JPS6063387A - Plasma treating device - Google Patents
Plasma treating deviceInfo
- Publication number
- JPS6063387A JPS6063387A JP16813683A JP16813683A JPS6063387A JP S6063387 A JPS6063387 A JP S6063387A JP 16813683 A JP16813683 A JP 16813683A JP 16813683 A JP16813683 A JP 16813683A JP S6063387 A JPS6063387 A JP S6063387A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- plasma
- sample
- article
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はプラズマエツチング、プラズマ化学堆積などの
処理を行うプラズマ処理装置および処理方法に保9、特
にこれらのプラズマ処理を再現性よく高速に行うのに好
適なプラズマ処理装置および方法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a plasma processing apparatus and processing method for processing such as plasma etching and plasma chemical deposition. The present invention relates to a plasma processing apparatus and method suitable for.
近年、グロー放電プラズマを利用したドライエツチング
等の表面処理技術が半導体装置の製造工業で広範に用い
られつつある。この方法は低圧気体のプラズマ中に生成
される化学的に活性なラジカルやイオンの化学反応性や
物理的エネルギを活用して固体の試料表面をエツチング
したシ、表面に物質を堆積させる方法である。ドライエ
ツチングに例をと9、従来のプラズマ処理装置および方
法について説明する。In recent years, surface treatment techniques such as dry etching using glow discharge plasma have been widely used in the semiconductor device manufacturing industry. This method utilizes the chemical reactivity and physical energy of chemically active radicals and ions generated in low-pressure gas plasma to etch the surface of a solid sample and deposit substances on the surface. . A conventional plasma processing apparatus and method will be explained using dry etching as an example.
第1図はエツチング処理室と処理する試料i 一時収納
する予備室を備えたエツチング装置の概念図である。カ
セット1に収容されているウェーハ状試料を、パルプ2
を開けて搬送装置4により予備室3内に収容し、パルプ
2を閉じ、パルプ6を開けて真空ポンプ7によシ予備室
3内を十分排気する。パルプ8を開けて試料5を搬送装
置4によシ、子じめ真空ポンプ18によシ十分排気され
たエツチング処理室9の高周波電極を兼ねたエツチング
テープ/l/10の上に搬送する。パルプ8を閉じて、
CF4.SFa 、BCts等のノヘロゲン化物気体を
気体源13からマスフローコントローラ14によシ流量
を一定に巾I」御してエツチング室9に供給し真空ポン
プ18で排気する。このとき、可変オリフィス16によ
シ排気コンダクタンスを調整してエツチング室9内の圧
力を10Pa程度の所定の圧力に一定に制御する。この
あと高周波電源12により高周波′電極10に高周波゛
電力を供給してグロー放電プラズマを発生させ、試料1
1のエツチング処理を開始する。プラズマの発光スペク
トルを分光光置針で連続的に監視する等の方法により、
エツチングの終了が観測されたら、冒周波屯力の供給を
停止してプラズマの生成を停止し、パルプ15を閉じて
反応気体の供給を止めて、エツチング室9内を真空ボン
ダ18によシ十分排気する。パルプ22f:開けて真空
ポンプ7により矛じめ十分排気した予備室21内に、パ
ルプ19を開けて搬送装置20により試料11を搬送す
る。FIG. 1 is a conceptual diagram of an etching apparatus equipped with an etching processing chamber and a preliminary chamber for temporarily storing a sample i to be processed. The wafer-shaped sample stored in the cassette 1 is
is opened and placed in the preliminary chamber 3 by the conveying device 4, the pulp 2 is closed, the pulp 6 is opened, and the inside of the preliminary chamber 3 is sufficiently evacuated by the vacuum pump 7. The pulp 8 is opened and the sample 5 is transported by the transport device 4 onto the etching tape /1/10 which also serves as a high frequency electrode in the etching processing chamber 9 which is sufficiently evacuated by the damp vacuum pump 18 . Close pulp 8,
CF4. A nohalogenide gas such as SFa, BCts, etc. is supplied from a gas source 13 to an etching chamber 9 by a mass flow controller 14 at a constant flow rate and evacuated by a vacuum pump 18. At this time, the exhaust conductance is adjusted by the variable orifice 16 to keep the pressure inside the etching chamber 9 constant at a predetermined pressure of about 10 Pa. After that, high-frequency power is supplied to the high-frequency electrode 10 by the high-frequency power source 12 to generate glow discharge plasma, and the sample 1
The etching process of step 1 is started. By continuously monitoring the plasma emission spectrum with a spectrometer,
When the end of etching is observed, the supply of the extra frequency force is stopped to stop the generation of plasma, the pulp 15 is closed and the supply of the reaction gas is stopped, and the inside of the etching chamber 9 is fully vacuumed by the vacuum bonder 18. Exhaust. Pulp 22f: The pulp 19 is opened and the sample 11 is transported by the transport device 20 into the preliminary chamber 21 which has been opened and sufficiently evacuated by the vacuum pump 7.
