JPS6111633A - Liquid sensor - Google Patents
Liquid sensorInfo
- Publication number
- JPS6111633A JPS6111633A JP59132380A JP13238084A JPS6111633A JP S6111633 A JPS6111633 A JP S6111633A JP 59132380 A JP59132380 A JP 59132380A JP 13238084 A JP13238084 A JP 13238084A JP S6111633 A JPS6111633 A JP S6111633A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- light
- optical
- liquid
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 30
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 230000004907 flux Effects 0.000 claims abstract description 6
- 239000013307 optical fiber Substances 0.000 claims description 8
- 238000001514 detection method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000003921 oil Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Geophysics And Detection Of Objects (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[技術分野]
本発明は光学プリズムの反射面に接する液体物質の屈折
率の差異により全反射角が変化することを利用して、液
体の有無、種類および濃度等を検知・識別する光学式液
体センサに関する。[Detailed Description of the Invention] [Technical Field] The present invention utilizes the fact that the angle of total reflection changes due to the difference in the refractive index of liquid substances in contact with the reflective surface of an optical prism to determine the presence or absence, type, concentration, etc. of liquid. Related to optical liquid sensors for detection and identification.
「従来技術]
光の全反射を利用して液体の検知または識別を行なうセ
ンサの構成の一例として、実願昭58−12oses号
がある。この考案の構成を第5図によって説明すると光
ファイバlから出射した信号光が、レンズ3によりはぐ
平行な光束に変換されプリズム5に入射する。プリズム
が空気中にある場合、信号光は検知反射面aで全反射す
るような入射角θを有しており、全反射した信号光はレ
ンズ4で集光され光ファイバ2に結合される。"Prior Art" As an example of the configuration of a sensor that detects or identifies liquid by utilizing total reflection of light, there is a Utility Application No. 12-12-1983.The configuration of this device will be explained with reference to FIG. The signal light emitted from the prism is converted into a parallel light flux by the lens 3 and enters the prism 5. When the prism is in the air, the signal light has an incident angle θ such that it is totally reflected by the detection reflection surface a. The totally reflected signal light is focused by a lens 4 and coupled to an optical fiber 2.
つぎに検知反射面aの外側に屈折率nの液体が接してい
る場合、入射角θを適当な範囲に選べば、入射光は全反
射状態から部分反射状態に変化する。従って、受光側の
光ファイ/<2の検知端で、光出力レベルを監視すれば
、検知反射面aの外側に液体が接している場合は受光レ
ベルが低下するので、液体の有無を検知することができ
る。Next, when a liquid having a refractive index n is in contact with the outside of the detection reflection surface a, if the incident angle θ is selected within an appropriate range, the incident light changes from a total reflection state to a partial reflection state. Therefore, if the optical output level is monitored at the detection end of the optical fiber/<2 on the light receiving side, if liquid is in contact with the outside of the detection reflective surface a, the received light level will drop, so the presence or absence of liquid can be detected. be able to.
上記“の考察を計算により示したものが第2図で、これ
は入射角θに対するプリズムの検知反射面での反射損失
の計算値を図表かしたものである。図において、実線は
プリズムの屈折率πO=1.51光のθ=62°の場合
で、プリズムの検知反射面aに接する液体が水(屈折率
が1.333)の場合には光はは(全反射し、水より屈
折率の大きい油類(屈折率が1.4〜1.5)の場合に
はセンサの反射損失が大きく増加することを示している
。この構成を利用すれば、水には影響されず少量の油液
を検出することが可能であり、換言すれば、2種の液体
の識別が可能であることがわかる。このようなセンサを
屈折率の近接した液体の識別、たとえば、水とエチルエ
ーテル(u = 1.354)やエチルアルコール(n
= 1.362)などの識別に用いようとすると、セ
ンサの製造上のバラツキ、液体の屈折率の温度による変
化、光源のレベル変動等の各種要因により識別の信頼性
が低下するという問題が生じる。これを回避する方法と
して、第2図の破線で例示するように、プリズムの屈折
率を異ったものとするよう、異る波長入を用いたセンサ
な、2個、3個並列に使用し、その出力を比較すれば、
識別の精度を向上することができる。しかし、このよう
に構成した場合には、光源、光学プリズム、光検出器を
含めたセンサ全体が大形化し、また高価になることは明
らかであり、さらに、各センサが異なる光源や光伝送系
を用いているために、これらの各要素の特性の温度変化
や経時変化等の差異による誤差が発生することが避けら
れないという欠点を生じる。Figure 2 shows the above consideration through calculations, which is a graph of the calculated values of reflection loss at the prism's detection reflection surface for the incident angle θ.In the figure, the solid line represents the refraction of the prism. When the index πO = 1.51 and the light θ = 62°, if the liquid in contact with the detection reflection surface a of the prism is water (with a refractive index of 1.333), the light is totally reflected and refracted more than the water. This shows that the reflection loss of the sensor increases significantly in the case of oils with a high refractive index (1.4 to 1.5).If this configuration is used, it is possible to detect a small amount of oil without being affected by water. It can be seen that it is possible to detect an oil liquid, or in other words, it is possible to distinguish between two types of liquids.Such a sensor can be used to distinguish between liquids with similar refractive indexes, for example, water and ethyl ether ( u = 1.354) and ethyl alcohol (n
= 1.362), the problem arises that the reliability of identification decreases due to various factors such as manufacturing variations in the sensor, changes in the refractive index of the liquid due to temperature, and variations in the light source level. . As a way to avoid this, as illustrated by the broken line in Figure 2, two or three sensors using different wavelength inputs can be used in parallel so that the refractive index of the prism is different. , and if we compare its output, we get
The accuracy of identification can be improved. However, with this configuration, it is clear that the entire sensor including the light source, optical prism, and photodetector will be larger and more expensive, and furthermore, each sensor will require a different light source and optical transmission system. Since this method uses the following methods, it has the disadvantage that errors inevitably occur due to differences in the characteristics of each of these elements due to temperature changes, changes over time, and the like.
