[go: up one dir, main page]

JPS61127120A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS61127120A
JPS61127120A JP25033984A JP25033984A JPS61127120A JP S61127120 A JPS61127120 A JP S61127120A JP 25033984 A JP25033984 A JP 25033984A JP 25033984 A JP25033984 A JP 25033984A JP S61127120 A JPS61127120 A JP S61127120A
Authority
JP
Japan
Prior art keywords
reaction
chamber
film
substrate
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25033984A
Other languages
Japanese (ja)
Other versions
JPH07105343B2 (en
Inventor
Mamoru Tashiro
田代 衛
Kazuo Urata
一男 浦田
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP59250339A priority Critical patent/JPH07105343B2/en
Publication of JPS61127120A publication Critical patent/JPS61127120A/en
Priority to US07/092,529 priority patent/US4811684A/en
Priority to US07/140,903 priority patent/US4857139A/en
Publication of JPH07105343B2 publication Critical patent/JPH07105343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To arrange a thin film over a large area uniformly by separating a light source chamber from a reaction chamber with a light transmitting screening panel and placing the heated substrates and effecting formation of thin films and removal of wastes by a photochemical reaction and a plasma chemical reaction. CONSTITUTION:A light source chamber 5 is separated from a reaction chamber 2 with a crystal plate 10 and a valve 6 is shut to control a flow of NH3 25 and Si2H6 23 which are supplied from a nozzle 14 and the atmosphere is kept at 3Torr. Under irradiation with a low-pressure mercury lamp 9 through the crystal plate 10, Si3N4 is deposited on a substrate 1 which is kept at 350 deg.C by a heating chamber 11. A high- frequency power is applied to the nozzle 14 and a substrate holder, and Si3N4 is deposited to form a film of no less than 0.5mum thick under the internal pressure of 0.1Torr without damage due to a plasma. The substrate 1 is taken out to a preparatory chamber 4 and the holder is returned to the reaction chamber 2. NF3 26 is supplied to make the pressure 0.3Torr and a high-frequency power 15 is supplied thereby removing the disused Si3N4 film on a window 10. H2 27 is supplied and the residual F is removed. By this method, the film of the same thickness can be formed uniformly over a large area with a good reproducibility.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、光化学反応により薄膜形成を実施する方法で
あって、大面積の被形成面に均一に量産性の優れた被膜
を光照射室上の透光性遮蔽板上にオイル等をコートする
ことなく形成する手段を有するCVD(気相反応)方法
に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is a method for forming a thin film by photochemical reaction. The present invention relates to a CVD (vapor phase reaction) method having means for forming a light-transmitting shielding plate without coating it with oil or the like.

「従来技術j 気相反応による薄膜形成技術として、光エネルギにより
反応性気体を活性にさせる光CVD法が知られている。
``Prior Art j'' As a technique for forming thin films by gas phase reaction, a photo-CVD method is known in which a reactive gas is activated by light energy.

この方法は、従来の熱CVD法またはプラズマCvD法
に比べ、低温での被膜形成が可能であるに加えて、被形
成面に損傷を与えないという点で優れたものである。
This method is superior to the conventional thermal CVD method or plasma CVD method in that it is possible to form a film at a low temperature and does not damage the surface on which it is formed.

しかし、かかる光CVD法を実施するに際し、その−例
を第1図に示すが、反応室(2)内に保持された基板(
1)、その基板の加熱手段(3)、さらに基板に光照射
する低圧水銀灯(9)とを有している。ド−ピング系(
7)には、反応性気体の励起用の水銀バプラ(13)及
び排気系(8)にはロータリーポンプ(19)を具備し
ている。ドーピング系よりの反応性気体、例えばジシラ
ンが反応室(2)に導入され、反応生成物である例えば
アモルファス珪素を基板(基板温度250℃)上に形成
するに際し、反応室の紫外光透光用の遮蔽板(10)、
代表的には石英窓にも同時に多量に珪素膜が形成されて
しまう。このため、この窓への被膜形成を防ぐため、こ
の窓にフォンブリンオイル(弗素系オイルの一例)(1
6)を薄くコートしている。
However, when carrying out such a photo-CVD method, an example of which is shown in FIG.
1), a means for heating the substrate (3), and a low-pressure mercury lamp (9) for irradiating the substrate with light. Doping system (
7) is equipped with a mercury bubbler (13) for excitation of reactive gas, and the exhaust system (8) is equipped with a rotary pump (19). When a reactive gas such as disilane from the doping system is introduced into the reaction chamber (2) and a reaction product such as amorphous silicon is formed on the substrate (substrate temperature 250°C), the reaction chamber is used to transmit ultraviolet light. a shielding plate (10),
Typically, a large amount of silicon film is also formed on the quartz window at the same time. Therefore, in order to prevent the formation of a film on this window, Fomblin oil (an example of fluorine-based oil) (1
6) is thinly coated.

