[go: up one dir, main page]

JPS6092687A - semiconductor laser equipment - Google Patents

semiconductor laser equipment

Info

Publication number
JPS6092687A
JPS6092687A JP58201566A JP20156683A JPS6092687A JP S6092687 A JPS6092687 A JP S6092687A JP 58201566 A JP58201566 A JP 58201566A JP 20156683 A JP20156683 A JP 20156683A JP S6092687 A JPS6092687 A JP S6092687A
Authority
JP
Japan
Prior art keywords
semiconductor laser
thermal expansion
submount
expansion coefficient
making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58201566A
Other languages
Japanese (ja)
Other versions
JPH0224393B2 (en
Inventor
Akira Otsuka
昭 大塚
Shinichi Iguchi
井口 信一
Yoshimitsu Yamazoe
山添 良光
Nobuo Ogasa
小笠 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58201566A priority Critical patent/JPS6092687A/en
Publication of JPS6092687A publication Critical patent/JPS6092687A/en
Publication of JPH0224393B2 publication Critical patent/JPH0224393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02492CuW heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the heat radiation of the titled device and to lessen the stress accompanied with the generation of heat by a method wherein any one of two kinds of alloys made by making Cu contain uniformly in each of W and Mo whose thermal expansion coefficients are both in a specific extent, or an alloy made by making Cu contain uniformly in an alloy of the W and the Mo, is used as a material for the submount. CONSTITUTION:As a material for the submount of a semiconductor laser, wherein a semiconductor laser element 1 formed with GaAs, Gap or GaSb as the substrate has been used, is used any one of an alloy made by making Cu contain uniformly in W whose thermal expansion coefficient is in an extent of 5.0-8.5X10<-6>cm/cm. deg.C; an alloy made by making Cu contain uniformly in Mo, whose thermal expansion coefficient is also in the above-mentioned extent as well; or an alloy made by making Cu contain uniformly in an alloy of the W and the Mo. These alloys can be manufactured by a powder method or a solution-dipping method. When the thermal expansion coefficient of the material for the submount exceeds the above-mentioned extent of thermal expansion coefficient, the mismatching of the thermal expansion coefficient of the material and that of the semiconductor laser element 1 is increased. As a result, failure of the element or lowering of the luminous efficiency, etc., are caused due to stress, which generates in the element.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は半導体レーザー装置、特にその放熱特性の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a semiconductor laser device, and particularly to improvement of its heat dissipation characteristics.

(ロ)従来技術 半導体レーザー装置は電流駆動による大電力素子である
ため、動作中の発熱量が大きい。そのため、心切な放熱
設計が行なわれていない場合には、通電使用中の発熱に
よシ1焦能の劣化、素子寿命の低下、あるいは半導体レ
ーザー素子の破壊をまねく危険がある。
(b) Prior Art Since semiconductor laser devices are current-driven high-power devices, they generate a large amount of heat during operation. Therefore, if a careful heat dissipation design is not carried out, there is a risk that heat generation during energization may cause deterioration of the focus, shorten the element life, or destroy the semiconductor laser element.

暴体的には半導体レーザー素子は一般に第2図に示すよ
うな温度特性をもつ。図から明らかなように、発光出力
は素子温度に大きく依存する。Nui度20°Cで光出
力2 ++lWを得るには約8(1mAの電流が必要で
あるが、温度50℃で使用する場合には3Q+oAでは
レーザ発振にさえ達することが出東す、光出力2mW 
を得るには60+++A以上の駆動′電流が必蒙となる
。しかも、温度上昇による光出力の1氏下を補なうため
に駆動電流を増加してやれば、7i1流増加にともなう
素子の発熱量の増加執がひきおこされ、さらに素子温度
が上昇するという悪循環を生じることになり、素子の急
速な劣化や、はなはだしい場合は素子の破壊にいたる。
In general, a semiconductor laser element generally has temperature characteristics as shown in FIG. As is clear from the figure, the light emission output largely depends on the element temperature. To obtain an optical output of 2 + lW at 20 degrees Celsius, a current of approximately 8 (1 mA) is required, but when used at a temperature of 50 degrees Celsius, 3Q + oA can even reach laser oscillation. 2mW
To obtain this, a drive current of 60 +++ A or more is required. Moreover, if the drive current is increased to compensate for the 1°C decrease in optical output due to the temperature rise, the increase in 7i1 flow will cause an increase in the amount of heat generated by the element, causing a vicious cycle in which the element temperature will further rise. This can lead to rapid deterioration of the device or, in extreme cases, destruction of the device.