[発明の目的]
本発明の目的は、2以上の異る光を発する光源と、この
光源からの光束を平行化する手段と、光学プリズムと、
それぞれの波長の光を検出するための信号光検出器とか
らなる光学式液体センサにおいて前記光学プリズムが内
部に波長選択性の反射面を有することと、光源と光束を
平行化する手段との間および光学プリズムと信号光検出
器との間のいずれかもしくは双方が、それぞれ光ファイ
バにより結合されているにより、光源や、プリズム部分
として共通のものを用いることができ、これらにより、
低価格で、高度の識別能力をもち、かつ外来雑音等の少
ない、光学式液体センサを提。[Object of the Invention] The object of the present invention is to provide a light source that emits two or more different lights, a means for collimating the light flux from the light source, an optical prism,
An optical liquid sensor comprising a signal photodetector for detecting light of each wavelength, wherein the optical prism has a wavelength-selective reflecting surface therein, and a light source and a means for collimating the light beam. Since either or both of the optical prism and the signal photodetector are coupled by optical fibers, it is possible to use a common light source and prism part.
We offer an optical liquid sensor that is low cost, has high discrimination ability, and has low external noise.
供することにある。It is about providing.
[発明の構成]
つぎに本発明の構成について述べる。第3図に本発明゛
の原理となる液体検知用プリズムの断面構造を示す。図
において異る2波長久l、入2よりなる信号光は、プリ
ズム11と第2のプリズム12とから構成された検知用
光学プリズムの液体検知面a(以下a面と記す)に入射
角θで入射し、反射する。反射した光は、プリズム11
のa面に平行な第2の反射面b(以下す面と記す)に入
射する。[Configuration of the Invention] Next, the configuration of the present invention will be described. FIG. 3 shows a cross-sectional structure of a liquid detection prism which is the principle of the present invention. In the figure, the signal light consisting of two different wavelengths, 1 and 2, enters the liquid detection surface a (hereinafter referred to as a surface) of the detection optical prism composed of the prism 11 and the second prism 12 at an incident angle θ. incident and reflected. The reflected light passes through prism 11
The light is incident on a second reflecting surface b (hereinafter referred to as "surface") parallel to the a-plane.
ここで、b面が、波長入1の光を反射し、入Zの光を透
過するような特性を有するとすれば、信号光は、それぞ
れ第3図の入lに対応する実線と、入2に対応する破線
に示すように伝搬され、信号光は入、と入、に分離され
る。b面を透過した先入Zは第2のプリズムのb面に平
行な、反射面C(以下C面と記す)によって反射し、再
びb面を透過して、a面に達し、ここで反射して、信号
光S□ となり、もう一方の波長入又はa面で反射して
信号光S1となる。従って分離した信号光を2つの光検
出器又は2つの光検出面をもつ1組の光検出器で検出し
、相互に、比較すれば、屈折率差のル;ない液体間、特
に第2図の例で言えば、屈折率が実線よりも右で、破線
が比較的低損失にある範囲の近傍にある液体の識別を行
うことができる。Here, if the b-plane has the characteristic of reflecting light with a wavelength of 1 and transmitting light with a wavelength of Z, the signal light will be divided into the solid line corresponding to the input 1 and the solid line corresponding to the input 1 in FIG. The signal light is propagated as shown by the broken line corresponding to 2, and the signal light is separated into input and input. The pre-incident Z that has passed through the b-plane is reflected by the reflective surface C (hereinafter referred to as C-plane) that is parallel to the b-plane of the second prism, and is transmitted through the b-plane again, reaching the a-plane, where it is reflected. Then, it becomes signal light S□, which is reflected at the other wavelength or a-plane and becomes signal light S1. Therefore, if the separated signal lights are detected by two photodetectors or a set of photodetectors with two photodetection surfaces and compared with each other, it is possible to detect a difference in refractive index between liquids, especially between liquids with no difference in refractive index. In the example above, it is possible to identify liquids whose refractive index is to the right of the solid line and near the range where the broken line indicates relatively low loss.