しかし、このオイルは、窓への被膜形成を防ぐ作用を有
しつつも、このオイルが被膜内に不純物として混入して
しまう。さらにこのオイル上にも少しづつ同時に反応生
成物が形成され、ここでの光吸収により被膜形成の厚さ
に制限が生じてしまう欠点を有する。
However, although this oil has the effect of preventing the formation of a film on the window, this oil ends up being mixed into the film as an impurity. Furthermore, a reaction product is simultaneously formed little by little on this oil, and the thickness of the film formed is limited due to light absorption there.

また、低圧水銀灯が大気圧に保持されているため、この
圧力のため石英を厚くしなければならない。そして、こ
の水銀灯と石英窓との間の大気により紫外光特に185
nmの短紫外光が吸収されてしまう。大面積の基板の形
成に対し、大きな窓とすると、その窓が真空に対し破損
しやすい等の欠点を有している。
Also, because low-pressure mercury lamps are held at atmospheric pressure, the quartz must be thicker because of this pressure. The atmosphere between the mercury lamp and the quartz window causes ultraviolet light, especially 185
nm short ultraviolet light is absorbed. When a large window is used to form a large-area substrate, there are drawbacks such as the window being easily damaged by vacuum.

r問題を解決するだめの手段」 本発明はこれらの問題を解決するため、窓にも基板上と
同時に被膜を少なくしつつも形成されることをやむを得
ないものとして受は止めたことを前提としている。そし
て、被膜が形成された基板を取り出してしまった後、プ
ラズマ気相反応によりこの窓に形成された紫外光の透光
を妨げる窓生成物をエツチングして除去してしまうこと
を基本としている。
In order to solve these problems, the present invention is based on the premise that the formation of a film on the window and on the substrate at the same time, while reducing the amount, is not accepted as an unavoidable problem. There is. After the substrate on which the coating has been formed is taken out, the window product formed on the window by plasma gas phase reaction that prevents the transmission of ultraviolet light is basically etched away.

加えて反応性気体のうち分解後、気体状態にあるアンモ
ニア、ヒドラジンまたは弗化窒素をノズルより窓に向け
て吹き出さしめ、窓への生成物の付着を防いだ。さらに
また、反応後置体となるシラン(SinH1n*z n
≧1)アルミニューム化合物(例えばAl (CH3)
 りはノズルより基板方向に向けて吹き出させ、被膜化
を助長させたものである。そしてこのノズルを金属で設
け、このノズルと基板(基板ホルダ)またはステンレス
反応室とのそれぞれを一対の電極としてプラズマ反応(
エツチングまたはディポジッション)を行なわしめたも
のである。
In addition, after decomposition of the reactive gases, ammonia, hydrazine, or nitrogen fluoride in a gaseous state was blown out toward the window from a nozzle to prevent the products from adhering to the window. Furthermore, silane (SinH1n*z n
≧1) Aluminum compounds (e.g. Al (CH3)
The liquid is blown out from a nozzle toward the substrate to promote formation of a film. This nozzle is made of metal, and the nozzle and the substrate (substrate holder) or stainless steel reaction chamber are each used as a pair of electrodes for plasma reaction (
etching or deposition).

かくすることにより、特にプラズマエツチングにより発
生する反応性励起気体の一部は窓にも衝突し、窓上の不
要反応生成物を除去することができる。このため次の基
板上の被膜形成に対し窓上には紫外光の阻害物がなく、
紫外光を有効に基板の被形成面に到達させることができ
た。
In this way, a part of the reactive excited gas generated especially by plasma etching also collides with the window, thereby making it possible to remove unnecessary reaction products on the window. Therefore, there is no obstruction to ultraviolet light on the window for the next film formation on the substrate.
The ultraviolet light was able to effectively reach the formation surface of the substrate.

