JPS6071687A - Processing method for coal-based heavy oil - Google Patents
Processing method for coal-based heavy oilInfo
- Publication number
- JPS6071687A JPS6071687A JP18115983A JP18115983A JPS6071687A JP S6071687 A JPS6071687 A JP S6071687A JP 18115983 A JP18115983 A JP 18115983A JP 18115983 A JP18115983 A JP 18115983A JP S6071687 A JPS6071687 A JP S6071687A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- heavy oil
- based heavy
- hydrocracking
- yield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、石炭系重質油を触媒を用いて水素化分解した
後、この分解後の液状生成物を高温状態にある時間保持
することにより、軽質油やその中に含まれるナフタリン
等の有用な化合物の収量を増加させる石炭系重質油の処
理方法に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to hydrocracking of coal-based heavy oil using a catalyst, and then maintaining the liquid product after the cracking at a high temperature for a period of time. , relates to a method for processing coal-based heavy oil that increases the yield of light oil and useful compounds such as naphthalene contained therein.
[発明の技術的背景とその問題点〕
従来、石炭系重質油を処理するに際しては、第1図に示
す工程によっている。すなわち、石炭系重質油10を触
媒12および水素14の添加の下で、水素化分解18を
行い、次いで気液分9.18をなし、ガス状生成物は冷
却20によりガス22としてイl)、他方液状生成物は
蒸留24により軽質油26と重質油28とに分離してい
る。[Technical background of the invention and its problems] Conventionally, when treating coal-based heavy oil, the steps shown in FIG. 1 have been used. That is, coal-based heavy oil 10 is subjected to hydrocracking 18 under the addition of a catalyst 12 and hydrogen 14, and then a gas-liquid fraction of 9.18 is formed, and the gaseous product is cooled 20 to be irrigated as gas 22. ), on the other hand, the liquid product is separated into light oil 26 and heavy oil 28 by distillation 24.
水添化分解の目的は、石炭系重質油そのものが高温の熱
履歴により生成した高い高分子+()の成分を含み、高
粘性でコーキングしやすいなとの好ましくない性質を有
しているので、これを水素添加することにより、分解し
、低分子化し、ナフチ/化し芳香族性を低下させ、東買
油の粘度を低ドさせ、熱的に安定でコーキングし・ぷい
性質を(□l7I−するためである。The purpose of hydrogenation cracking is that coal-based heavy oil itself contains high polymer + () components produced by high-temperature thermal history, and has undesirable properties such as high viscosity and easy coking. Therefore, by hydrogenating it, it decomposes, becomes low molecular weight, turns into naphthyl, reduces aromaticity, lowers the viscosity of Tobuki oil, and improves its thermal stability and coking and ductile properties (□ 17I-.
しかるに、石炭系重質油は、前述のように、高温熱履歴
を経た重質油であるため、その水素化分解反+5は緩慢
なものである。However, as described above, coal-based heavy oil is a heavy oil that has undergone a high-temperature thermal history, so its hydrocracking reaction +5 is slow.
一力、石炭からイIIられる化学原料としては、ナフタ
リン、メチルナフタリン、7ノトラセノまたはカル八ゾ
ール等の多核芳香族炭化水素化合物かあるが、石炭系重
質油の水素化分解により生成する軽質油中に、これらの
化合物が多く含まれていることか、勿論、望まれる。Chemical raw materials derived from coal include polynuclear aromatic hydrocarbon compounds such as naphthalene, methylnaphthalene, 7-notraceno, and carhatazole, and light oil produced by hydrocracking of coal-based heavy oil. Of course, it is desirable that these compounds be contained in large quantities.