しだがって、半導体レーザー素子を支持する寥ステムは
、熱伝導率の高い材料を用いて熱放散を良好にする必要
がある。
Therefore, the main stem supporting the semiconductor laser element needs to be made of a material with high thermal conductivity to improve heat dissipation.

また、上記=ステムと半導体レーザー素子の熱膨張係数
に差があると、発熱に伴ってひずみが発生し、半導体レ
ーザー素子に不必要なス)L/ヌが加わる。このような
ストレスは、半導体レーザー素子の性能の劣化を加速し
、更にはその破壊の原因)パど、なるものである。
Further, if there is a difference in the coefficient of thermal expansion between the stem and the semiconductor laser element, distortion occurs due to heat generation, and unnecessary S)L/nu is added to the semiconductor laser element. Such stress accelerates the deterioration of the performance of the semiconductor laser element and even causes its destruction.

したがって、ステムの材料としては、熱伝導率がか高く
、しかも熱膨張係数が半導体レーザー素子のそれとでき
るだけ近いものであることが要求される。
Therefore, the material for the stem is required to have high thermal conductivity and a coefficient of thermal expansion as close as possible to that of the semiconductor laser element.

そこで、従来は、第1図に示すように、半導体レーザー
素子lをサブマウント2を介してパッケージのマウント
内ブロック3に取付け、そのサブマウント2の材料とし
て、コバー/L/(商品名)の如き低熱膨張特性を示す
材料を使用することが行なわれていた。
Therefore, conventionally, as shown in FIG. 1, the semiconductor laser element l was attached to the block 3 inside the mount of the package via the submount 2, and the material of the submount 2 was Kovar/L/(trade name). Materials exhibiting low thermal expansion properties have been used.

(ハ)発明によって解決しようとする問題点サブマウン
ト2の材料は、前述のとおり熱伝導率が良好で、かつ熱
膨張係数が半導体レーザー素子夏のそれに近いことが要
求される。
(c) Problems to be Solved by the Invention As mentioned above, the material of the submount 2 is required to have good thermal conductivity and a coefficient of thermal expansion close to that of the semiconductor laser element.

しかしながら、従来使用されているコバルトは、第1表
に示すように、熱膨張係数は半導体レーザー素子1に非
常に近いが、熱伝導率が低い問題があり、このことが半
導体レーザーの性能改良の上で大きな障害となっていた
However, as shown in Table 1, conventionally used cobalt has a coefficient of thermal expansion very close to that of semiconductor laser element 1, but it has a problem of low thermal conductivity, which makes it difficult to improve the performance of semiconductor lasers. This was a major obstacle at the top.

に)開門点を解決するだめの手段 この発明は、GaAs、GaP又はGaSbを基板とす
る半導体レーザー素子を用いた半導体レーザーを対象と
し、この場合のサブマウントの4;t Itとして、熱
膨張係数が50〜8.5 X I Oc〃V/am・“
Cの範囲にある次の金属、すなわち (+l WにCuを均一に含有させた合金+21M0K
cuを均一に含有させた合金!31 W−Mo合金にC
uを均一に含有させた合金のいずれか一つを使用するこ
ととしたものである。
B) Means to solve the opening point The present invention is directed to a semiconductor laser using a semiconductor laser element having a substrate of GaAs, GaP or GaSb, and in this case, the coefficient of thermal expansion is 4;t It of the submount. is 50~8.5 X I Oc〃V/am・“
The following metals in the range of C, namely (+l Alloy containing Cu uniformly in W+21M0K
Alloy containing Cu uniformly! 31 C in W-Mo alloy
It was decided to use one of the alloys containing u uniformly.

上記の合金は粉末法又は醍浸法によって製造することが
できる。
The above alloys can be manufactured by a powder method or an infusion method.

サブマウントの材料が上記の無膨張係数の範囲を越える
と、半導体レーザー素子との熱膨張係数の不整合が大き
くなり、素子に生じるストレスによシ、素子の破損又は
発光効率の低下などが起こる。
If the submount material exceeds the above-mentioned non-expansion coefficient range, there will be a large mismatch in the thermal expansion coefficient with the semiconductor laser element, resulting in stress on the element, damage to the element, or a decrease in luminous efficiency. .

また、上記範囲の熱膨張係数を満足する上記金属材料の
Cu含有量を重量%で示せば次のとおりである。
Further, the Cu content of the metal material satisfying the thermal expansion coefficient in the above range is as follows in weight %.