さらに低圧水銀灯のある光源室を真空(0,1〜10t
orr)とし、ここでの185nmの紫外光の吸収損失
を少なくした。またこの光源室と反応室との圧力を概略
同一(差圧は高々10torr一般には1 torr以
下)とすることにより、石英窓の厚さを従来の10mm
より2〜3mmと薄くし得るため、石英での光吸収損失
も少ないという特長を合わせ有する。
Furthermore, the light source room containing the low-pressure mercury lamp is vacuumed (0.1 to 10 tons).
orr) to reduce absorption loss of 185 nm ultraviolet light. In addition, by making the pressure in the light source chamber and the reaction chamber approximately the same (the differential pressure is at most 10 torr, generally less than 1 torr), the thickness of the quartz window can be reduced from the conventional 10 mm.
Since it can be made as thin as 2 to 3 mm, it also has the advantage of less light absorption loss in quartz.

r作用j これらの特性のため、新たな被膜形成を行わんとする時
は窓上の以前工程で生じた反応生成物は完全に除去され
ている。このため、光気相反応(光CVD)を窓上での
反応生成物形成による紫外光の基板表面までの到達がな
くなる(阻害される)までの範囲で毎回形成に対し一定
の厚さに再現性よく基板上に被膜を作ることができた。
r Effect j Due to these characteristics, the reaction products formed in the previous process on the window are completely removed when a new coating is to be formed. For this reason, the photovapor phase reaction (photoCVD) can be reproduced to a constant thickness for each formation until the ultraviolet light reaches the substrate surface due to the formation of reaction products on the window. We were able to form a film on the substrate with good performance.

さらにこの光CvDの後同じバッチでこの被膜上にプラ
ズマ気相反応により同じまたは異種の被膜を作製するこ
とは可能である。
Furthermore, after this photoCvD, it is possible to produce the same or a different type of coating on this coating by plasma vapor phase reaction in the same batch.

さらに本発明は、反応室を大気に触れさせずに窓上の不
要物をプラズマエツチング法で除去するため反応系をロ
ード・ロック方式とし得る。さらにオイルフリーの反応
系であるため、バンクグラウンドレベルの真空度を10
− ’ torr以下とすることができた。そして非酸
化物生成物である珪素等の半導体被膜、炭化珪素、窒化
珪素、窒化アルミニューム、金属アルミニュームの光励
起により被膜形成をさせることができた。
Further, in the present invention, the reaction system can be of a load-lock type in order to remove unnecessary substances on the window by plasma etching without exposing the reaction chamber to the atmosphere. Furthermore, since it is an oil-free reaction system, the degree of vacuum at the bank ground level can be reduced to 10
−' torr or less. Films could be formed by optical excitation of non-oxide products such as semiconductor films such as silicon, silicon carbide, silicon nitride, aluminum nitride, and metal aluminum.

「実施例」 以下本発明を第2図に示した実施例により、その詳細を
記す。
``Example'' The present invention will be described in detail below using an example shown in FIG.

第2図において、被形成面を有する基板(1)はホルダ
(1゛)に保持され、反応室(2)内のハロゲンヒータ
(3)(上面を水冷(31))に近接して設けられてい
る。反応室(2)、紫外光源が配設された光源室(5)
及びヒータ(3)が配設された加熱室(11)は、それ
ぞれの圧力を1Qtorr以下の概略同一の真空度に保
持した。このために反応に支障のない気体(窒素、アル
ゴンまたはアンモニア)を(28)より(12)に供給
し、または(12°)より排気することにより成就した
。また透光性遮蔽板である石英窓・(10)により、光
源室(5)と反応室(2)とが仕切られている。この窓
(10)の上側にはノズル(14)が設けられ、このノ
ズルはアンモニア(NH3) 、弗化窒素(NF3)用
のノズル(14”)が噴出口を下向き(窓向き) (3
2)に、またシラン(SinHzn−z)+ メチルア
ルミニューム(AI (CH3) 3)用のノズル(1
4″)が噴出口(14”)を上向き(基板向き) (3
3)に設けている。
In FIG. 2, a substrate (1) having a surface to be formed is held in a holder (1゛), and is installed in the reaction chamber (2) in close proximity to a halogen heater (3) (the top surface of which is water-cooled (31)). ing. Reaction chamber (2), light source chamber (5) equipped with an ultraviolet light source
The heating chamber (11) in which the heater (3) and the heater (3) were provided were maintained at approximately the same degree of vacuum, with each pressure being 1 Qtorr or less. This was accomplished by supplying a gas (nitrogen, argon, or ammonia) that does not interfere with the reaction to (12) from (28) or exhausting from (12°). Further, the light source chamber (5) and the reaction chamber (2) are separated by a quartz window (10) which is a light-transmitting shielding plate. A nozzle (14) is provided above this window (10), and this nozzle has a nozzle (14") for ammonia (NH3) and nitrogen fluoride (NF3) with the spout facing downward (facing the window) (3
2), and a nozzle (1) for silane (SinHzn-z) + methyl aluminum (AI (CH3) 3).
4") with the spout (14") facing upward (toward the substrate) (3
3).