そこで、従来から一般に行なわれている手法として、軽
質油の収率を高めるために、水素化分解工程における水
素ガス吸収量を増加させることを行ったとしても、ナフ
タリン等の多核芳香族炭化水素化合物の芳香環の一部が
水素化された水添物となり、軽質油中に含まれる多核芳
香族炭化水素化合物の収量は、逆に減少する。しかも、
多核芳香族炭化水素化合物とその水添物との沸点差は、
たとえばナフタリンとテ]・ラワンとの間でそれぞれ2
18°Cと 207°Cの11℃であり、きわめて小さ
く、既存の蒸留設備で分離することは困難であり、ハ留
以外の改質設備を必要とする。通常、改質用の反応設備
は1反応温度450〜510°C,反応圧力+5− 1
50kg/cm’、LH5V:1−2.循環水素(水素
/油モル比)5〜IOの操作条件とされるか、触媒を用
いなければならず、また改質反応を行うとすれば、設備
費が嵩むばかりでなく、熱効率が低い。Therefore, even if the conventional method is to increase the amount of hydrogen gas absorbed in the hydrocracking process in order to increase the yield of light oil, polynuclear aromatic hydrocarbon compounds such as naphthalene Some of the aromatic rings of the light oil become hydrogenated products, and the yield of polynuclear aromatic hydrocarbon compounds contained in the light oil decreases. Moreover,
The boiling point difference between a polynuclear aromatic hydrocarbon compound and its hydrogenated product is
For example, between naphthalene and Te] Lawan, each
The temperature is 11°C (18°C and 207°C), which is extremely small and difficult to separate using existing distillation equipment, requiring reforming equipment other than the distillation equipment. Usually, the reaction equipment for reforming has a reaction temperature of 450 to 510°C and a reaction pressure of +5-1.
50kg/cm', LH5V: 1-2. Operating conditions for circulating hydrogen (hydrogen/oil molar ratio) of 5 to IO must be used or a catalyst must be used, and if a reforming reaction is performed, not only the equipment cost increases but also the thermal efficiency is low.
[発明の目的]
したがって、本発明の目的は、軽質油収率とともに有用
な多核芳香族化合物の収量を増加でき、熱高率に優れ、
しかも設備費が安価になるなどの利点をもたらす石炭系
重質油の処理方法を提供することにある。[Object of the Invention] Therefore, the object of the present invention is to increase the yield of useful polynuclear aromatic compounds as well as the yield of light oil, and to provide an excellent heating efficiency.
Moreover, it is an object of the present invention to provide a method for processing coal-based heavy oil that brings advantages such as lower equipment costs.
[発明の構成]
この目的を達成するための本発明は、石炭系重質油を触
媒を用いて水素化分解し、ガス状生成物を分離した後の
液状生成物を高温状態にある時間保持し、液状生成物の
改質反応を促進することを特徴とするものである。[Structure of the Invention] To achieve this object, the present invention hydrocracks coal-based heavy oil using a catalyst, and after separating the gaseous products, maintains the liquid product at a high temperature for a period of time. It is characterized by promoting the reforming reaction of liquid products.
[発明の具体例]
本発明における石炭系重質油としては、石炭乾留時に副
生ずる高温タールや低温タールを用いることができる。[Specific Examples of the Invention] As the coal-based heavy oil in the present invention, high-temperature tar or low-temperature tar that is produced as a by-product during coal carbonization can be used.
この場合、そのWB点は270°C以上のものを用いる
のが望ましい。270°C未満の低沸点留分を予め除去
しておいた方が、水素化分解反応における水素化分解効
率および触媒効率に優れ、後の軽質油分離に都合がよい
ためである。In this case, it is desirable to use a WB point of 270°C or higher. This is because it is better to remove the low boiling point fraction below 270° C. in advance, which is superior in hydrocracking efficiency and catalytic efficiency in the hydrocracking reaction, and is convenient for subsequent light oil separation.
この石炭系重質油lOは、第2図のように、従来と同様
に、触媒12および水素14の存在の下に、水素化分解
16がなされる。この条件としては1反応温度か450
℃〜500℃、また水素圧は100〜200kg/cm
’もしくはそれ以上に保つのが望まれる。As shown in FIG. 2, this coal-based heavy oil 10 is subjected to hydrocracking 16 in the presence of a catalyst 12 and hydrogen 14, as in the prior art. For this condition, 1 reaction temperature or 450
°C to 500 °C, and hydrogen pressure is 100 to 200 kg/cm
It is desirable to keep it at 'or higher.