パルプ19を閉じたあと、予備室21内に窒素もしくは
大気k IJ−りして予備室21内の圧力が大気圧にな
ったらパルプ23を開けて搬送装置20によシ試料を処
理済試料収納カセット24に収納する。仄の試料をエツ
チング処理室9に搬入するのは、上記のプロセスのうち
エツチングの終了した試料をエツチング処理室から予備
室に搬出した直後に行う。After closing the pulp 19, nitrogen or atmospheric pressure is pumped into the preliminary chamber 21, and when the pressure in the preliminary chamber 21 reaches atmospheric pressure, the pulp 23 is opened and the sample is transferred to the transfer device 20 to store the processed sample. It is stored in the cassette 24. The second sample is carried into the etching chamber 9 immediately after the sample that has been etched in the above process is carried out from the etching chamber to the preliminary chamber.
多数の試料のエツチング処理を行うには、上記のプロセ
スを繰返して行うが、以上のような従来の処理方法では
、処理速度を向上して生産性を高める上で大きな障害が
ある。すなわち、上記の方法では、1回のエツチング処
理毎にエツチング室へのエツチング用反応気体の供給、
−排気と高周波電力の供給ff:断続する必要がある。In order to perform etching treatment on a large number of samples, the above-described process is repeated, but the conventional treatment methods described above have a major obstacle in increasing the processing speed and productivity. That is, in the above method, for each etching process, the etching reaction gas is supplied to the etching chamber,
- Exhaust and high frequency power supply ff: Must be intermittent.
この場合、断続に要する時間のほか、気体を供給し始め
てから一定の圧力に制御できるまで数十秒要することが
多く、さらに高周波放電@:嵯続8せると放電が定富状
態になるまでやはυ数十秒擬する。エツチング処理に要
する時間が1〜2分である場合には、これらの時間が全
工程の所要時間に占める比率は無視することが出来す、
装置の生産性を損う要因となる。さらに、上記のように
放電全断続すると放゛屯開始後プラズマが安定な状態に
なるまでに数十秒の時間を戟するために、この間のエツ
チングの進行状態が各回毎にばらつき、エツチングの終
了に至るまでの時間が1〜2分と短い場合には、エツチ
ング時間の再現性が損われる。In this case, in addition to the time required for intermittent operation, it often takes several tens of seconds to control the pressure to a constant level after the gas supply starts, and furthermore, when high-frequency discharge is used, it takes a long time until the discharge reaches a steady state. simulates υ tens of seconds. If the time required for the etching process is 1 to 2 minutes, the ratio of these times to the time required for the entire process can be ignored.
This becomes a factor that impairs the productivity of the equipment. Furthermore, when the discharge is completely intermittent as described above, it takes several tens of seconds for the plasma to reach a stable state after the start of the discharge, so the progress of etching during this period varies from time to time, and the etching process ends before the etching ends. If the time required to reach this point is as short as 1 to 2 minutes, the reproducibility of the etching time will be impaired.