このノズル(14)はプラズマCVDおよびプラズマエ
ッチにおける高周波電源(15)の一方の電極となって
いる。
This nozzle (14) serves as one electrode of a high frequency power source (15) in plasma CVD and plasma etching.

光源室の排気に際し逆流により反応性気体の光源室まで
の混入防止のためヒータ(29)を配設した。
A heater (29) was provided to prevent reactive gas from entering the light source chamber due to backflow when the light source chamber was evacuated.

これにより反応性気体のうちの分解後固体となる成分を
トラップし気体のみの逆火とさせた。
This traps the components of the reactive gas that become solid after decomposition, resulting in flashback of only the gas.

移動に関し、圧力差が生じないようにしたロード・ロッ
ク方式を用いた。まず、予備室(4)にて基板(1)、
ホルダ(1°)および基板および基板おさえ(1”′)
(熱を効率よく基板に伝導させる)を挿入・配設し、真
空引きをした後、ゲート弁(6)を開とし、反応室(2
)に移し、またゲート弁(6)を閉として、反応室(2
)、予備室(4)を互いに仕切った。
Regarding movement, a load-lock system was used to prevent pressure differences from occurring. First, in the preliminary room (4), the board (1),
Holder (1°), board and board holding (1”’)
After inserting and arranging the chamber (to efficiently conduct heat to the substrate) and drawing a vacuum, open the gate valve (6) and open the reaction chamber (2
), and with the gate valve (6) closed, the reaction chamber (2
), the preliminary room (4) was partitioned off from each other.

ドーピング系(7)は、バルブ(22) 、流量計(2
1)よりなり、反応後固体生成物を形成させる反応性気
体は(23) 、 (24)より、また反応後気体生成
物は(25) 、 (26)より反応室(2)へ供給さ
せた。反応室の圧力制御は、コントロールパルプ(17
)、コック(20)を経てターボ分子ポンプ(大阪真空
製PG550を使用)(18) 、ロータリーポンプ(
19)を経、排気させた。
The doping system (7) includes a valve (22) and a flow meter (2).
1), the reactive gas that forms the solid product after the reaction was supplied from (23) and (24), and the gaseous product after the reaction was supplied from (25) and (26) to the reaction chamber (2). . The pressure in the reaction chamber is controlled using control pulp (17
), turbo molecular pump (using Osaka Vacuum PG550) (18), rotary pump (
19) and then evacuated.

排気系(8)はコック(20)により予備室を真空引き
をする際はそちら側を開とし、反応室側を閉とする。ま
た反応室を真空引きする際は反応室を開とし、予備室側
を閉とした。
When the preliminary chamber is evacuated using the cock (20), the exhaust system (8) is opened on that side and closed on the reaction chamber side. Furthermore, when evacuating the reaction chamber, the reaction chamber was opened and the preliminary chamber side was closed.

かくして基板を反応室に図示の如く挿着した。The substrate was thus inserted into the reaction chamber as shown.

この反応室の真空度は10− ’ torr以下とした
。この後(28)より窒素を導入しさらに反応性気体を
(7)より反応室に導入して被膜形成を行った。
The degree of vacuum in this reaction chamber was set to 10-' torr or less. Thereafter, nitrogen was introduced from (28) and a reactive gas was further introduced into the reaction chamber from (7) to form a film.

反応用光源は低圧水銀灯(9)とし、水冷(31’)を
設けた。その紫外光源は、低圧水銀灯(185nm。
The light source for the reaction was a low pressure mercury lamp (9), and water cooling (31') was provided. The ultraviolet light source is a low-pressure mercury lamp (185 nm).

254nmの波長を発光する発光長40cm、照射強度
20mW/cm2.ランプ電力40W)ランプ数16本
である。
Emit light with a wavelength of 254 nm, emission length 40 cm, and irradiation intensity 20 mW/cm2. Lamp power: 40W) Number of lamps: 16.