この方法によれば、検出用の光学プリズム部と小形化で
きる他、結合損失そのものや、その温度変化等のバラツ
キが大きくなり易い光源側の伝搬部が入1 と入2につ
いて共通であるため、特性上の安定性が良いという特長
がある。According to this method, the optical prism part for detection can be made smaller, and the propagation part on the light source side, where variations in coupling loss itself and temperature changes are likely to be large, is common for input 1 and input 2. It has the advantage of good stability in terms of characteristics.
[実施例]′
第1図は本発明の具体的実施例の1つを例示したもので
、光線13は波長入1、入2の光を発し、通常レンズ等
による光束を平行化する手段18を経て、プリズム11
に入射する。入射した光線は、第3図で説明した経過に
より波長入玉、入2の光に分離され、それぞれ、光検出
器14.15に入射し、電気信号に変換され、増幅器1
6.17で増幅され出力信号v1.v2としてアウトプ
ットされる。液体の有無、識別は通常、プリズム11の
a面が空気と接触している場合等の全反射時のVi 、
v2の基準レベルに対する変動値を比較すればよい。[Embodiment] Fig. 1 illustrates one of the specific embodiments of the present invention, in which a light beam 13 emits light of wavelengths 1 and 2, and a means 18 for collimating the light beam using a lens or the like is usually used. After that, Prism 11
incident on . The incident light beam is separated into light beams with wavelengths 1 and 2 according to the process explained in FIG.
6.17, the output signal v1. It is output as v2. The presence or absence of liquid is normally determined by Vi during total reflection, such as when the a-plane of the prism 11 is in contact with air.
What is necessary is to compare the variation value with respect to the reference level of v2.
第4図は本発明の別の1実施例で、光源13と光学プリ
ズム11との間、および光学プリズム11または12と
光検出器14.15との間を光ファイバで結合したもの
である0本例によれば、液体センサ部分を小形化できる
こと、光検出器側への光源側から電気信号による廻り込
みや、その他の外来電気雑音を軽減できること等の実用
上のすぐれた特長がある。FIG. 4 shows another embodiment of the present invention, in which optical fibers are coupled between the light source 13 and the optical prism 11, and between the optical prism 11 or 12 and the photodetector 14.15. According to this example, there are excellent practical advantages such as being able to downsize the liquid sensor portion, reducing the wrap-around of electrical signals from the light source side to the photodetector side, and other external electrical noises.
以上の説明では、本発明の本質に直接関係しないレンズ
等は省略している。また光の波長は簡単のため入l と
入2の2つとしたが、必要によりもっと、多くの波長を
用いることもできる。In the above description, lenses and the like that are not directly related to the essence of the present invention are omitted. Further, although the wavelengths of light are set to two, input 1 and input 2, for simplicity, more wavelengths can be used if necessary.
[発明の効果]
本発明により、2つ以上の異なる波長の光を発する光源
からの光を、内部に波長選択性の反射面を有する光学プ
リズムを使用することに、1組のプリズムで、同時に、
2つ以上の波長の光が得られることと、光源と光束を平
行にする手段の間、および光学プリズムと信号光検出器
との間を光ファイバで結合することなどにより、低価格
で高・ 度の識別能力をもち、かつ外来雑音等の少ない
光学式液体センサを提供することができる。[Effects of the Invention] According to the present invention, by using an optical prism having an internal wavelength-selective reflecting surface, light from a light source that emits light of two or more different wavelengths can be simultaneously reflected by one set of prisms. ,
By being able to obtain light with two or more wavelengths, and by coupling optical fibers between the light source and the means for collimating the light flux, and between the optical prism and the signal photodetector, it is possible to achieve low cost and high performance. Accordingly, it is possible to provide an optical liquid sensor that has a high degree of discrimination ability and has little external noise.