本発明の目的は上記のよりに試料の交換に伴うで必要と
なるA’AF−排気時間や圧力調整時間等を省くことの
できるプラズマ処理装置および方法を提供し、召らに、
プラズマ発生初期の不安定性に基づいブこプラズマ処理
の再現性の欠如ケ回赴できるプラズマ処理装置および方
法を提供することにある。The purpose of the present invention is to provide a plasma processing apparatus and method that can eliminate the A'AF exhaust time, pressure adjustment time, etc. that are necessary for sample exchange, and to
It is an object of the present invention to provide a plasma processing apparatus and method that can overcome the lack of reproducibility of plasma processing due to instability in the initial stage of plasma generation.
本発明は上記のような現在のプラズマ処理装置の問題を
解消するため、プラズマ処理に用いる反応気体を被処理
試料の交換中も連続して供給し、かつ処理室内の圧力を
十分一定に維持できるよう処理室の内容積に対して予備
室の内谷積荀十分小さくすることを特徴とする。たとえ
ば、処理室の容積201に対して予備室のy積が1tで
あり(すなわち予備室の内容積は処理室の内容積の1/
20以下である)、処理室内の反応気体の圧力が20P
aの場合、試料の交換に先立って予備室を十分例えは0
.IPa以下に排気しておけば試料交換のために処理室
と予備室を隔てるバルブを開けても、処理室内の気体圧
力は20Paから19pa程度に低下するにすぎない。In order to solve the above-mentioned problems with current plasma processing equipment, the present invention can continuously supply the reactive gas used for plasma processing even while the sample to be processed is being replaced, and can maintain the pressure inside the processing chamber at a sufficiently constant level. The interior volume of the preparatory chamber is sufficiently small compared to the internal volume of the pretreatment chamber. For example, the y-product of the preliminary chamber is 1t for the volume of the processing chamber 201 (that is, the internal volume of the preliminary chamber is 1/1 of the internal volume of the processing chamber.
20 or less), the pressure of the reaction gas in the processing chamber is 20P
In the case of a, the preliminary chamber must be fully opened before replacing the sample.
.. If the gas is evacuated to below IPa, even if the valve separating the processing chamber and preliminary chamber is opened for sample exchange, the gas pressure in the processing chamber will only drop from 20 Pa to about 19 pa.
通常、プラズマエツチング、プラズマCVD等の処理で
は、この程度の圧力変化は、エツチング速度等のエツチ
ング特性やプラズマCVDによる堆積膜の膜質等に大き
な変化をもたら芒ない。したがって、試料交換時の圧力
調整に時間を要せず、試料交換後直ちに放電を開始して
プラズマを発生させてプラズマ処理を開始できる。Normally, in processes such as plasma etching and plasma CVD, pressure changes of this magnitude do not cause large changes in the etching characteristics such as etching rate or the quality of the film deposited by plasma CVD. Therefore, no time is required for pressure adjustment during sample exchange, and discharge can be started immediately after sample exchange to generate plasma and plasma processing can be started.
塾らに、このように試料交換時の圧力変化が十分小さけ
れば、放電プラズマを持続したまま試料を変換するとと
も可能であり、この場合には放電を断続はぜた場合に放
電開始後数十秒間にわたって安定なプラズマに至るまで
の過渡状態が続く点を回避することができて、プラズマ
処理の安定性沓現性を確保できる。上記のよりに放電開
始後、数十秒間にわたってプラズマ状態が不安定である
原因のひとつは、放電をしていないときに処理室内壁表
面に吸着した残留気体が放電開始後プラズマ中の活性な
粒子が内壁表面に入射するため、プラズマ中に放出され
るためである。従って、プラズマ中の気体の組成は放電
開始後壁面からの吸着気体の放出に伴って徐々に変化す
ることになり、これを防止する上で、上記のように試料
交換時も放電ケ継続することが望ましい。Juku et al. explained that if the pressure change during sample exchange is small enough, it is possible to convert the sample while maintaining the discharge plasma. It is possible to avoid the point where a transient state continues until a stable plasma is reached for several seconds, and it is possible to ensure the stability of plasma processing. One of the reasons why the plasma state is unstable for several tens of seconds after the start of discharge, as described above, is that the residual gas adsorbed on the inner wall surface of the processing chamber when no discharge is in progress is caused by active particles in the plasma after the start of discharge. This is because it is emitted into the plasma as it is incident on the inner wall surface. Therefore, the composition of the gas in the plasma will gradually change as the adsorbed gas is released from the wall surface after the discharge starts, and to prevent this, it is necessary to continue the discharge even when replacing the sample as described above. is desirable.
