a high temperature titanium alloy that maintains ductility and has improved strength.

従来技術 高温用チタン合金の棒材等の熱処理方法としては従来か
ら種々の方法が開発され利用されてきている。
BACKGROUND OF THE INVENTION Various methods have been developed and used for heat treatment of high-temperature titanium alloy bars and the like.

例えば、Aerospace Material Sp
ecificationAMS4975Bに開示された
熱処理方法はチタン合金の棒、線材、フラッシュ溶接リ
ング材等をβtransus以下14℃±8.3りなる
温度にて1時間保持し、空冷またはそれ以上の速度で冷
却し、次いで593.3℃±8.3℃の温度で8時間保
持する時効処理に付し、更に空冷することからなってい
る。
For example, Aerospace Material Sp
The heat treatment method disclosed in specification AMS4975B is to hold titanium alloy rods, wires, flash welding ring materials, etc. at a temperature of 14°C ± 8.3 below βtransus for 1 hour, cool with air or at a higher rate, and then It is subjected to an aging treatment held at a temperature of 593.3°C±8.3°C for 8 hours, and then air-cooled.

また、同様にAerospace、Material 
5peeificat、ionAMS4976Aには、
鍛造材をβtransus以下15〜30℃の範囲の温
度に加熱し、許容範囲±8℃の所定温度下に60±5分
間保持し、空冷またはムれ以上の速度で冷却し、次いで
、593±8℃の温度に8±0.25時間、維持する時
効処理に付し、更に空冷することからなる鍛造材の熱処
理方法が開示されている。
Similarly, Aerospace, Material
5peeificat, ion AMS4976A,
The forged material is heated to a temperature in the range of 15 to 30°C below βtransus, held at a predetermined temperature within the permissible range of ±8°C for 60±5 minutes, cooled in air or at a rate faster than steam, and then heated to a temperature of 593±8°C. A method for heat treating a forged material is disclosed, which comprises subjecting the forged material to an aging treatment maintained at a temperature of 8.degree.

更に、米国のMetals and Ceramics
 Information[enter発行の”Tit
anium 八1loy Handbook” (12
月HJ72)では径2.5インチ未満の棒、鍛造材に対
しては約954℃にて1時間加熱し、空冷した後約59
4℃にて8時間加熱し次いで空冷し、−刃径2.5イン
チ以上の棒、鍛造材に対しては、約899℃または95
4℃に1時間加熱し空冷した後約594℃に8時間加熱
後、空冷する熱処理方法が開示されている。
Furthermore, Metals and Ceramics in the United States
Information [Tit issued by enter
anium 81loy Handbook” (12
For rods and forgings with a diameter of less than 2.5 inches, they are heated at approximately 954°C for 1 hour and then air cooled to approximately 59°C.
Heat at 4°C for 8 hours, then air cool; - For rods and forgings with a blade diameter of 2.5 inches or more, the temperature is approximately 899°C or 95°C.
A heat treatment method is disclosed in which the material is heated to 4° C. for 1 hour, air cooled, heated to about 594° C. for 8 hours, and then air cooled.

前記第3の方法に従って熱処理された物品の室温下での
機械的緒特性は該文献によれば以下の表Iに示す通りで
ある。
According to the document, the mechanical properties at room temperature of the article heat-treated according to the third method are as shown in Table I below.

耐力 89Kg / mm2 引張強さ HIOKg / mm2 伸び 15% 絞り 25% 表Iの結果から理解されるように、従来法においてもか
なりの程度で機械的性質の改善が達成し得るが、室温で
の延性を犠牲にすることなく、機械的強度を更に改善す
る熱処理方法を開発することは高温下での強度を維持す
る上において極めて意義がある。
Proof strength 89Kg/mm2 Tensile strength HIOKg/mm2 Elongation 15% Reduction of area 25% As can be understood from the results in Table I, the conventional method can also achieve a considerable improvement in mechanical properties, but the ductility at room temperature Developing a heat treatment method that further improves mechanical strength without sacrificing strength is of great significance in maintaining strength at high temperatures.

発明の目的 本発明は前記の如き従来法の現状に鑑みて、高温用α+
β型チタン合金の延性を低下させることなしに、その強
度を増大させることのできる熱処理方法を提供すること
にある。
Purpose of the Invention The present invention has been developed in view of the current state of the conventional methods as described above.
The object of the present invention is to provide a heat treatment method that can increase the strength of a β-type titanium alloy without reducing its ductility.