第1図は、本発明の1実施例を示す図、第2図、は異な
る波長による光束の反射損失を示す計算値を図表化した
図、第3図は、本発明の原理となる液体検知用プリズム
の断面図、第4図は、本発明の別の実施例を示す図、第
5図は、従来の液体センサの構造を示す図である。
1−シー人射光 2−m−出射光3−−−レン
ズ 4−−−レンズ5−m−プリズム
11−m−光学プリズム12−−−第2のプリズム 1
3−m−光源14.15−m−検知器 18.1
7一−−増幅器18−−−レンズ 21−−一
光ファイバ。
22.23−シー光ファイバ a−−一検知面b−=
−反射及び透過面 c−−一反射面θ−−−人射角
入l、入2−−−光の波長
Sl 、52−−一信。号光
V、、V2−m−出力信号Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a diagram illustrating calculated values showing the reflection loss of a luminous flux due to different wavelengths, and Fig. 3 is a diagram showing a liquid detection principle according to the present invention. FIG. 4 is a cross-sectional view of the prism for use in the liquid sensor, FIG. 4 is a diagram showing another embodiment of the present invention, and FIG. 5 is a diagram showing the structure of a conventional liquid sensor. 1-Sea human radiation 2-m-outgoing light 3--lens 4--lens 5-m-prism
11-m-Optical prism 12--Second prism 1
3-m-light source 14.15-m-detector 18.1
7--Amplifier 18--Lens 21--Optical fiber. 22.23-Sea optical fiber a--one sensing surface b-=
-Reflection and transmission surface c--Reflection surface θ--Incidence angle 1, Input 2--Light wavelength Sl, 52--Isshin. Signal light V,,V2-m-output signal
Claims (1)
からの光束を平行化する手段と、光学プリズムと、それ
ぞれの波長の光を検出するための信号光検出器とからな
る光学式液体センサにおいて、前記光学プリズムが、そ
の内部に波長選択性の反射面を有することを特徴とする
液体センサ。 2)光源と光束を平行にする手段との間、および光学プ
リズムと信号光検出器との間のいずれかもしくは、双方
が、それぞれ光ファイバにより結合されていることを特
徴とする特許請求の範囲第1項記載の液体センサ。[Scope of Claims] 1) A light source that emits light of two or more different wavelengths, means for collimating the light flux from this light source, an optical prism, and a signal photodetector for detecting light of each wavelength. An optical liquid sensor comprising: an optical liquid sensor, wherein the optical prism has a wavelength-selective reflective surface therein. 2) A claim characterized in that either or both of the light source and the means for collimating the light beam and the optical prism and the signal photodetector are coupled by an optical fiber. The liquid sensor according to item 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59132380A JPS6111633A (en) | 1984-06-27 | 1984-06-27 | Liquid sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59132380A JPS6111633A (en) | 1984-06-27 | 1984-06-27 | Liquid sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6111633A true JPS6111633A (en) | 1986-01-20 |
Family
ID=15080029
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59132380A Pending JPS6111633A (en) | 1984-06-27 | 1984-06-27 | Liquid sensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6111633A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63267638A (en) * | 1987-04-27 | 1988-11-04 | Omron Tateisi Electronics Co | Duplication detecting device for printed fixed form paper sheet |
-
1984
- 1984-06-27 JP JP59132380A patent/JPS6111633A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63267638A (en) * | 1987-04-27 | 1988-11-04 | Omron Tateisi Electronics Co | Duplication detecting device for printed fixed form paper sheet |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7253327B2 (en) | Polarity, power, and loss measurements of optical arrays using position sensitive detectors and optical test equipment with photodetectors | |
| ATE27489T1 (en) | FIBER OPTIC MEASUREMENT DEVICE. | |
| US20040021100A1 (en) | Fiber-optic sensor for measuring level of fluid | |
| US4818071A (en) | Fiber optic doppler anemometer | |
| GB2217834A (en) | Evanescent sensor | |
| JPS6111637A (en) | Liquid body sensor | |
| JPS6111633A (en) | Liquid sensor | |
| KR101165720B1 (en) | Portable biophotonic sensor measurement apparatus and the measuring method of the same | |
| JPS6111635A (en) | Liquid sensor | |
| CA2593001A1 (en) | Angular grating bragg refractometer using optical power diffracted to a continuum of radiative modes | |
| KR20050077455A (en) | Optical antenna and wireless optical system using the same | |
| JPS5924397B2 (en) | light wave distance meter | |
| KR100239793B1 (en) | Optical splitter using circulator | |
| JPS62159027A (en) | Oil deterioration level detection device | |
| KR200320686Y1 (en) | Fluid Sensing Device | |
| JP2011150287A (en) | Optical transmitting and receiving device using one pof, and optical transmitting and receiving system | |
| EP0185582B1 (en) | Interferometric sensor using optical fibres | |
| CN85100867B (en) | Refractivity measuring and testing system | |
| JPH0635147Y2 (en) | Photo detector | |
| JPS6014164Y2 (en) | optical measuring device | |
| JPS586431A (en) | Temperature measuring method using optical fiber | |
| JPH0216436A (en) | Optical fiber temperature and humidity sensor | |
| JPS63273044A (en) | Refractive index detecting sensor | |
| JPS6090662U (en) | liquid identification sensor | |
| CN116299838A (en) | Light conduction component and laser radar |