この紫外光は、透光性遮蔽板である石英(10)を経て
反応室(2)の基板(1)の被形成面(1)上を照射す
る。
This ultraviolet light passes through quartz (10), which is a transparent shielding plate, and irradiates onto the formation surface (1) of the substrate (1) in the reaction chamber (2).

ヒータ(3)は反応室の上側に位置した[ディボジッシ
ョン・アンプj方式とし、フレークが被形成面に付着し
てピンホールの原因を作ることを避けた。
The heater (3) was located above the reaction chamber (deposition amplifier type) to avoid flakes from adhering to the surface to be formed and causing pinholes.

反応室はステンレスであり、光源室、加熱室(11)も
ともに真空引きをし、それぞれの圧力差を10torr
以下とした。その結果、従来例に示される如く、大面積
の照射用に石英板の面積を大きくすると圧力的に耐えら
れないという欠点を本発明は有していない。即ち、紫外
光源も真空下に保持された光源室と反応室とを囲んだス
テンレス容器内に真空に保持されている。このため、5
cmX5cmの大きさではなく 30cm x 30c
mの大きさの基板をも何等の工業的な問題もなく作るこ
とができ得る。
The reaction chamber is made of stainless steel, and both the light source chamber and heating chamber (11) are evacuated to maintain a pressure difference of 10 torr.
The following was made. As a result, the present invention does not have the disadvantage of not being able to withstand pressure when the area of the quartz plate is increased for irradiation of a large area, as shown in the conventional example. That is, the ultraviolet light source is also kept under vacuum in a stainless steel container surrounding a light source chamber and a reaction chamber that are kept under vacuum. For this reason, 5
The size is 30cm x 30cm instead of cm x 5cm.
A substrate having a size of m can also be produced without any industrial problems.

図面の場合の被形成有効面積は30cm X 30ct
rlであり、直径5インチの基板(1)5枚がホルダ(
1゛)に配設され得る構成とし、基板の温度はハロゲン
ヒータ(3)により加熱し、室温〜500℃までの所定
の温度とした。
In the case of the drawing, the effective area to be formed is 30cm x 30ct
RL, and five boards (1) with a diameter of 5 inches are placed in a holder (
The substrate was heated by a halogen heater (3) to a predetermined temperature ranging from room temperature to 500°C.

さらに、本発明による具体例を以下の実験例1〜3に示
す。
Further, specific examples according to the present invention are shown in Experimental Examples 1 to 3 below.

実験例1・・・・・シリコン窒化膜の形成側反応性気体
としてアンモニアを(25)より30cc/分、ジシラ
ンを(23)より8cc/分で供給し、基板温度350
℃とした。基板は直径5インチのウェハ5枚とした。反
応室(2)内圧力は3.Qtorrとした。
Experimental example 1...Ammonia was supplied from (25) at 30 cc/min and disilane was supplied from (23) at 8 cc/min as reactive gases on the silicon nitride film formation side, and the substrate temperature was 350.
℃. The substrates were five wafers each having a diameter of 5 inches. The pressure inside the reaction chamber (2) is 3. I set it to Qtorr.

30分の反応で1500人の膜厚が形成された。その被
膜形成速度は65人ノ分であった。本発明は水銀の蒸気
等を用いない直接光励起である。被膜の5点のばらつき
は±5%以内に入っていた。しかしこの厚さ以上の厚さ
には窓への窒化珪素膜の形成によりきわめて困難であっ
た。
A film with a thickness of 1,500 people was formed in a 30-minute reaction. The film formation speed was that of 65 people. The present invention uses direct optical excitation without using mercury vapor or the like. The variation of the 5 points of the coating was within ±5%. However, it is extremely difficult to form a silicon nitride film on the window to a thickness greater than this thickness.

1500Å以上の膜厚とするには、この後プラズマエッ
チ法を行えばよい。即ち(15)より13.56MHz
の周波(40W)を加えた。すると同じ反応性気体(但
し圧力0.1 torr)にて2.3A/秒を得た。か
くしてこの方法では被形成面にプラズマ損傷を与えるこ
となり0.5 μの膜を得ることができ得る。
To obtain a film thickness of 1500 Å or more, a plasma etching method may be performed after this. That is, from (15), 13.56MHz
frequency (40W) was applied. Then, 2.3 A/sec was obtained using the same reactive gas (but at a pressure of 0.1 torr). Thus, with this method, a film of 0.5 μm can be obtained without causing plasma damage to the surface on which it is formed.