W 十Cu : 0.5−80%(MiJ記(11の金
属材料)Mo+Cu : 5〜35% (前記(2)の
金属材料)W−Mo十Cu : 0.5−85%(前記
(3)の金属材料)なお、上記金属材料の熱伝導率は、
035〜070are/am−最・℃ である。
W-Cu: 0.5-80% (MiJ (metal material 11) Mo+Cu: 5-35% (metal material (2) above) W-MoCu: 0.5-85% (metal material (3) above) )The thermal conductivity of the above metal material is
035-070 are/am-max.°C.

この発明の金属材料と従来例(コバール)との対比、及
び素子基板の熱膨張係数を参考までに示せば、次の第1
表に示すとおりである。
For reference, the comparison between the metal material of this invention and the conventional example (Kovar) and the coefficient of thermal expansion of the element substrate are as follows:
As shown in the table.

第 l 表 上記第1表かられかるように、この発明の場合は、熱膨
張係数が半導体レーザー装置の素子基板のそれにきわめ
て近く、また熱伝導率は従来のコバールよpro倍以倍
数上改良ている。
Table l As can be seen from Table 1 above, in the case of the present invention, the coefficient of thermal expansion is extremely close to that of the element substrate of a semiconductor laser device, and the thermal conductivity is improved by more than a factor of pro than the conventional Kovar. There is.

(ホ)実施例 GaAs基鈑上にJGaAsをエピタキシャル成長させ
たダブルへテロ114造をもつ半導体レーザー素子を、
Cuを重量比で15係含むW−Cu合金でなるサブマウ
ント材料してマウント用ブロックに固着した半導体レー
ザー装置を製作した。
(E) Example A semiconductor laser device having a double hetero 114 structure in which JGaAs was epitaxially grown on a GaAs substrate,
A semiconductor laser device was manufactured in which a submount material was made of a W--Cu alloy containing 15 parts by weight of Cu and was fixed to a mounting block.

この場合のサブマウント材料の熱膨張保数は65XIO
cm/cm・”c、s熱伝導率は0.60d/G・5e
e−”Cであった。
The coefficient of thermal expansion of the submount material in this case is 65XIO
cm/cm・”c, s thermal conductivity is 0.60d/G・5e
It was e-”C.

上記の半導体レーザー装置の素子の温度上昇は、コバー
ルの場合と比較して約25%低減した。
The temperature rise of the element of the semiconductor laser device described above was reduced by about 25% compared to the case of Kovar.

また、従来のものと比べて、発光効率は約70%、寿命
は約100倍伸びた。
Furthermore, compared to conventional products, the luminous efficiency is approximately 70% longer and the lifespan is approximately 100 times longer.

なお、Cuの含有量が多いほど放熱特性が良好になるこ
とが確認できた。
It was confirmed that the higher the Cu content, the better the heat dissipation characteristics.

(へ)効 果 以上のとおりであるから、この発明によれば、放熱が良
好でかつ発熱に伴うストレスの少ない半導体レーザー装
置を得ることができる。又、第3図に示しだ如く、サブ
マウントとマウント用ブロックを一体にしたパッケージ
構造も容易にとシうることかできた。
(f) Effects As described above, according to the present invention, it is possible to obtain a semiconductor laser device with good heat dissipation and less stress caused by heat generation. Furthermore, as shown in FIG. 3, a package structure in which the submount and the mounting block were integrated could be easily created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alは従来の半導体レーザ装置を示す上面図、
第1図(blばAA’における断面図である。第2図は
半導体レーザの発光特性の一例を示す図面である。第8
図(、)は本発明の半導体レーザ装置の一例を示す上面
図、第3図(blはBB’における断面図である。図に
おいて各番号の意味するところは次のとおシである。同
一番号は、各図面における相当部分を示す。 1:半導体レーザ素子 2:サブマウント 3:マウント用ブロック利 4:光取出窓 5:キャップ 6:パッ’r−ジ本体すなわちステム 7 :第1のリード線 8:第2の rl 9:絶縁物 IO=リードワイヤー 一因 tつ 1走 口 七 会 娠ギく′ず
FIG. 1 (al is a top view of a conventional semiconductor laser device,
Fig. 1 (bl is a cross-sectional view at AA'). Fig. 2 is a drawing showing an example of the light emission characteristics of a semiconductor laser.
Figures (,) are top views showing an example of the semiconductor laser device of the present invention, and Figure 3 (bl is a cross-sectional view at BB'. In the figures, each number means the following. Same number 1 shows corresponding parts in each drawing. 1: Semiconductor laser element 2: Submount 3: Mounting block 4: Light extraction window 5: Cap 6: Package body, i.e., stem 7: First lead wire 8: 2nd rl 9: Insulator IO = Lead wire factor t 1 run mouth 7 connections

Claims (1)