発明の構成 本発明者は新たなα+β型チタン合金の熱処理方法を開
発すべく種々検討、研究した結果、溶体化処理後の冷却
を水冷とし、更に時効熱処理工程の前に中間焼鈍を行う
ことが高温用α+β型チタン合金の機械的強度を従来よ
りも一層改善するために有利であることを知り、このよ
うな知見に基づき本発明を完成した。
Structure of the Invention As a result of various studies and research to develop a new heat treatment method for α+β type titanium alloy, the present inventor discovered that it is possible to use water cooling for cooling after solution treatment and to perform intermediate annealing before the aging heat treatment process. We found that it is advantageous to further improve the mechanical strength of high-temperature α+β type titanium alloys than before, and based on this knowledge, we completed the present invention.

即し、本発明による高温用α+β型のチタン合金の熱処
理方法は、該チタン合金を熱間加工し、次いで溶体化処
理を施した後、水冷し、750〜800℃の温度にて長
くとも1時間保持し、空冷する中間焼鈍を行い、更に常
法に従って時効熱処理を施すことを特徴、とする。
That is, in the heat treatment method for high-temperature α+β type titanium alloy according to the present invention, the titanium alloy is hot-worked, then subjected to solution treatment, water-cooled, and treated at a temperature of 750 to 800°C for at least 1 hour. It is characterized by performing intermediate annealing by holding for a period of time and cooling in air, and further performing aging heat treatment according to a conventional method.

本発明の熱処理方法の対象とするα+β型チタン合金と
し−Cは′ri−6八l−’2Sn −4Zr −2M
o (6・ 2 ・ 4 ・ 2)、T1−6AI −
2Sn−,4Zr −6M。
α+β type titanium alloy to be subjected to the heat treatment method of the present invention -C is 'ri-68l-'2Sn -4Zr -2M
o (6・2・4・2), T1-6AI −
2Sn-, 4Zr-6M.

(6・2・4・6 ) 、Ti −8AI −IMo 
−I V (8・1・1)などを例示でき、いずれに対
しても同様の効果を期待することができる。
(6・2・4・6), Ti-8AI-IMo
-I V (8.1.1), etc., and the same effect can be expected for any of them.

また、被処理物品の形状は、特に制限されず、例えば棒
1、線ヰ」、リンク祠、鍛造材等を挙げることができる
Further, the shape of the article to be processed is not particularly limited, and examples thereof include a rod 1, a wire, a link shank, a forged material, and the like.

このような本発明の対象とするα+β型チタン合金は耐
熱性合金であることから、高温条件下での機械的強度の
低下が小さいことが望ましい。
Since the α+β type titanium alloy that is the object of the present invention is a heat-resistant alloy, it is desirable that the decrease in mechanical strength under high-temperature conditions is small.

そこで、本発明者は熱処理後の製品に高い強度をイー1
与する目的で、被処理物溶体化処理、即ち被処理物を固
溶体範囲まで加熱し、この温度で十分保持し、固溶体状
態を維持する処理を施した後の急冷を、室温下にある攪
拌水中での水焼入れとした。ちなみに、従来法において
は該急冷は上記の如く空冷であった。この急冷処理後被
処理製品は一般的に従来法に従えば時効熱処理により硬
化される。
Therefore, the inventor of the present invention sought to improve the strength of the product after heat treatment.
For the purpose of solution treatment, the material to be treated is heated to a solid solution range, sufficiently maintained at this temperature, and then rapidly cooled in a stirred water at room temperature. It was water quenched. Incidentally, in the conventional method, the quenching was performed by air cooling as described above. After this rapid cooling treatment, the treated product is generally hardened by aging heat treatment according to conventional methods.

しかしながら前記のような水焼入れによる急冷処理は被
処理製品の延性を低下させる傾向を有する。従って、本
発明の延性を犠牲にすることなしに強度を改善するとい
う所期の目的を達成するためには溶体化処理後の急冷工
程と後の時効熱処理工程の間に何等かの工夫をする必要
がある。
However, the above-mentioned rapid cooling treatment by water quenching tends to reduce the ductility of the treated product. Therefore, in order to achieve the intended purpose of improving the strength without sacrificing the ductility of the present invention, some kind of device must be devised between the quenching step after the solution treatment and the subsequent aging heat treatment step. There is a need.