石炭系重質油の水素化分解反応における反応温度と、軽
質油収率および水素ガス吸収量との関係を第3図に示し
た。同図によれば、反応温度が450°C以下では、軽
質油収率および水素カス吸収量がほぼ一定であり、45
0℃以上でそれらが増加している。このことは、450
℃未満では主に水素化反応が進行し、450°C以上で
水素化分解反応か進行していることを示唆している。し
たかつて、反応温度を450°C以上に保つことが望ま
れる。他力、反応温度が500°Cを超えるとコーキン
グ反応が進行し易くなり、最終的に得られる重質油を炭
素材の原料とする場合など・において支障がある。FIG. 3 shows the relationship between the reaction temperature, light oil yield, and hydrogen gas absorption amount in the hydrocracking reaction of coal-based heavy oil. According to the same figure, when the reaction temperature is 450°C or lower, the light oil yield and the amount of hydrogen gas absorbed are almost constant;
They increase at temperatures above 0°C. This means that 450
It is suggested that below 450°C, hydrogenation reaction mainly proceeds, and above 450°C, hydrogenolysis reaction also proceeds. However, it is desirable to maintain the reaction temperature at 450°C or higher. On the other hand, if the reaction temperature exceeds 500°C, the coking reaction tends to proceed easily, which poses a problem when the finally obtained heavy oil is used as a raw material for carbon material.
一方、水素化分解工程における水素圧が、 100kg
/crrf未満だと、芳香環の水添反応が進行し炸くな
るので、水添反応に続く分解反応が十分でなくなり、結
局、目的とする軽質油収率の増加が期待できない。また
水素圧か200kg/cm’を超えるとなると、高価な
水素の消費量が嵩み、耐圧設備に要するコストか割高と
なる。On the other hand, the hydrogen pressure in the hydrocracking process is 100kg
If it is less than /crrf, the hydrogenation reaction of the aromatic ring will progress and explode, so the decomposition reaction following the hydrogenation reaction will not be sufficient, and as a result, the desired increase in light oil yield cannot be expected. Furthermore, if the hydrogen pressure exceeds 200 kg/cm', the amount of expensive hydrogen consumed increases, and the cost required for pressure-resistant equipment becomes relatively high.
本発明に用いる触媒としては、鉄系化合物が望ましい。As the catalyst used in the present invention, iron-based compounds are desirable.
従来、通常用いられている触媒は、高活性で軽質油も高
い点で好ましいのであるけれども、触媒の寿命が短いた
め触媒再生工程が必要となる。この点で、石炭系重質油
の水素化分解における触媒は被ifされ易く、また多j
−に必要とされるので、容易に人手できかつ安価な使い
捨てが可能な鉄系触媒が望ましいのである。Conventionally used catalysts are preferable because they are highly active and produce light oil, but they have a short lifetime and require a catalyst regeneration step. In this respect, catalysts in the hydrocracking of coal-based heavy oils are easily subject to
- Therefore, an iron-based catalyst that can be easily handled manually, inexpensively, and disposable is desirable.
鉄系触媒として、赤泥、鉄鉱石等の鉄系化合物を、石炭
系重質油に対して1〜10WT%使用し、助触媒として
硫黄化合物を、石炭系重質油に対して1〜l0WTχ使
用するのが好ましい。1%未満では触媒の効果が顕著で
なく、10%を超えると触媒効率が悪くなる。As an iron-based catalyst, an iron-based compound such as red mud or iron ore is used in an amount of 1 to 10 WT% based on coal-based heavy oil, and as a co-catalyst, a sulfur compound is used in a proportion of 1-10 WTx based on coal-based heavy oil. It is preferable to use If it is less than 1%, the effect of the catalyst will not be significant, and if it exceeds 10%, the catalyst efficiency will deteriorate.
他方、添加する水素酸は、石炭系重質油に対して0.5
〜3.5zとするのが望ましい。On the other hand, the amount of hydrogen acid added is 0.5 for coal-based heavy oil.
It is desirable to set it to ~3.5z.
かかる水素化分解工程を経た石炭系重質油は、気液分離
工程18を経て、原料水素、生成ガスおよび液状生成物
に分離される。The coal-based heavy oil that has undergone such a hydrocracking process is separated into raw material hydrogen, product gas, and liquid product through a gas-liquid separation process 18.
本発明は、特にこの液状生成物を高温に保持30するこ
とを特徴としている。The invention is particularly characterized by maintaining 30 this liquid product at a high temperature.
前述したように、石炭系重質油を水素化分解する温度は
450〜500°Cが好ましいが、水添物の場合には、
石炭系重質油と比較して分解し易くなっている関係上、
高温保持温度としては、水素化分解温度より若干低めの
温度とし、かつ温度範囲としては400〜480℃程度
が好ましい。この熱は、冷却工程2θの熱を利用するの
が好適である。As mentioned above, the temperature for hydrocracking coal-based heavy oil is preferably 450 to 500°C, but in the case of hydrogenated products,
Because it is easier to decompose compared to coal-based heavy oil,
The high temperature holding temperature is preferably slightly lower than the hydrogenolysis temperature, and the temperature range is preferably about 400 to 480°C. It is preferable to use the heat of the cooling process 2θ as this heat.