以下、本つ6明を実施例を参照して詳しく説明する。 The sixth aspect will be explained in detail below with reference to examples.
実施例
第1図Vこ示した構成のプラズマエツチング表置で、処
理室9の内容積40t1予備室3,21の内容積が0.
9tの装置を作成し、シリコン基板上に被着させた厚さ
35 Q nmの多結晶シリコンをプラズマエツチング
するのに用いた。エツチング用の反応気体として六弗化
イオウSF6を50m1/Hの流量で処理室9に供給し
、メカニカルブースタボング及び油回転真壁ポンプによ
シ排気して処理室のSFa圧力を15PHに保ち、高周
波電源12力・ら13.56M1(zの高周波1力を電
極10に供給してプラズマを発生させ、多結晶シリコン
のエツチングを行った。エツチングは約60秒で終了し
たが、引き続き20秒のオーバーエツチングを行い放電
を停止して、バルブ19を開けて試料を予備室21に搬
送すると同時にバルブ8を開けて次の試料を予備室3か
ら処理室9に搬送してバルブ8.19を閉じた@直ちに
放電を再開して次の試料のエツチング処理を行った。試
料の交換に匿した時間は15秒であシ、試料交換時の処
理室の気体圧力の変化は最大4%であった。こrしに対
して、従来のように、エツチング終了後放電停止と同時
にSFgの供給を停止して処理室内残留8Fs’にいっ
たん排気したのち、試料を交換してSFaの%、給を再
開して圧力を調整して放電を再開した場合には、試料の
交換に要した時間は95秒でめった。Embodiment FIG. 1V In the plasma etching surface shown in the configuration shown in FIG.
A 9T device was constructed and used to plasma etch 35 Q nm thick polycrystalline silicon deposited on a silicon substrate. Sulfur hexafluoride SF6 is supplied as a reaction gas for etching to the processing chamber 9 at a flow rate of 50 m1/H, and is evacuated using a mechanical booster bong and an oil rotary Makabe pump to maintain the SFa pressure in the processing chamber at 15 PH. A high frequency power of 13.56 M1 (z) was supplied to the electrode 10 to generate plasma and etching the polycrystalline silicon. Etching was completed in about 60 seconds, but continued for 20 seconds. Etching was performed and the discharge was stopped, valve 19 was opened and the sample was transferred to the preparatory chamber 21, and at the same time, valve 8 was opened to transfer the next sample from the preparatory chamber 3 to the processing chamber 9, and valve 8.19 was closed. @The discharge was immediately restarted to perform the etching process on the next sample.The time allowed for sample exchange was only 15 seconds, and the change in gas pressure in the processing chamber during sample exchange was 4% at maximum. For this, as in the conventional method, when the discharge is stopped after etching, the supply of SFg is stopped and the gas is temporarily evacuated to 8 Fs' remaining in the processing chamber, and then the sample is replaced and the supply of SFg is restarted. When the pressure was adjusted and the discharge was restarted, the time required to replace the sample was 95 seconds.
上記、実施例では、処理室の両側に処理済の試料を収容
する予備室と次に処理する試料を収容する試料を収容す
る試料を収容する予備室を各1つずつ配置したプラズマ
エツチング装置について述べたが、1つの予備室で両方
の役割を兼用する装置構成をとることが可iヒであるの
はもちろんである。In the above example, a plasma etching apparatus is described in which a preliminary chamber for storing a processed sample and a preliminary chamber for storing a sample to be processed next are arranged on each side of the processing chamber. As mentioned above, it is of course possible to adopt a device configuration in which one preparatory room serves both roles.