【特許請求の範囲】 il) GaAs 、 GaP又はGarbを基板とす
る半導体レーザー素子をサブマウントを介してパッケー
ジのステムに取付けてなる半導体レーザー装置において
、上記サブマウントの材料として、熱1膨張係数が50
<−8,5X I Ocm/cm 、 ”Cの範囲にあ
るW 、 Mo若しくは’W−MO合金のいずれかにC
uを均一に含有させた合金を用いたことを特徴とする半
導体レーザー装置。 (2)上記=ステムをサブマウントと同−材料により構
成したことを特徴とする特許請求の範囲第1項に記載の
半導体レーザー装置。 (3)上記=ステムとサブマウン1−を一体成形したこ
とを特徴とする特許請求の範囲第2項に記載の半導体レ
ーザー装置。
[Claims] il) A semiconductor laser device in which a semiconductor laser element having a substrate of GaAs, GaP or Garb is attached to a stem of a package via a submount, in which the material of the submount has a thermal expansion coefficient of 50
C in either W, Mo or 'W-MO alloys in the range <-8,5
A semiconductor laser device characterized by using an alloy uniformly containing u. (2) The semiconductor laser device according to claim 1, wherein the stem is made of the same material as the submount. (3) The semiconductor laser device according to claim 2, wherein the stem and the submount 1 are integrally molded.
JP58201566A 1983-10-26 1983-10-26 semiconductor laser equipment Granted JPS6092687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201566A JPS6092687A (en) 1983-10-26 1983-10-26 semiconductor laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201566A JPS6092687A (en) 1983-10-26 1983-10-26 semiconductor laser equipment

Publications (2)

Publication Number Publication Date
JPS6092687A true JPS6092687A (en) 1985-05-24
JPH0224393B2 JPH0224393B2 (en) 1990-05-29

Family

ID=16443176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201566A Granted JPS6092687A (en) 1983-10-26 1983-10-26 semiconductor laser equipment

Country Status (1)

Country Link
JP (1) JPS6092687A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637652A (en) * 1986-06-27 1988-01-13 Sumitomo Electric Ind Ltd Metal package for airtight sealing of semiconductor
JPS637655A (en) * 1986-06-27 1988-01-13 Sumitomo Electric Ind Ltd Method for manufacturing hermetically sealed metal packages for semiconductors
US5519720A (en) * 1993-03-04 1996-05-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557153B2 (en) 2010-03-29 2014-07-23 本田技研工業株式会社 Equipment mounting device for saddle riding type vehicles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891692A (en) * 1981-11-27 1983-05-31 Hitachi Ltd semiconductor laser equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891692A (en) * 1981-11-27 1983-05-31 Hitachi Ltd semiconductor laser equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637652A (en) * 1986-06-27 1988-01-13 Sumitomo Electric Ind Ltd Metal package for airtight sealing of semiconductor
JPS637655A (en) * 1986-06-27 1988-01-13 Sumitomo Electric Ind Ltd Method for manufacturing hermetically sealed metal packages for semiconductors
US5519720A (en) * 1993-03-04 1996-05-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device

Also Published As

Publication number Publication date
JPH0224393B2 (en) 1990-05-29

Similar Documents

Publication Publication Date Title
US11222998B2 (en) Optical semiconductor apparatus and method of manufacturing optical semiconductor apparatus
US6323059B1 (en) Method of fabricating a semiconductor device
US20190189861A1 (en) Optical semiconductor apparatus and method of manufacturing optical semiconductor apparatus
US8031751B2 (en) Nitride semiconductor laser device
US9780523B2 (en) Semiconductor laser device
CN100420110C (en) Method of manufacturing laser device
US10748836B2 (en) Semiconductor laser module and method for manufacturing the same
DE102012103160A1 (en) laser diode device
JPS6092687A (en) semiconductor laser equipment
JP2006032406A (en) Semiconductor laser device
JPH1125465A (en) Semiconductor laser device
JP5031136B2 (en) Semiconductor laser device
JPS6092686A (en) Semiconductor laser
US10840671B2 (en) Semiconductor laser device
CN110350395A (en) A kind of semiconductor laser conduction cooling package structure conduction cooling package structure
TWI236196B (en) Semiconductor laser device
JPH0436473B2 (en)
US7873086B2 (en) Semiconductor device
US11114817B2 (en) Semiconductor laser device
JP2008283064A (en) Semiconductor laser device
US20060146899A1 (en) Semiconductor laser diode device, and method for manufacturing the same
JPH04278593A (en) Photoelectric device and manufacture thereof
CN208015071U (en) A kind of novel capsulation structure for semiconductor laser and radiating element
JP2005259851A (en) Semiconductor laser device
JP7271243B2 (en) Laser device and lid used therefor