保持圧力は、15〜150 kg/cm’が望ましく、
15kg/cm’未満では、ガスの生成量が多くめる多
核芳香族炭化水素化合物の収量が減少する。The holding pressure is preferably 15 to 150 kg/cm',
If it is less than 15 kg/cm', the yield of polynuclear aromatic hydrocarbon compound, which increases the amount of gas produced, decreases.
150kg/crrfを超えると、改質反応よりも水素
化反応が進行し易くなり、多核芳香族炭化水素化合物の
収量か減少する。また保持時間は、3〜80分程度が望
ましく、3分未満では、改質が十分でなく、80分を超
えると消費エネルギーの点で不利である。If it exceeds 150 kg/crrf, the hydrogenation reaction will proceed more easily than the reforming reaction, and the yield of polynuclear aromatic hydrocarbon compounds will decrease. Further, the holding time is desirably about 3 to 80 minutes; if it is less than 3 minutes, the reforming is not sufficient, and if it exceeds 80 minutes, it is disadvantageous in terms of energy consumption.
高温保持工程30を経た液状生成物は、常圧蒸留塔もし
くは減圧蒸留塔に送られ、軽質油26と重質油30とに
分離される。The liquid product that has passed through the high temperature holding step 30 is sent to a normal pressure distillation column or a vacuum distillation column and is separated into light oil 26 and heavy oil 30.
ところで、現在、ナフタリンは、無水フタル酸、β−ナ
フトール、染料、医薬、防虫剤、界面活性剤または合成
タンニン等の原料として巾広い用途を有し、現在他界的
に供給不足状態にある。Currently, naphthalene has a wide range of uses as a raw material for phthalic anhydride, β-naphthol, dyes, medicines, insect repellents, surfactants, synthetic tannins, and the like, and is currently in short supply.
またナフタリンの水素化物であるテトラリンおよびデカ
リンの用途は溶剤のみである。Tetralin and decalin, which are hydrides of naphthalene, are used only as solvents.
したかって、巾広い用途を有するナフタリン原料を水素
化物の混入を極力避けながら得ることが望まれるが、後
述の実施例で示すように、本発明に係る高温保持工程を
付加することは、ナフタリンの選択的合成法として著し
く効果的である。Therefore, it is desirable to obtain a naphthalene raw material that has a wide range of uses while avoiding contamination with hydrides as much as possible. However, as shown in the examples below, adding the high temperature holding step according to the present invention will improve the naphthalene raw material. It is extremely effective as a selective synthesis method.
すなわち、前述のように、テトラリノどナフタリンの沸
点はそれぞれ207°C1217℃であり蒸留により分
離することは困難である。しかるに、本発明に従う高温
保持工程を経ることにより、ナフタリンの水素化物ばか
りでなく、アントラセ/やカルバゾール等の水素化物も
脱水素され、続く既存のタール蒸留設備で蒸留する際、
水素化物の混入を避けながら効果的に蒸留が可能となる
。That is, as mentioned above, the boiling points of tetralino and naphthalene are 207°C and 1217°C, respectively, and it is difficult to separate them by distillation. However, by going through the high temperature holding step according to the present invention, not only naphthalene hydrides but also hydrides such as anthrace/carbazole are dehydrogenated, and during subsequent distillation using existing tar distillation equipment,
Effective distillation is possible while avoiding contamination with hydrides.
しかも1本発明によれば、高温で気液分離塔を出た液状
生成物を高温に保持するだけであるから、一旦、蒸留分
離した生成物を、前述の従来の改質設備による改質する
場合と比較して、熱効率および設4i11費の点で優れ
たものとなる。Moreover, according to the present invention, since the liquid product exiting the gas-liquid separation tower at high temperature is simply maintained at high temperature, the product separated by distillation is first reformed using the conventional reforming equipment described above. It is superior in terms of thermal efficiency and installation costs compared to the conventional case.
し実施例] さらに本発明を実施例にて説明する。Examples] Further, the present invention will be explained with examples.