以上説明し/こととく、不発明のプラズマ処理装置およ
び方法によれば、プラズマエツチング、プラズマCVD
などのプラズマ処理において、反応気体の圧力調整など
の時間を節約して生理性の高いプラズマ処理が芙現でき
るほか、試料交換中もプラズマ放電を継続できるので、
放電開始時の不安短なプラズマ状態に試料がさらされる
のを防止できてプラズマ処理の再現性を向上できる利点
を有する。As explained above, according to the uninvented plasma processing apparatus and method, plasma etching, plasma CVD
In plasma processing such as this, it is possible to achieve highly physiological plasma processing by saving time such as adjusting the pressure of the reaction gas, and because plasma discharge can be continued even during sample exchange.
This has the advantage that the sample can be prevented from being exposed to an unstable plasma state at the start of discharge, and the reproducibility of plasma processing can be improved.
第1図はプラズマエツチング装置の断面図である。
1.24・・・ウェーハカセット、2,8,19゜23
・・・パルプ、3.21・・・予備室、4.20・・・
ウェーハ搬送装置、5.11・・・ウェーハ、6,15
゜17.22・・・パルプ、7.18・・・排気ポンプ
、9・・・エツチング処理室、10・・・^周波電極、
12・・・高周波電源、13・・・気体源(カスボンベ
)、14・・・マス70−コントローラ、16・・・可
変オリフィス。
第 / 図FIG. 1 is a sectional view of a plasma etching apparatus. 1.24...Wafer cassette, 2, 8, 19°23
...Pulp, 3.21...Preliminary room, 4.20...
Wafer transfer device, 5.11... wafer, 6,15
゜17.22...Pulp, 7.18...Exhaust pump, 9...Etching processing chamber, 10...^Frequency electrode,
12... High frequency power supply, 13... Gas source (gas cylinder), 14... Mass 70-controller, 16... Variable orifice. Figure/Figure
Claims (1)
チングする処理を行うか、もしくは、物品の表面に皮膜
を堆積させる処理を行うプラズマ処理装置において、物
品の表面処理を行うプラズマを発生させる処理室と次に
処理を行う物品および処理の終了した物品を一時収容す
る真空排気可能な予備室とを具備し、該予備室の内容積
が該処理室の内容積の1/20以下であることを特徴と
するプラズマ処理装置。 Z %許請求の範囲第1項記載のプラズマ処理装置にお
いて物品の表面処理の終了した物品を該処理室から該予
備室に搬出し引き続いて処理を行う物品を該予備室から
該処理室に搬入する交換の際中にも、処理中と同一の気
体を同一の流量で該処理室に供給できるように構成した
ことを特徴としたプラズマ処理装置。 3、%許開求の範囲第1項もしくは第2項記載のプラズ
マ処理装置において、該処理室で物品の表面処理が進行
している際中も、処理が終了して物品を交換する際中も
、一定の流量で気体を処理室に供給し続け、かつ、一定
の高周波電力で放電を持続させ得るように構成したこと
を特徴とするプラズマ処理装置。 4、%許請求の範囲第1項乃至第3項のいずれかの項に
記載のプラズマ処理装置において、処理の終了した物品
と引き続いて処理を行う物品とを処理室で交換するに先
だって予備室をIPa以下の真空度に排気できる機能を
有し、処理室におけるプラズマ処理時の気体圧力は5P
a以上にできるように構成したことを特徴とするプラズ
マ処理装置。[Claims] 1. Surface treatment of an article in a plasma processing apparatus that etches the surface of the article in gaseous glow discharge plasma or deposits a film on the surface of the article. It is equipped with a processing chamber that generates plasma to be processed, and a preliminary chamber that can be evacuated to temporarily accommodate articles to be processed next and articles that have been processed, and the internal volume of the preliminary chamber is one of the internal volume of the processing chamber. A plasma processing apparatus characterized in that: /20 or less. Z % In the plasma processing apparatus according to claim 1, an article whose surface has been surface-treated is carried out from the processing chamber to the preliminary chamber, and an article to be subsequently processed is carried from the preliminary chamber into the treatment chamber. 1. A plasma processing apparatus characterized in that the same gas as during processing can be supplied to the processing chamber at the same flow rate even during exchange. 3. Scope of permissible requirements In the plasma processing apparatus according to item 1 or 2, both while the surface treatment of the article is progressing in the treatment chamber and when replacing the article after the treatment, A plasma processing apparatus characterized in that it is configured to continuously supply gas to a processing chamber at a constant flow rate and to sustain discharge at a constant high frequency power. 4.% Permissible In the plasma processing apparatus according to any one of claims 1 to 3, before exchanging an article for which processing has been completed and an article to be subsequently processed in the processing chamber, The gas pressure during plasma processing in the processing chamber is 5P.