さらにこの後反応を停止し、反応室を真空引きをして被
膜形成を行った基板を予備室に除去した。
Furthermore, after this, the reaction was stopped, the reaction chamber was evacuated, and the substrate on which the film was formed was removed to the preliminary chamber.

その後、さらに基板を取り出し、ホルダをもとの反応室
に戻し、ゲートを閉じた後反応室に(26)よりNhを
供給した。そして、反応室の圧力を0.3torrとし
、13.56MHzの高周波(15)を80−の出力で
加えプラズマエッチを窓(10)上面に対して行った。
Thereafter, the substrate was further taken out, the holder was returned to the original reaction chamber, and after closing the gate, Nh was supplied to the reaction chamber from (26). Then, the pressure in the reaction chamber was set to 0.3 torr, and a high frequency wave (15) of 13.56 MHz was applied at an output of 80 - to perform plasma etching on the upper surface of the window (10).

約20分した後、この石英(10)上の不要反応生成物
である窒化珪素被膜を完全に除去することができた。こ
のNF3を除去した後(27)より水素を加え、この反
応室内の残留弗素をプラズマクリーンをして除去した。
After about 20 minutes, the silicon nitride film on the quartz (10), which was an unnecessary reaction product, could be completely removed. After removing this NF3, hydrogen was added from (27), and residual fluorine in the reaction chamber was removed by plasma cleaning.

この後、2回目の被膜作製を行ったが、同じく再現性の
よい被膜を作り得た。
After this, a second coating was produced, and a coating with good reproducibility was also produced.

実験例2.・・アモルファスシリコン膜の形成例ジシラ
ン(SizL)を(23)より供給した。また、(27
)より水素を供給した。被形成面に1000人の膜厚を
60分間のディポジッションで形成させることができた
Experimental example 2. ... Formation example of amorphous silicon film Disilane (SizL) was supplied from (23). Also, (27
) was supplied with hydrogen. A film thickness of 1,000 layers could be formed on the surface to be formed in 60 minutes of deposition.

この後基板を予備室に除去してしまった後、この反応室
(2)の内壁および窓(10)上面に付着したシリコン
膜を実施例1と同様のNF、を加えたプラズマエッチ法
にて除去した。わずか15分間で窓上及び反応室内の付
着珪素を除去することができた。
After removing the substrate to the preliminary chamber, the silicon film adhering to the inner wall of the reaction chamber (2) and the top surface of the window (10) was etched using the same plasma etching method with NF added as in Example 1. Removed. Adhering silicon on the windows and inside the reaction chamber could be removed in just 15 minutes.

基板温度は250℃、圧力2.5torrとした。The substrate temperature was 250° C. and the pressure was 2.5 torr.

実験例3・・・窒化アルミニュームの形成例AI(CH
z)iを代表例とするメチルアルミニュームを(23)
より8cc/分で供給した。(25)よりアンモニアを
30cc/分で供給した。すると、メチルアルミニュー
ムは光源室に水銀を用いることな(分解し、窒化アルミ
ニューム膜を1300人の厚さに作ることができた。被
膜形成速度は330人/分(圧力3torr+温度35
0℃)を得ることができた。エチルアルミニュームAI
(C2H5):1等の他のアルキル化合物でもよい。
Experimental example 3... Formation example of aluminum nitride AI (CH
z) Methyl aluminum with i as a representative example (23)
It was supplied at a rate of 8 cc/min. Ammonia was supplied from (25) at a rate of 30 cc/min. As a result, methyl aluminum was decomposed without using mercury in the light source chamber, and an aluminum nitride film with a thickness of 1,300 mm could be made. The film formation rate was 330 mm/min (pressure: 3 torr + temperature: 35 mm)
0°C). Ethyl aluminum AI
Other alkyl compounds such as (C2H5):1 may also be used.

窓のプラズマエツチングは(26)よりCC1aを供給
してプラズマ反応を行った。加えて(24)より水素を
供給した。かくして窒化アルミニュームを除去させるこ
とができた。
For plasma etching of the window, CC1a was supplied from (26) to perform a plasma reaction. In addition, hydrogen was supplied from (24). In this way, aluminum nitride could be removed.