本発明者は前記水焼入れによる延性低下防止のためには
以下のような中間焼鈍工程が極めて有効であることを知
った。即ち、本発明の中間焼鈍工程は750〜800℃
の温度にて長くとも1時間保持し、次いで室温まで空冷
することからなる。該中間焼鈍工程の温度は前記目的を
達成するためには臨界的であり、上記範囲よりも低くて
もまた高く ′ても水焼入れによる延性低下の防止のた
めには不満足である。また、中間焼鈍は1時間を越え−
ご実施しても前記効果を高めることは殆ど期待できない
ので、経済的観点から無意味である。更に、中間焼鈍時
間は被処理材の寸法、量等により変化するので、そb下
限は特に制限はない。しかし、一般的には前記焼鈍温度
で10〜20分保持することにより七分な効果を期待す
ることができる。
The present inventor has found that the following intermediate annealing process is extremely effective in preventing the decrease in ductility due to water quenching. That is, the intermediate annealing step of the present invention is performed at 750 to 800°C.
temperature for at most one hour, and then air-cooled to room temperature. The temperature of the intermediate annealing step is critical for achieving the above-mentioned purpose, and even if it is lower or higher than the above-mentioned range, it is unsatisfactory for preventing a decrease in ductility due to water quenching. In addition, intermediate annealing exceeds 1 hour.
Even if it is implemented, it is meaningless from an economic point of view since it is hardly expected to increase the above effect. Further, since the intermediate annealing time varies depending on the size, amount, etc. of the material to be treated, there is no particular restriction on the lower limit of the time. However, in general, by holding the annealing temperature for 10 to 20 minutes, the desired effect can be expected.

本発明の熱処理方法では、中間焼鈍処理後のチタン合金
製品を従来法と同様な条件下、即ち約593℃にて8時
間保持する時効熱処理に伺して硬化し、最終製品を得る
In the heat treatment method of the present invention, the titanium alloy product after the intermediate annealing treatment is subjected to aging heat treatment under the same conditions as in the conventional method, that is, held at about 593° C. for 8 hours, to thereby obtain a final product.

発明の効果 本発明の新規な高温用α十β型チタン合金の熱処理方法
によれば、溶体化処理後の冷却を水焼入れとし、該水焼
入れと時効熱処理工程との間において、750〜800
℃の温度にて長くとも1時間保持し、次いで空冷するこ
とからなる中間焼鈍処理を施したことに基づき、延性を
犠牲にすることなしに、該チタン合金の強度を大rlJ
に高めることが可能となった。即ち、本発明の方法によ
り処理した製品は従来の熱処理方法によるものと比較し
て、耐力が10Kg/mm2以上向上しているにもかか
わらず延性は殆ど変化していない。かくして、本発明の
方法によれば従来法によるものよりも一層優れた耐熱性
チタン合金を得ることができるので本発明の熱処理方法
は工業的に極めて意義ある発明といえよう。
Effects of the Invention According to the novel heat treatment method for high-temperature α-10β type titanium alloy of the present invention, cooling after solution treatment is water quenching, and between the water quenching and aging heat treatment step, 750 to 800
The strength of the titanium alloy can be increased to a large rlJ without sacrificing ductility due to the intermediate annealing treatment, which consists of holding at a temperature of
It became possible to increase the That is, the products treated by the method of the present invention have almost no change in ductility even though the yield strength is improved by 10 kg/mm2 or more compared to the products treated by the conventional heat treatment method. Thus, according to the method of the present invention, it is possible to obtain a titanium alloy with better heat resistance than that obtained by the conventional method, and therefore, the heat treatment method of the present invention can be said to be an extremely significant invention industrially.

以下、実施例により本発明の熱処理方法を更に具体的に
説明する。また、比較例として従来法による結果をも併
せて示し、本発明の効果を確り忍する。これら実施例は
単なる例示であり、本発明はどれら実施例により何隻制
限されない。
Hereinafter, the heat treatment method of the present invention will be explained in more detail with reference to Examples. In addition, as a comparative example, results obtained by a conventional method are also shown to clearly demonstrate the effects of the present invention. These embodiments are merely illustrative, and the present invention is not limited by any of the embodiments.

実施例 試料としてTi= 6’Al−2Sn−4Zr、 −2
Mo (6・2・4・2)合金(15中X 90 mm
Q)の鍛伸棒材を使用し、本発明の方法並びに従来法に
従って以下に示すような条件下で熱処理を行って耐熱性
チタン合金林料を作製した。
As an example sample, Ti=6'Al-2Sn-4Zr, -2
Mo (6・2・4・2) alloy (15 medium x 90 mm
Using the forged and drawn bar material of Q), heat treatment was performed under the conditions shown below according to the method of the present invention and a conventional method to produce heat-resistant titanium alloy forest material.

第1図および第2図に夫々本発明および従来法による熱
処理工程を熱処理図で示した。ただし、これらの図にふ
いてACは空冷をまたWQは水焼入れを意味する。
FIG. 1 and FIG. 2 are heat treatment diagrams showing the heat treatment steps according to the present invention and the conventional method, respectively. However, in these figures, AC means air cooling and WQ means water quenching.

かくして円られる試料を引張試験にイ′N1シ、耐力、
引張強さ、伸び並びに絞りを測定した。その結果を以下
の表1、表111に示す。
The thus-circled sample was subjected to a tensile test with a yield strength of
Tensile strength, elongation and area of area were measured. The results are shown in Table 1 and Table 111 below.

表■:機械特性の比較(室温) 表■、■の結果から、本発明の方法に従って処理した製
品は、従来法で得た製品よりも耐力並びに引張強さいず
れにおいても室温下で10Kg / mm2程度高く、
強度においてかなり改善されたにもかかわらず、伸び並
びに絞りは同等であるかむしろ優れていることがわかる
。また、高温下でも、従来法に比べ強度が優れているこ
とがわかる。
Table ■: Comparison of mechanical properties (room temperature) From the results in Tables ■ and ■, it can be seen that the products treated according to the method of the present invention have a yield strength and tensile strength of 10 kg/mm2 at room temperature that are higher than the products obtained by the conventional method. To a high degree,
It can be seen that despite the considerable improvement in strength, the elongation and reduction of area are equal or even better. It can also be seen that the strength is superior to that of the conventional method even at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、夫々実施例における本発明およ
び従来の熱処理方法を図示したものである。 特許出願人 住友金属工業株式会社 代 理 人 弁理士 新居正彦 第1図 第2図
FIG. 1 and FIG. 2 illustrate the present invention and the conventional heat treatment method in Examples, respectively. Patent applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Masahiko Arai Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)高温用α十β型チタン合金を熱間加工し、溶体化
処理を施した後、水冷し、750〜800℃の範囲内の
温度に一]時間以内保持し、空冷する中間焼鈍を行い、
次いで時効処理することを特徴とする高温用α+β型チ
タン合金の熱処理方法。
(1) After hot-working a high-temperature α-10β type titanium alloy and subjecting it to solution treatment, it is water-cooled, held at a temperature in the range of 750 to 800°C for less than 1 hour, and then air-cooled to perform intermediate annealing. conduct,
A heat treatment method for a high-temperature α+β type titanium alloy, which is then subjected to an aging treatment.
JP4030084A 1984-03-05 1984-03-05 Heat treatment method for titanium alloy Pending JPS60184668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4030084A JPS60184668A (en) 1984-03-05 1984-03-05 Heat treatment method for titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4030084A JPS60184668A (en) 1984-03-05 1984-03-05 Heat treatment method for titanium alloy

Publications (1)

Publication Number Publication Date
JPS60184668A true JPS60184668A (en) 1985-09-20

Family

ID=12576759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4030084A Pending JPS60184668A (en) 1984-03-05 1984-03-05 Heat treatment method for titanium alloy

Country Status (1)

Country Link
JP (1) JPS60184668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851036A1 (en) * 1996-12-27 1998-07-01 Daido Steel Company Limited Titanium alloy and method of producing parts therefrom
CN117364005A (en) * 2023-11-23 2024-01-09 湖南湘投金天钛业科技股份有限公司 Preparation method of Ti60 titanium alloy large-size bar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851036A1 (en) * 1996-12-27 1998-07-01 Daido Steel Company Limited Titanium alloy and method of producing parts therefrom
CN117364005A (en) * 2023-11-23 2024-01-09 湖南湘投金天钛业科技股份有限公司 Preparation method of Ti60 titanium alloy large-size bar
CN117364005B (en) * 2023-11-23 2025-09-09 湖南湘投金天钛业科技股份有限公司 Preparation method of Ti60 titanium alloy large-size bar

Similar Documents

Publication Publication Date Title
US3686041A (en) Method of producing titanium alloys having an ultrafine grain size and product produced thereby
US5108520A (en) Heat treatment of precipitation hardening alloys
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
HUE027372T2 (en) Thermo-mechanical processing of nickel-base alloys
JP2005527699A (en) Method for treating beta-type titanium alloy
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
US2968586A (en) Wrought titanium base alpha-beta alloys of high creep strength and processing thereof
JPH01279736A (en) Heat treatment method for β-type titanium alloy material
JPS6160871A (en) Manufacture of titanium alloy
CN112210737A (en) A two-stage transformation heat treatment method for improving the hardness of Ti-6Al-4V titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPH06212378A (en) Treatment method for β-type titanium alloy hot-formed products
JPS60184668A (en) Heat treatment method for titanium alloy
JPH1025557A (en) Method for heat treating nickel base superalloy
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JP2004277873A (en) Titanium alloy incorporated with boron added
JPH04355A (en) Production of titanium alloy
JPH06272004A (en) Method for working titanium alloy
JPS60155657A (en) Production of ti-ni superelastic alloy
JPH0266142A (en) Manufacturing method for α+β type titanium alloy plates, bars, and wires
JPH03130351A (en) Method for producing titanium and titanium alloys having a fine and equiaxed structure
JPS62284051A (en) Heat treatment of alpha-beta type titanium alloy
JPS62133051A (en) Production method of α+β type titanium alloy
JP2001131723A (en) Method for improving ductility of titanium alloy castings