A plasma processing apparatus characterized in that it is configured to be able to perform more than a.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16813683A JPS6063387A (en) | 1983-09-14 | 1983-09-14 | Plasma treating device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16813683A JPS6063387A (en) | 1983-09-14 | 1983-09-14 | Plasma treating device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6063387A true JPS6063387A (en) | 1985-04-11 |
Family
ID=15862497
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP16813683A Pending JPS6063387A (en) | 1983-09-14 | 1983-09-14 | Plasma treating device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6063387A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62116769A (en) * | 1985-11-15 | 1987-05-28 | Hitachi Electronics Eng Co Ltd | CVD thin film forming equipment |
| JPH04124274A (en) * | 1990-09-13 | 1992-04-24 | Hitachi Electron Eng Co Ltd | Vapor phase reaction device |
| JP2002194551A (en) * | 2000-08-17 | 2002-07-10 | Novartis Ag | Plasma coating system for lens |
-
1983
- 1983-09-14 JP JP16813683A patent/JPS6063387A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62116769A (en) * | 1985-11-15 | 1987-05-28 | Hitachi Electronics Eng Co Ltd | CVD thin film forming equipment |
| JPH04124274A (en) * | 1990-09-13 | 1992-04-24 | Hitachi Electron Eng Co Ltd | Vapor phase reaction device |
| JP2002194551A (en) * | 2000-08-17 | 2002-07-10 | Novartis Ag | Plasma coating system for lens |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5454903A (en) | Plasma cleaning of a CVD or etch reactor using helium for plasma stabilization | |
| US4442338A (en) | Plasma etching apparatus | |
| US5380566A (en) | Method of limiting sticking of body to susceptor in a deposition treatment | |
| US6069092A (en) | Dry etching method and semiconductor device fabrication method | |
| EP0416774A1 (en) | A method of treating a sample of aluminium-containing material | |
| EP0430303A2 (en) | Improved process for selective deposition of tungsten on semiconductor wafer | |
| EP0732732A2 (en) | Method of removing native silicon oxide by sputtering | |
| US20020028566A1 (en) | CVD film formation method | |
| KR0175688B1 (en) | Plasma ashing method with oxygen pretreatment | |
| JP3020567B2 (en) | Vacuum processing method | |
| JPS6063387A (en) | Plasma treating device | |
| US5855689A (en) | Method for etching inside of tungsten CVD reaction room | |
| CN113818006A (en) | Film preparation method | |
| US7037843B2 (en) | Plasma etching method | |
| KR102653253B1 (en) | Substrate processing method and substrate processing apparatus | |
| JPH0387386A (en) | Substrate treating device | |
| JP4059792B2 (en) | Semiconductor manufacturing method | |
| JPH09223684A (en) | Plasma process device | |
| JPH09153484A (en) | Method and apparatus for forming thin film | |
| JP2003188172A (en) | Substrate processing method | |
| JPS61271836A (en) | Dry etching apparatus | |
| JPH03170678A (en) | Method for cleaning reaction vessel | |
| JP2928555B2 (en) | Plasma processing equipment | |
| JP3170849B2 (en) | Dry etching method | |
| JPH05152256A (en) | Dry cleaning method |