コールタールから沸点270℃以下の留分を除去した重
質油の元素分析結果をS1表に示す。Table S1 shows the results of elemental analysis of heavy oil obtained by removing the fraction with a boiling point of 270°C or lower from coal tar.
この重質油を0.5kg/Hrの能力を有する水素化分
解装置6を用い、水素化分解し、ガス状生成物および原
料水素を回収した後、450°Cで30分保持した場合
の軽質油収率ならびにナフタリン生成率を実施例として
、また高温保持しない場合の結果を比較例として第2表
に示す。なお、操業条件は以下である。This heavy oil is hydrocracked using a hydrocracker 6 having a capacity of 0.5 kg/Hr, and after recovering gaseous products and raw hydrogen, it is kept at 450°C for 30 minutes. Table 2 shows the oil yield and naphthalene production rate as an example, and the results when the temperature is not maintained as a comparative example. The operating conditions are as follows.
(水素分解条件) 反応温度:470℃ 反応時用1: IHr 水素圧 : 150kg/cm’ 触媒(赤泥)使用量: 原料重質油に対して6.6% (高温保持温度) 保科温度:450°C 保持時間: 30fllin。(Hydrogen decomposition conditions) Reaction temperature: 470℃ For reaction 1: IHr Hydrogen pressure: 150kg/cm’ Catalyst (red mud) usage: 6.6% based on raw material heavy oil (High temperature holding temperature) Hoshina temperature: 450°C Retention time: 30 flin.
保持圧 二ioOkg/cm’ 江)表中の数値は%(原料ベース)である。Holding pressure 2ioOkg/cm’ (E) The values in the table are percentages (based on raw materials).
第2表で示されるように実施例で高温保持した場合の方
が比較例と比べて軽質油収率が若干高く、ナフタリン収
率は著しく高く、テ)・ラリン収率は著しく低いことが
判明した。As shown in Table 2, it was found that the light oil yield was slightly higher in the example when the temperature was maintained than in the comparative example, the naphthalene yield was significantly higher, and the telarine yield was significantly lower. did.
[発明の効果]
以上の通り、本発明は、石炭系重質油の処理に際し、水
素化分解と蒸留工程との間に高温保持工程を設けたもの
であるから、次のような効果がある。[Effects of the Invention] As described above, the present invention provides a high temperature holding step between the hydrocracking and distillation steps when processing coal-based heavy oil, and therefore has the following effects. .
a) 選枳的に多核芳香族化合物の合成か可能である。a) It is possible to selectively synthesize polynuclear aromatic compounds.
(沁 水素化物の混入の少い化学原料を蒸留により分離
可能である。(Chemical raw materials with little hydride contamination can be separated by distillation.
■ 熱効率にすぐれる。■ Excellent thermal efficiency.
■ 設備費か安価となる。■ Equipment costs are low.
・句 軽質油の収率が増加する。・The yield of light oil increases.
第1図は従来法の工程図、第2図は本発明法の工程図、
第3図は水素化分解における反応温度と、軽質油収率お
よび水素カス吸収量との相関図である。
特許出願人 住友金属工業株式会社
第1図
第3図
及丈・湿九(0C)
手 続 補 正 書 (自発)
特許庁長官 若 杉 和 夫 殿
2、発明の名称
石炭系重質油の処理方法
3、補正をする者
事件との関係 特許出願人
住所
氏名 (2+1)住友金属工業株式会社4、代理人 〒
136
住所 東京都江東区亀戸1丁1」42番14号ハピーハ
イツニュー亀戸505号
7、補正の対象
明細、すの発明の詳細な説明の欄
8、補正の内容
(1)明細書、第2頁〜第5行目:
「水添化分解」とあるのを、「水素化分解」と補正する
。
(2) 同、第4頁、第3行目:
「熱高率」とあるのを、「熱効率」と補正する。
(3) 同、第6頁、第6行目:
「軽質油も高い点」とあるのを、[」径質油収率が高い
点」と補正する。
(4) 同、第1.0頁、第3行目:
[(水素分解条件)」とあるのを、「(水素化分)す¥
条件)」と補正する。
以上Figure 1 is a process diagram of the conventional method, Figure 2 is a process diagram of the present invention method,
FIG. 3 is a correlation diagram between the reaction temperature in hydrocracking, the light oil yield, and the amount of hydrogen residue absorbed. Patent applicant: Sumitomo Metal Industries, Ltd. Figure 1, Figure 3, length and wetness (0C) Procedural amendment (voluntary) Commissioner of the Patent Office Kazuo Wakasugi 2, Title of the invention: Processing of coal-based heavy oil Method 3: Relationship with the case of the person making the amendment Patent applicant address and name (2+1) Sumitomo Metal Industries, Ltd. 4, agent 〒