この被膜形成を10回繰り返しても、同じ膜厚を同一条
件で得ることができた。
Even if this film formation was repeated 10 times, the same film thickness could be obtained under the same conditions.

r効果j 本発明は、以上の説明より明らかなごとく、大面積の基
板上に被膜を形成するにあたり、窓上の不要反応生成被
膜をプラズマエツチングより完全に除去することができ
る。このため窓上面にオイルをまったく用いる必要がな
い。このため被膜内には炭素等の不純物がはいりにくく
、かつ排圧を10−’torrと高真空にし得、オイル
フリーの高純度の被膜作製が可能となった。
r Effect j As is clear from the above description, in the present invention, when forming a film on a large-area substrate, an unnecessary reaction-generated film on a window can be completely removed by plasma etching. Therefore, there is no need to use any oil on the top surface of the window. Therefore, it is difficult for impurities such as carbon to enter the coating, and the exhaust pressure can be set to a high vacuum of 10-'torr, making it possible to produce an oil-free coating with high purity.

さらにこの光CVD法による被膜形成に加えて、この上
に重ねて同じまたは異なる被膜をプラズマエッチ法で形
成させんとすることが可能である。かかる場合、光CV
D法で被膜を形成して被形成面をスパッタさせず、さら
にプラズマ気相法によりこの上に重ねて同じ膜または他
の同様の膜を作ることも可能である。即ち被膜形成速度
を遅くさせることなく、再現性のよい被膜形成をさせる
ことができた。
Furthermore, in addition to forming a film by this photo-CVD method, it is possible to form the same or a different film overlying this film by a plasma etching method. In such cases, optical CV
It is also possible to form a film by the D method without sputtering the surface on which it is formed, and then to superimpose the same film or another similar film thereon by a plasma vapor phase method. That is, it was possible to form a film with good reproducibility without slowing down the film formation rate.

さらにこの窓上面に落下したフレーク等も同様にプラズ
マエッチにより除去することにより、反応室に完全にオ
イルレスの環境を得、連続形成を初めて可能にした。
Furthermore, by removing flakes and the like that had fallen onto the top surface of the window, we created a completely oil-free environment in the reaction chamber, making continuous formation possible for the first time.

なお本発明は、珪素および窒化珪素、窒化アルミニュー
ムにおいてその実験例を示したが、それ以外にM(CH
ff)fi即ちMとしてIn+ Cr、 Sn、 Mo
、 Ga、 Wを用い、Mの金属またはその珪化物を作
製してもよい。また鉄、ニッケル、コバルトのカルボニ
ル化物を反応性気体として用い、鉄、ニッケル、コバル
トまたはその化合物の被膜また珪化物とこれらとの化合
物を形成することは有効である。
Although the present invention has shown experimental examples using silicon, silicon nitride, and aluminum nitride, it is also possible to use M(CH
ff) fi, that is, M as In+ Cr, Sn, Mo
, Ga, and W may be used to fabricate a metal M or a silicide thereof. It is also effective to use a carbonylated product of iron, nickel, or cobalt as a reactive gas to form a film of iron, nickel, cobalt, or a compound thereof, or a compound of silicide and these.

前記した実験例において、珪素半導体の形成に際し、ド
ーパントを同時に添加できる。また光源として低圧水銀
灯ではな(エキシマレーザ(波長100〜400nm)
 、アルゴンレーザ、窒素レーザ等を用いてもよいこと
はいうまでもない。
In the experimental examples described above, dopants can be added at the same time when forming a silicon semiconductor. Also, do not use a low-pressure mercury lamp as a light source (excimer laser (wavelength 100-400 nm)).
, argon laser, nitrogen laser, etc. may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来より公知の光励起CVO装置を示す。 第2図は本発明のCVO装置を示す。 FIG. 1 shows a conventionally known optically pumped CVO device. FIG. 2 shows a CVO device of the present invention.

Claims (1)

