JPS6018691A - Pressure pulsation reducer - Google Patents
Pressure pulsation reducerInfo
- Publication number
- JPS6018691A JPS6018691A JP12472283A JP12472283A JPS6018691A JP S6018691 A JPS6018691 A JP S6018691A JP 12472283 A JP12472283 A JP 12472283A JP 12472283 A JP12472283 A JP 12472283A JP S6018691 A JPS6018691 A JP S6018691A
- Authority
- JP
- Japan
- Prior art keywords
- stem
- resonance
- pressure pulsation
- resonance chamber
- reducing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Pipe Accessories (AREA)
- Pipeline Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、液体を扱う配管の圧力脈動低減装置に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pressure pulsation reducing device for piping that handles liquid.
一般にポンプ等の流体機械の駆動に基づいて、発生する
圧力脈動が配管系に伝わると配管系を振動させ、騒音を
放射する。たとえば、ポンプ設備においては、羽根車の
羽根が吐出しポリュート入口を通過する際に生ずる圧力
変化、すなわち羽根枚数×回転速度の脈動が発生し、こ
の脈動は配管内の水柱全伝搬し、配管系全棒金振動させ
て騒音を発する。Generally, when pressure pulsations generated by driving a fluid machine such as a pump are transmitted to a piping system, the piping system vibrates and radiates noise. For example, in pump equipment, a pressure change occurs when the impeller blades pass through the discharge pollute inlet, which causes a pulsation of the number of blades x rotational speed, and this pulsation propagates throughout the water column in the piping, causing the piping system to All the bars vibrate to make noise.
上記のような、脈動の発生に対処するために、従来、種
々の圧力脈動低減手段を用いている。Conventionally, various pressure pulsation reduction means have been used to cope with the occurrence of pulsation as described above.
本発明の目的は、構造が簡単で、容易に共振周波数を変
化させることが可能な、圧力脈動低減装置を提供するこ
とにある。An object of the present invention is to provide a pressure pulsation reducing device that has a simple structure and can easily change the resonance frequency.
本発明は、配管流路の外側に設けた共振室内の水柱と、
配管流路の圧力脈動の圧力波を共振させ配管流路の圧力
脈動を低減させる原理としたものである。共振室の共振
周波数fresは、fres −1−Jにてめられる、
ここでα:圧力波の伝搬速度V:共振室の容積、G:共
振室への接続通路の形状、大きさ等にょシ決定される値
で、伝導率といわれている値である、この共振周波数の
算出式から、配管流路と共振室との通路にステム全設置
し、伝導率G2可変とすることにより、共振室の共振周
波数を可変とすることによって、広範囲な、周波数成分
の圧力脈動低減に対応させたものである。又、共振室は
配管流路全二重管として、外周に設置することによって
、コンパクトに、設置する仁とができ、剛性金高くとる
ことができる。The present invention provides a water column in a resonance chamber provided outside a piping flow path;
The principle is that the pressure waves of the pressure pulsations in the piping flow path resonate to reduce the pressure pulsations in the piping flow path. The resonant frequency fres of the resonant chamber is given by fres -1-J,
Here, α is the propagation speed of the pressure wave, V is the volume of the resonant chamber, G is the value determined by the shape and size of the connecting passage to the resonant chamber, and is a value called conductivity. From the frequency calculation formula, by installing the entire stem in the passage between the piping flow path and the resonance chamber and making the conductivity G2 variable, the resonance frequency of the resonance chamber can be made variable, and pressure pulsations in a wide range of frequency components can be achieved. This corresponds to the reduction. In addition, by installing the resonant chamber on the outer periphery as a full-double pipe for the piping flow path, it can be installed compactly and the rigidity can be increased.
以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は、本発明の共振周波数可変型液体配管用圧力脈
動低減装置の横断面図、第2図は第1図のA−A矢視図
である。配管流路1.と外筒管3゜及び仕切板10との
間に形成される、共振室2と。FIG. 1 is a cross-sectional view of a variable resonance frequency type pressure pulsation reducing device for liquid piping according to the present invention, and FIG. 2 is a view taken along the line A--A in FIG. 1. Piping flow path 1. and a resonance chamber 2 formed between the outer cylindrical tube 3° and the partition plate 10.
配管流路に設けたテーパー穴4と、ステム5により形成
される共振制御部向、6はステムケース。The tapered hole 4 provided in the piping flow path and the resonance control section formed by the stem 5, 6 is a stem case.
7は軸封機構、8はステム5に取付けたインジケーター
、9はインジケーター目盛環、11はステム5を回動さ
せるハンドル、12は共振室2に設けた空気抜弁、13
はドレンプラグである。によによりめられる、ここでα
:圧力波の伝搬速度V:共振室の谷槓、G:共振制御部
の形状、大きさによシ決定される値、伝導率と呼ぶこの
伝導率Gは、G=Uにてめられ、S:共振室入口(開口
部)の断面積、L:端末補正を加えた共振室入口(開口
部)の長さ、である。ここで、共振室入口部すなわち、
配管流路と共振室ケつなぐ開口部の形状をテーパー状の
穴4とし、そのテーパー状の穴4と相対する面?持つ、
ステム5により共振制御部全形成することにより、盈す
なわち、伝導り
率GをCif変とするものである。7 is a shaft sealing mechanism, 8 is an indicator attached to the stem 5, 9 is an indicator scale ring, 11 is a handle for rotating the stem 5, 12 is an air vent valve provided in the resonance chamber 2, 13
is the drain plug. It is determined by α
: Propagation speed of pressure wave V: Valley of the resonance chamber, G: Value determined by the shape and size of the resonance control part, This conductivity G, called conductivity, is determined by G = U, S: Cross-sectional area of the resonance chamber entrance (opening), L: Length of the resonance chamber entrance (opening) with terminal correction added. Here, the resonance chamber entrance part, that is,
The shape of the opening connecting the piping flow path and the resonance chamber is a tapered hole 4, and the surface facing the tapered hole 4? have,
By forming the entire resonance control section using the stem 5, the conductivity G is changed to Cif.
伝導率Gを可変とする機構を第3図、第4図により説明
する。第3図は、配管流路に設けたテーパー状の穴4と
、ステム5全ある値に開いた状態である。この状態での
伝導率をめると、第3図から端末補正を加えた共振室入
口長さ−L、共振室入口断面積:S=πdcとなり、伝
導率GはG=丁となる。一方、第3図の状態からステム
?上方へ移動して第4図の状態とした場合の、伝導率G
′は共振室人口長さ=L′ 、共振室入口断面積=s′
=πd′c′ となりG′一旦′ となる。すなわち、
L′
共振制御部をテーパー状の穴4と、テーパー状のステム
5により構成し、ステム5全移動可能とすることによっ
て、伝導率Gを無段階に変化可能とすることができる。The mechanism for making the conductivity G variable will be explained with reference to FIGS. 3 and 4. FIG. 3 shows a state in which the tapered hole 4 provided in the piping flow path and the stem 5 are all opened to a certain value. Considering the conductivity in this state, from FIG. 3, the length of the resonant chamber inlet with terminal correction -L, the cross-sectional area of the resonant chamber inlet: S=πdc, and the conductivity G becomes G=dc. On the other hand, stem from the state shown in Figure 3? Conductivity G when moving upward to the state shown in Figure 4
' is the population length of the resonant chamber = L', and the cross-sectional area of the resonant chamber entrance = s'
= πd′c′ and G′Once′. That is,
By forming the L' resonance control section with a tapered hole 4 and a tapered stem 5, and making the stem 5 fully movable, the conductivity G can be varied steplessly.
共振周波数f resは、伝導率Gの平方根に比例する
ため、伝導重金可変とすることにより、共振周波数も可
変となる。Since the resonant frequency f res is proportional to the square root of the conductivity G, by making the conductive heavy metal variable, the resonant frequency also becomes variable.
又、本発明は第1図により、ステム5の移動によ・り、
設定した共振周波数は、インジケーター−8、とインジ
ケーター目盛−9,により表示する構造とし、共振周波
数設定値を外部にて可視化できる様にしている。尚、ス
テム5は、中間にネジ部全持ち、このネジ部と金うメネ
ジを持つステムケース6、とハンドル11によシ、容易
に移動可能な構造としている。Further, according to the present invention, as shown in FIG. 1, by moving the stem 5,
The set resonance frequency is displayed by an indicator 8 and an indicator scale 9, so that the set value of the resonance frequency can be visualized externally. The stem 5 has a fully threaded portion in the middle, and is easily movable by means of the threaded portion, a stem case 6 having a metal thread, and a handle 11.
本発明の共振周波数の可変範囲によっては、共振制御部
、ステムの数は、単個のみならず複数個、設置しても効
果的であることは明らかである。It is clear that depending on the variable range of the resonance frequency of the present invention, it is effective to install not only a single resonance control section and a plurality of stems.
第2図は、第1図のA−A矢視図である。共振室の直上
には、共振室内の空気抜きのため、空気抜弁12.全設
置している。FIG. 2 is a view taken along the line A--A in FIG. 1. Directly above the resonance chamber, there is an air vent valve 12. to vent air from the resonance chamber. All are installed.
第3図は、本発明を大口径管に実施した場合の実施例を
示したものである。共振伝導率可変機構會、共振室通路
管4′、に設けた事に%徴としている。FIG. 3 shows an embodiment in which the present invention is applied to a large diameter pipe. The resonance conductivity variable mechanism is provided in the resonance chamber passage pipe 4'.
本発明によれば、回転数制御回転を実施する遠心ポンプ
などの圧力脈動周波数が、変化する配管流路の、圧力脈
動低減効果を広範囲に得ることができる。しかも、本発
明の圧力脈動低減装置は配路に対し、抵抗とならない。According to the present invention, it is possible to obtain a wide range of pressure pulsation reduction effects in a piping flow path in which the pressure pulsation frequency of a centrifugal pump or the like that performs rotation speed controlled rotation changes. Moreover, the pressure pulsation reducing device of the present invention does not create resistance to the wiring.
又、共振室を配管流路全二車管として、設置したためコ
ンパクトで構造簡易であり、剛性も向上する。共振周波
数の可変は、ハンドルにより容易に可変可能とし、又、
外部に設置した、インジケーターにより設定した共振周
波数が、可視化できる効果もあるっIn addition, since the resonant chamber is installed as a dual-vehicle pipe for all piping channels, the structure is compact and simple, and the rigidity is improved. The resonance frequency can be easily changed using the handle, and
It also has the effect of being able to visualize the resonant frequency set by an externally installed indicator.
第1図は、共振周波数可変型液体配管用圧力脈動低減装
置の横断面図、第2図は、第1図のA−A矢視図妾≠ゆ
〒畏、第3図、第4図は、共振伝導率変化の説明図、第
5図は大口径管の共振周波数可変型液体配管用圧力脈動
低減装置の縦断面図である。
l・・・配管流路、2・・・共振室、3・・・外筒管、
4・・共振伝導部、4′・・・共振室通路、5・・・ス
テム、6・・・ステムケース、7・・・軸封機構、8・
・・インジケーター、9・・・インジケーター目盛、1
0・・・仕切板、11・・・ハンドル、12・・・空気
抜弁、13・・・ドレンプラグ、1.4−°ドレン弁。
第1図
第 2 ロ
嘉3図
力 4 図Figure 1 is a cross-sectional view of a resonant frequency variable type pressure pulsation reduction device for liquid piping, Figure 2 is a view taken along the line A-A in Figure 1, and Figures 3 and 4 are FIG. 5 is a longitudinal cross-sectional view of a pressure pulsation reduction device for a variable resonance frequency type liquid pipe of a large diameter pipe. l...Piping flow path, 2...Resonance chamber, 3...Outer cylinder pipe,
4... Resonance conduction section, 4'... Resonance chamber passage, 5... Stem, 6... Stem case, 7... Shaft sealing mechanism, 8...
...Indicator, 9...Indicator scale, 1
0... Partition plate, 11... Handle, 12... Air vent valve, 13... Drain plug, 1.4-° drain valve. Figure 1 Figure 2 Roka 3 Figure 4
Claims (1)
と前記共振室を接続する通路を設け、前記通路の面積を
可変して前記共振室の共振を制御する共振制御部を設け
てなることを特徴とする圧力脈動低減装置。 2、前記共振制御部は前記通路をテーパ状の穴に形成し
、該テーパ状の穴に嵌合するテーパ面を有し、かつ該テ
ーパ状の穴の軸心方向に移動可能なステムからなること
を特徴とする特許請求の範囲第1項記載の圧力脈動低減
装置。 3、前記ステムは共振室を貫通して外部に延在し、前記
貫通部のステムと共振室壁とはねじ結合し軸方向移動を
可能にしていること全特徴とする特許請求の範囲第1項
記載の圧力脈動低減装置。 4、前記共振室外部に延びる前記ステムの端部にハンド
ルを設けて前記ステムの軸方向の移動を行うことtl−
特徴とする特許請求の範囲第3項記載の圧力脈動低減装
置。 5、前記ステムの軸方向移動量によシ共振周波数の値を
示すインジケータを前記ステムに取付けたことを特徴と
する特許請求の範囲第4項記載の圧力脈動低減装置。[Claims] 1. A resonance chamber is entirely formed on the outer periphery of a piping flow path of a piping system, a passage is provided to connect the flow passage and the resonance chamber, and the area of the passage is varied to suppress the resonance of the resonance chamber. A pressure pulsation reducing device characterized by comprising a resonance control section for controlling. 2. The resonance control section includes a stem that forms the passageway into a tapered hole, has a tapered surface that fits into the tapered hole, and is movable in the axial direction of the tapered hole. A pressure pulsation reducing device according to claim 1, characterized in that: 3. The stem extends outside through the resonance chamber, and the stem of the penetrating portion and the wall of the resonance chamber are screwed together to enable axial movement. Pressure pulsation reducing device as described in Section 3. 4. Providing a handle at the end of the stem extending outside the resonance chamber to move the stem in the axial direction.
A pressure pulsation reducing device according to claim 3, characterized in that: 5. The pressure pulsation reducing device according to claim 4, wherein an indicator is attached to the stem to indicate the value of the resonance frequency depending on the amount of axial movement of the stem.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12472283A JPS6018691A (en) | 1983-07-11 | 1983-07-11 | Pressure pulsation reducer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12472283A JPS6018691A (en) | 1983-07-11 | 1983-07-11 | Pressure pulsation reducer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6018691A true JPS6018691A (en) | 1985-01-30 |
| JPH0372877B2 JPH0372877B2 (en) | 1991-11-20 |
Family
ID=14892480
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP12472283A Granted JPS6018691A (en) | 1983-07-11 | 1983-07-11 | Pressure pulsation reducer |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6018691A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0821333A (en) * | 1994-07-06 | 1996-01-23 | Nippondenso Co Ltd | Fuel injection device |
| JP2009288001A (en) * | 2008-05-28 | 2009-12-10 | Hitachi-Ge Nuclear Energy Ltd | Plant with piping that has branch and nuclear power plant of boiling-water type |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS4915315U (en) * | 1972-05-17 | 1974-02-08 | ||
| JPS5151006A (en) * | 1974-10-31 | 1976-05-06 | Ebara Mfg | SHOON SOCHI |
-
1983
- 1983-07-11 JP JP12472283A patent/JPS6018691A/en active Granted
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS4915315U (en) * | 1972-05-17 | 1974-02-08 | ||
| JPS5151006A (en) * | 1974-10-31 | 1976-05-06 | Ebara Mfg | SHOON SOCHI |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0821333A (en) * | 1994-07-06 | 1996-01-23 | Nippondenso Co Ltd | Fuel injection device |
| JP2009288001A (en) * | 2008-05-28 | 2009-12-10 | Hitachi-Ge Nuclear Energy Ltd | Plant with piping that has branch and nuclear power plant of boiling-water type |
| US8971475B2 (en) | 2008-05-28 | 2015-03-03 | Hitachi-Ge Nuclear Energy, Ltd. | Plant with piping mounted on branch pipe and boiling water reactor plant |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0372877B2 (en) | 1991-11-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2937935B2 (en) | Apparatus for measuring fluid flow | |
| US4445829A (en) | Apparatus for dampening pump pressure pulsations | |
| JP2617652B2 (en) | Mass flow measuring device for flow media | |
| EP0196812B1 (en) | Hydraulic noise attenuators | |
| RU2004111974A (en) | VIBRATION TYPE MEASURING TRANSMITTER (OPTIONS) | |
| EP0458891B1 (en) | Screw rotor machine comprising a sound silencing device | |
| JPS5912970B2 (en) | A device that measures the air flow rate in an internal combustion engine using ultrasonic waves. | |
| CN112082033A (en) | Pipeline vibration damper and air conditioner | |
| US2832335A (en) | Artificial respiration apparatus | |
| JPS6018691A (en) | Pressure pulsation reducer | |
| US4224826A (en) | Flow measuring means | |
| US2474553A (en) | Elimination of pulsations in gas lines | |
| AU5200399A (en) | Device for measuring the volume flow of a fluid in a pipe | |
| EP1963680A1 (en) | Speed-regulating unit in a fluid-cooled configuration | |
| US4007635A (en) | Fluid volume apparatus for measuring a fluid under pressure | |
| WO1998044259A1 (en) | Pulsation reducing device | |
| JP3122984B2 (en) | Throttle flow meter | |
| JPS60136697A (en) | Pressure pulsation reduction device for liquid piping | |
| JP7132825B2 (en) | pump casing and pumping equipment | |
| CN111043029A (en) | An integrated module and device located at the outlet of a pump station of a water cooling system | |
| JPH0115993Y2 (en) | ||
| US4278402A (en) | Adjustable liquid level control for pumps | |
| RU2071595C1 (en) | Vortex flowmeter | |
| SU1348779A1 (en) | Liquid flow meter | |
| JP3574596B2 (en) | Hose mounting bracket that converts the flow path cross section |