136 Address: 42-14, 1-1 Kameido, Koto-ku, Tokyo, 505-505, Happy Heights New Kameido 7, Specification subject to amendment, Column 8 for detailed explanation of the invention of suno, Contents of amendment (1) Specification, No. 2 Page - 5th line: "Hydrogenolysis" is corrected to "hydrocracking." (2) Same, page 4, line 3: "Thermal efficiency" is corrected to "thermal efficiency." (3) Same, page 6, line 6: Correct the phrase ``Light oil is also high'' to ``High quality oil yield''. (4) Same, page 1.0, line 3: [(hydrogen decomposition conditions)” should be replaced with “(hydrogenation fraction)
conditions)”. that's all
Claims (1)
状生成物を分離した後の液状生成物を高温状態にある時
間保持し、液状生成物の改質反応を″促進することを特
徴とする石炭系重質油の処理方法。(1) After hydrocracking coal-based heavy oil using a catalyst and separating the gaseous products, the liquid product is maintained at a high temperature for a period of time to promote the reforming reaction of the liquid product. A method for processing coal-based heavy oil, which is characterized by:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP18115983A JPS6071687A (en) | 1983-09-28 | 1983-09-28 | Processing method for coal-based heavy oil |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP18115983A JPS6071687A (en) | 1983-09-28 | 1983-09-28 | Processing method for coal-based heavy oil |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6071687A true JPS6071687A (en) | 1985-04-23 |
| JPH0475276B2 JPH0475276B2 (en) | 1992-11-30 |
Family
ID=16095916
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP18115983A Granted JPS6071687A (en) | 1983-09-28 | 1983-09-28 | Processing method for coal-based heavy oil |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6071687A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9073811B2 (en) | 2013-11-19 | 2015-07-07 | Uop Llc | Process for providing aromatics from coal tar |
-
1983
- 1983-09-28 JP JP18115983A patent/JPS6071687A/en active Granted
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9073811B2 (en) | 2013-11-19 | 2015-07-07 | Uop Llc | Process for providing aromatics from coal tar |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0475276B2 (en) | 1992-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0093501A2 (en) | Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions | |
| US4222844A (en) | Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes | |
| US2574445A (en) | Catalytic desulfurization of kerosene and white spirits | |
| DE3835494A1 (en) | CATALYTIC TWO-STEP CONFLECTION OF COAL USING CASCADE FROM USED CREEP BED CATALYST | |
| EP0047570B1 (en) | Controlled short residence time coal liquefaction process | |
| JP6772382B2 (en) | Method for producing hexadecahydropyrene | |
| EP0047571B1 (en) | Short residence time coal liquefaction process including catalytic hydrogenation | |
| JPS6071687A (en) | Processing method for coal-based heavy oil | |
| JPS5843433B2 (en) | coal liquefaction method | |
| US4412908A (en) | Process for thermal hydrocracking of coal | |
| JPS62192487A (en) | Method for treating coal tar | |
| JPS61203198A (en) | Coal liquefaction method | |
| RU2006117098A (en) | APPLICATION OF CHROMIUM SOURCE IN COMBINATION WITH THE DEPOSITED CATALYST IN THE FISCHER-TROPSH REACTION | |
| JP2784076B2 (en) | Coal liquefaction method | |
| JP3139115B2 (en) | Method for hydrorefining naphthalene | |
| JPS6254791A (en) | Treatment of coal tar | |
| JPS5952679B2 (en) | Coal liquefaction method | |
| JPH05320664A (en) | Coal liquefaction method | |
| JPH04120192A (en) | Lighting of heavy oil fraction | |
| JPS6254792A (en) | Treatment of coal tar | |
| JPS58125783A (en) | Coal hydrogenation | |
| JPS61228091A (en) | Hydrocracking method for heavy coal liquefaction | |
| JPH04122790A (en) | Catalytic hydrocracking of heavy oil | |
| JPS6081290A (en) | Treatment of cut tar | |
| JPH0228122A (en) | Production of light-colored heavy alkylate |