【特許請求の範囲】 1、光化学反応を用いた薄膜形成方法において、発光源
を配設させた光源室と、前記光源室と反応室とを仕切る
透光性遮蔽板と、前記反応室に配設された被形成面を有
する加熱された基板とを有し、前記光化学反応を伴って
被形成面上に薄膜を形成させるとともに、前記透光性遮
蔽板表面に形成される薄膜を、前記薄膜形成を完了し、
前記基板を反応室より除去した後、プラズマ気相エッチ
ング反応を行ない除去することを特徴とする薄膜形成方
法。 2、特許請求の範囲第1項において、プラズマ気相エッ
チング反応は反応性気体を供給するノズルと基板ホルダ
または反応室との間に高周波電気エネルギを供給するこ
とにより実施することを特徴とする薄膜形成方法。 3、特許請求の範囲第1項において、薄膜形成は光化学
反応の後プラズマ気相反応を行わしめて成就したことを
特徴とする薄膜形成方法。
[Claims] 1. A thin film forming method using a photochemical reaction, comprising: a light source chamber in which a light emitting source is disposed; a light-transmitting shielding plate that partitions the light source chamber and a reaction chamber; and a light-transmitting shielding plate disposed in the reaction chamber. A heated substrate having a surface to be formed is formed, and a thin film is formed on the surface to be formed by the photochemical reaction, and the thin film formed on the surface of the light-transmitting shielding plate is Complete the formation,
A method for forming a thin film, comprising removing the substrate by performing a plasma vapor phase etching reaction after removing the substrate from a reaction chamber. 2. A thin film according to claim 1, characterized in that the plasma vapor phase etching reaction is carried out by supplying high frequency electrical energy between a nozzle for supplying a reactive gas and a substrate holder or a reaction chamber. Formation method. 3. A method for forming a thin film according to claim 1, wherein the thin film is formed by performing a plasma gas phase reaction after a photochemical reaction.
JP59250339A 1984-11-26 1984-11-26 Thin film forming method and apparatus Expired - Fee Related JPH07105343B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59250339A JPH07105343B2 (en) 1984-11-26 1984-11-26 Thin film forming method and apparatus
US07/092,529 US4811684A (en) 1984-11-26 1987-09-03 Photo CVD apparatus, with deposition prevention in light source chamber
US07/140,903 US4857139A (en) 1984-11-26 1988-01-04 Method and apparatus for forming a layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250339A JPH07105343B2 (en) 1984-11-26 1984-11-26 Thin film forming method and apparatus

Publications (2)

Publication Number Publication Date
JPS61127120A true JPS61127120A (en) 1986-06-14
JPH07105343B2 JPH07105343B2 (en) 1995-11-13

Family

ID=17206447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250339A Expired - Fee Related JPH07105343B2 (en) 1984-11-26 1984-11-26 Thin film forming method and apparatus

Country Status (1)

Country Link
JP (1) JPH07105343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075179A (en) * 2006-09-19 2008-04-03 Asm Japan Kk Method for cleaning a UV irradiation chamber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147236A (en) * 1981-03-09 1982-09-11 Kokusai Electric Co Ltd Removing method for extraneous matter on reaction pipe for vapor growth device
JPS59188913A (en) * 1983-04-11 1984-10-26 Semiconductor Energy Lab Co Ltd Photo cvd device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147236A (en) * 1981-03-09 1982-09-11 Kokusai Electric Co Ltd Removing method for extraneous matter on reaction pipe for vapor growth device
JPS59188913A (en) * 1983-04-11 1984-10-26 Semiconductor Energy Lab Co Ltd Photo cvd device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075179A (en) * 2006-09-19 2008-04-03 Asm Japan Kk Method for cleaning a UV irradiation chamber

Also Published As

Publication number Publication date
JPH07105343B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
US6786997B1 (en) Plasma processing apparatus
US4811684A (en) Photo CVD apparatus, with deposition prevention in light source chamber
US5753320A (en) Process for forming deposited film
EP0104658B1 (en) Process for forming thin film
JP2974376B2 (en) Method for manufacturing semiconductor device
JPH05144741A (en) Formation of amorphous silicon film
JPS61143585A (en) Thin film forming method
JPS61127120A (en) Formation of thin film
JPS61127122A (en) Formation of thin film
JPS61196528A (en) Thin film forming apparatus
JPH0573046B2 (en)
JPS61144014A (en) Thin film formation
JPS63317675A (en) Plasma vapor growth device
JPS6118124A (en) Thin film forming apparatus
JPS61216318A (en) Photo chemical vapor deposition device
JP2654456B2 (en) Manufacturing method of high quality IGFET
JPS61196527A (en) Thin film forming apparatus
JPS61288431A (en) Manufacture of insulating layer
JP3554032B2 (en) Film formation method from low-temperature condensed phase
JPH0978245A (en) Thin film formation method
JPS61196529A (en) Thin film forming apparatus
JPS62160732A (en) Forming method for silicon oxynitride films
JPH08262251A (en) Film forming device for optical waveguide
JPS6118125A (en) Thin film forming apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees