JPS61132791A - Pump - Google Patents
PumpInfo
- Publication number
- JPS61132791A JPS61132791A JP25481884A JP25481884A JPS61132791A JP S61132791 A JPS61132791 A JP S61132791A JP 25481884 A JP25481884 A JP 25481884A JP 25481884 A JP25481884 A JP 25481884A JP S61132791 A JPS61132791 A JP S61132791A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- motor
- pressure
- energy recovery
- suction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000011084 recovery Methods 0.000 claims description 36
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract 2
- 238000011033 desalting Methods 0.000 abstract 1
- 238000010612 desalination reaction Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 12
- 239000012528 membrane Substances 0.000 description 11
- 239000012267 brine Substances 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000002699 waste material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011549 displacement method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C11/00—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
- F04C11/001—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
- F04C11/003—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle having complementary function
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は海水、かん水など高塩分!1度溶液の逆浸透法
(以下RO法と呼ぶ)脱塩装置などに使用される高圧ポ
ンプに関するものである。[Detailed description of the invention] Industrial application field The present invention is applicable to high salt water such as seawater and brine! This invention relates to a high-pressure pump used in a one-time solution reverse osmosis method (hereinafter referred to as RO method) desalination equipment.
従来例の構成とその問題点
RO法脱塩装置における従来のエネルギー回収装置付高
圧ポンプでは逆浸透膜を通らない濃縮された高圧のブラ
インのもつエネルギーを多段渦巻式タービンまたはペル
トン式タービンを用いてエネルギーを回収し、該エネル
ギー回収装置と多段渦巻式高圧ポンプとを連結する方法
が公知であるが、これらのエネルギー回収装置付の高圧
ポンプでは多段渦巻式ポンプを使用しているため、大容
量のRO法脱塩装置にセ効率良く適用できるが、小容量
の脱塩装置には多段渦巻式ポンプの効率が悪く、エネル
ギー回収装置を設置しても実用的で −セなかった。Conventional configuration and its problems Conventional high-pressure pumps with energy recovery devices in RO desalination equipment utilize the energy of concentrated high-pressure brine that does not pass through a reverse osmosis membrane using a multi-stage spiral turbine or Pelton turbine. A method of recovering energy and connecting the energy recovery device with a multi-stage centrifugal high-pressure pump is known, but since these high-pressure pumps with an energy recovery device use a multi-stage centrifugal pump, large-capacity Although it can be applied efficiently to RO method desalination equipment, multistage centrifugal pumps are inefficient for small-capacity desalination equipment, and even if an energy recovery device is installed, it is not practical.
したがって、小容量RO法脱塩装債でに小容量で効率の
良いピストン式高圧ポンプを用いて、エネルギー回収装
置を付けない方式が一般的であった。Therefore, it has been common practice to use a small-capacity, high-efficiency piston-type high-pressure pump in a small-capacity RO desalination device without an energy recovery device.
このような高圧ポンプでは、高圧ブラインの持つエネル
ギーを回収することなく、また高圧ブラインは背圧バル
ブなどを介して、大気圧に開放する必要があった。この
ためエネルギーを有効に利用できないのみならず、背圧
バルブの摩耗などの欠点があった。In such a high-pressure pump, the energy of the high-pressure brine is not recovered, and the high-pressure brine must be released to atmospheric pressure via a back pressure valve or the like. This not only makes it impossible to use energy effectively, but also causes drawbacks such as wear of the back pressure valve.
発明の目的
本発明は上記従来の小容量RO法脱塩装置にも効率良く
エネルギー回収装置を連結した高圧ポンプを提供するこ
とを目的とする。OBJECTS OF THE INVENTION It is an object of the present invention to provide a high-pressure pump that efficiently connects an energy recovery device to the conventional small-capacity RO desalination device.
発明の構成
上記目的を達成するため、本発明の高圧ポンプは、原料
液を高圧にて給水する摺動形羽根車ポンプと該ポンプと
同容量または容量の小さい摺動形羽根車モーターをエネ
ルギー回収装置として連結して構成することを主目的と
したもので、RO法脱塩装置の使用条件により異る給水
量の変化または高圧ブライン量の変化に対応して、七の
どちらか一方または両方を可変容量式として構成するこ
ともある。上記のように構成することにより、エネルギ
ー回収を可能として該高圧ポンプ駆動用モーターを小型
化することができ且つ省エネルギー効果を得るものであ
る。Structure of the Invention In order to achieve the above object, the high-pressure pump of the present invention uses a sliding type impeller pump that supplies raw material liquid at high pressure and a sliding type impeller motor having the same capacity or a small capacity as the pump for energy recovery. The main purpose of this device is to connect it as a device, and to respond to changes in the water supply amount or high-pressure brine amount, which vary depending on the usage conditions of the RO method desalination device, either one or both of the above seven items can be connected. It may also be configured as a variable capacitance type. By configuring as described above, it is possible to recover energy, downsize the high-pressure pump driving motor, and obtain an energy saving effect.
実権例と作用 以下、本発明の実権例を図面に基ついて説明する。Examples and effects of real power Hereinafter, practical examples of the present invention will be explained based on the drawings.
図1は本発明に関連するRO法脱塩装置の全体のフロー
図で、(t)H原料液汲上ポンプ、(2)URO法脱塩
装置へ給水する前処理フィルター、(3ha高圧ポンプ
、(4)Uエネルギー回収モーター、(51H高圧ポン
プ用原動機、(6)および(g)は、それぞれ高圧ポン
プと高圧ポンプ用原動機、エネルギー回収モーターと高
圧ポンプ用原動機を連結する軸接手を示す。一般に(6
)にセクラノテ接手を用いている0(7)はRO膜モジ
ュールを示す。原料溶液槽(至)より原料液は導管(8
)を通って汲上げボ゛ンプ(1)に入り、導管(9)
、 (L()およびその途中に介装されたフィルター
(2) e経て高圧ポンプ(3)に送られる。原料gは
高圧ポンプにより加圧され、導管(ロ)を通ってRO膜
モジュール(7)に入る。RO膜モジュールでHRO膜
を通過し脱塩された透過水と、RO膜を透過せずに濃縮
された溶液とに分離される。RO膜を透過しないで濃縮
された溶液は高圧であり、導管(至)を通ってエネルギ
ー回収モーター(4)に入り、大気圧1で減圧てれて導
管(14を経て廃水ビット(15’)へと導かれる。R
O膜を透過して脱塩された透過水は大略大気圧であり、
導管(6)を経てその用途に供される。Figure 1 is an overall flow diagram of the RO method desalination equipment related to the present invention, (t) H raw material liquid pump, (2) pre-treatment filter that supplies water to the URO method desalination equipment, (3 ha high pressure pump, ( 4) U energy recovery motor, (51H high-pressure pump prime mover, (6) and (g) respectively indicate the shaft joint that connects the high-pressure pump and the high-pressure pump prime mover, and the energy recovery motor and the high-pressure pump prime mover. Generally ( 6
0(7) indicates an RO membrane module using a Securanote joint in ). The raw material liquid is transferred from the raw material solution tank (to) to the conduit (8
) into the pumping pump (1) and into the conduit (9).
, (L() and the filter inserted in the middle
(2) It is sent to the high pressure pump (3) via e. The raw material g is pressurized by a high-pressure pump and enters the RO membrane module (7) through the conduit (b). In the RO membrane module, the permeate water is separated into desalinated permeate that has passed through the HRO membrane and a concentrated solution that has not passed through the RO membrane. The concentrated solution that does not pass through the RO membrane is under high pressure and enters the energy recovery motor (4) through the conduit (to), is depressurized at atmospheric pressure 1, and is sent to the waste water bit (15') through the conduit (14). Guided to R.
The permeated water that has passed through the O membrane and been desalinated is at approximately atmospheric pressure,
It is provided for its use via a conduit (6).
以上が工坏ルギー回収装置付のRO法脱塩装置の概略プ
ロセスフロー説明である。若しく4)のエネルギー回収
モーターがない場合は、高圧の原料溶液をRO膜に透過
させるために導管(2)を流れる濃縮廃′rLに高圧の
背圧を掛けて、RO膜を脱塩透過水が通るようにする必
要がある。したがってこの高圧の濃縮廃液の持つ背圧エ
ネルギーを回収利用できないのみならず、背圧弁のコロ
−ジョンによりRo法脱塩装置の故障の原因になること
が多かった。The above is a general process flow description of the RO method desalination equipment equipped with a synthetic energy recovery device. Or, if there is no energy recovery motor (4), high back pressure is applied to the concentrated waste flowing through the conduit (2) in order to pass the high-pressure raw material solution through the RO membrane, and the RO membrane is desalinated and permeated. You need to allow water to pass through. Therefore, not only is it impossible to recover and utilize the back pressure energy of this high-pressure concentrated waste liquid, but also corrosion of the back pressure valve often causes failure of the Ro method desalination equipment.
本発明の高圧ポンプの軸方向の断面図を図2゜A−A断
面図を図3に示す。An axial cross-sectional view of the high-pressure pump of the present invention is shown in FIG. 2, and FIG. 3 is a cross-sectional view taken along line A-A.
(2)はポンプケーンング、0!2ハ貫通軸で、高圧ポ
ンプローター(至)、エネルギー回収モーターのロータ
ーに)と結合式れている。(財)、(7)は夫々のロー
ターに嵌め込まれた羽根を表わし、夫々ローターと偏心
したハウジング(9)、(6)の円形内周を摺動する。(2) is a pump caning, 0.2mm through shaft, which is connected to the high pressure pump rotor (to) and the rotor of the energy recovery motor. (7) represent blades fitted into the respective rotors, and slide on the circular inner peripheries of the housings (9), (6) eccentric to the rotors, respectively.
高圧ポンプ側では溶液は吸入導管@を通り高圧ポンプの
ハウジングに)に入り、羽根(財)により加圧され、吐
出導管@により吐出される。On the high-pressure pump side, the solution enters the high-pressure pump housing through the suction conduit, is pressurized by the vanes, and is discharged through the discharge conduit.
RO膜を通らず濃縮された溶液は、エネルギー回収モー
ターの吸入導管−を通り、ハウジング(6)に入り、羽
根車(イ)を駆動し減圧されて、排出導管(7)により
排出される。The concentrated solution that does not pass through the RO membrane passes through the suction conduit of the energy recovery motor, enters the housing (6), drives the impeller (a), is depressurized, and is discharged through the discharge conduit (7).
以上のように単軸上に高圧ポンプ、エネルギー回収モー
ターを結合して構成することにより原動機負荷を軽減し
、小型化することが可能となる。By combining the high-pressure pump and the energy recovery motor on a single shaft as described above, it is possible to reduce the load on the prime mover and make it more compact.
図2iC示されている顛は軸端蓋、(9)は軸受ンール
、(9)け軸受を示し、軸幹には軸封11ング(イ)を
設け、水量(I′j溝(9)、水量は橙(6)を通して
、漏洩する溶液を発出する。The frame shown in Fig. 2iC is the shaft end cover, (9) is the bearing ring, and (9) is the bearing. , the amount of water will pass through the orange (6) and the solution will leak out.
図3のA−A断面図に示すように弁座孔0])、弁I3
a、バネ競、調整ネジ(ロ)および架構(ト)で構成さ
れる弁はポンプ出口の圧力調整弁を示すもので吐出導路
勾よりの枝管により液圧を導いている。調整弁はポンプ
側にのみ設けられていて、回収モーター側には設置てれ
ていないが、エネルギー回収モーターのその他の構成μ
A−A断面図の構成と同様であるので省略している。As shown in the A-A sectional view of Fig. 3, valve seat hole 0]), valve I3
The valve consisting of a, a spring race, an adjusting screw (b), and a frame (g) is a pressure regulating valve at the pump outlet, and the liquid pressure is guided through a branch pipe from the discharge conduit slope. Although the regulating valve is only installed on the pump side and not on the recovery motor side, other configurations of the energy recovery motor μ
It is omitted because it is the same as the configuration in the AA cross-sectional view.
RO法脱塩装置において、給水量Q1透過水量Gとする
と、一般VcG/Qを回収率と呼ばれている。In the RO method desalination equipment, where the amount of water supplied is Q1 and the amount of permeated water is G, the general value VcG/Q is called the recovery rate.
一方RO法説塩装置は原料溶液温度、原料溶液濃度が変
化することにより、回収率を一定とすると、透過水の量
・水質が変化する。On the other hand, in the RO method salt equipment, as the raw material solution temperature and raw material solution concentration change, the amount and quality of permeated water change if the recovery rate is constant.
即ち、原料溶液温度の増減にエリ、透過水量と透過水の
全溶解固型物(こ\に略してTDSと呼ぶ)は夫々比例
して増減する。That is, as the temperature of the raw material solution increases or decreases, the amount of permeated water and the total dissolved solids (abbreviated as TDS) in the permeated water increase or decrease in proportion to each other.
また、原料溶液温度、回収率を一定とすると、溶液濃度
に比例して、透過水のTDSも増減する性質をもつ。ま
た透過水のTDS U回収率に逆比例して、変化する。Furthermore, when the temperature of the raw material solution and the recovery rate are constant, the TDS of the permeated water also increases or decreases in proportion to the concentration of the solution. It also changes in inverse proportion to the TDSU recovery rate of permeated water.
したがって、透過水の水質を一定に保つように要求され
る場合は、溶液温度、a並の変化に逆比例して回収率を
変化させる必要がある。Therefore, when it is required to keep the quality of the permeated water constant, it is necessary to change the recovery rate in inverse proportion to changes in the solution temperature, such as a.
回収率を変化1せるに汀、RO法脱@饅装への給液量ま
たはエネルギー回収モーターへの給itのどちらか一方
、またな両方の容量を変化させることにより達成できる
。Changes in the recovery rate can be achieved by changing the capacity of either, or both, the amount of liquid supplied to the RO decontamination system or the supply of energy to the energy recovery motor.
図4に高圧ポンプまたけエネルギー回収モーターについ
ての可変容量法を示す〇
軸(22’)により回転されるローター(2J)上の羽
根(24’)に接して左右にaき得るカムリング(51
’)がケーシング(21’)の空間部(5z)に挿入さ
れている。図4のカムリング(51’)位置は吸入吐出
の最大量の位置を示し、レバー(53’)を介してカム
リングを移動することにより、吸入吐出量は減少し、カ
ムリングが軸(2z)と同心になった時に吸入吐出量け
0となる。(27’)は吐出孔、(28’) f′i吸
入孔を示す。Figure 4 shows the variable displacement method for an energy recovery motor that straddles a high-pressure pump. A cam ring (51
') is inserted into the space (5z) of the casing (21'). The cam ring (51') position in Fig. 4 indicates the position of the maximum amount of suction and discharge, and by moving the cam ring via the lever (53'), the suction and discharge amount decreases, and the cam ring is concentric with the shaft (2z). When this happens, the suction and discharge amount becomes 0. (27') is a discharge hole, and (28') f'i is a suction hole.
このような可変容量型吸入・吐出回転体を高圧ポンプま
たはエネルギー回収モーターのどちらか一方に、あるい
け両方に設置することにより回収率可変のエネルギー回
収モーター付RO法脱塩装置用高圧ポンプとすることが
できる。By installing such a variable capacity suction/discharge rotor on either the high pressure pump or the energy recovery motor, or on both, a high pressure pump for RO method desalination equipment with an energy recovery motor with variable recovery rate can be obtained. be able to.
以上本発明によれば、容積型給水ポンプを単独で用いた
RO法脱塩装置よりも高圧廃液のエネルギーを回収する
ことがでさ、エネルギーの高度利用を計ることにより原
動機容量を小さく、エネルギー消費量を少くすることが
できる。As described above, according to the present invention, it is possible to recover more energy from high-pressure waste liquid than in the RO method desalination equipment that uses a positive displacement water pump alone, and by making advanced use of energy, the capacity of the prime mover can be reduced, resulting in energy consumption. The amount can be reduced.
図1l−jRo法脱塩装置のエネルギー回収ンステムを
示すフローンートである。
(1)・・・原料g汲上ポンプ (2)・・・前処理フ
ィルター(3)・・高圧給水ポンプ (7)・・・R
Oモジュール(4)・・エネルギー回収装置 (5)・
・・原動機α→・・・原料溶液槽 (15’)・
・・廃水ピット図29図31図4は本発明の実胞例を示
す購造図である。
(2])・・・ケーシング (イ)・・・貫通軸
の・・ポツプ側ローメー (イ)・・回収側ローター(
7)・・・ポンプ側ハウジング
(ハ)・・・回収側ハウジング (ハ)・・・ボング側
羽根(7)・・・回収側羽根 勿・・・ポンプ側
吐出孔(至)・・ポンプ側吸入孔
0埠・・・ポンプ側圧力調整弁
競・・・圧力調整弁用スプリング
(ロ)・・・圧力調整用ネジFigure 1l-j is a flow route showing the energy recovery system of the Ro method desalination equipment. (1)...Raw material g pump (2)...Pre-treatment filter (3)...High pressure water supply pump (7)...R
O module (4)・Energy recovery device (5)・
・・Motor α→・・・Raw material solution tank (15')・
...Wastewater pit Fig. 29 Fig. 31 Fig. 4 is a purchasing drawing showing an actual cell example of the present invention. (2))...Casing (a)...Pot side of the penetrating shaft (a)...Recovery side rotor (
7) Pump side housing (c) Recovery side housing (c) Bong side vane (7) Recovery side vane Of course... Pump side discharge hole (to) Pump side Suction port 0: Pump side pressure regulating valve race... Pressure regulating valve spring (b)... Pressure regulating screw
Claims (1)
面を摺動する羽根車を持つポンプとこのポンプの吸入・
吐出孔とは別に吸入・吐出孔を設けたケーシングと該ケ
ーシング内面を摺動する羽根車を持つ水圧モーターから
なる容積型吸入・吐出回転体において、ポンプ羽根車と
水圧モーター羽根車を同一軸線上に固定し、ポンプケー
シングと水圧モーターケーシングを組合させていること
を特徴とするエネルギー回収式ポンプ。 2 ポンプと水圧モーターのいずれか一方、または両方
に移動できるカムリングを設け、該カムリングの内面を
羽根車が摺動し、カムリングを移動することによりポン
プ吐出量と水圧モーター吸入量との比を変えられるよう
にしたことを特徴とする特許請求範囲1項記載のエネル
ギー回収式ポンプ。[Claims] 1. A pump having a casing provided with suction and discharge holes, an impeller that slides on the inner surface of the casing, and the suction and discharge holes of this pump.
In a positive displacement suction/discharge rotor consisting of a casing with suction/discharge holes separate from the discharge hole and a hydraulic motor with an impeller sliding on the inner surface of the casing, the pump impeller and the hydraulic motor impeller are placed on the same axis. An energy recovery pump characterized by a combination of a pump casing and a hydraulic motor casing. 2 A movable cam ring is provided on either the pump or the hydraulic motor, or both, and an impeller slides on the inner surface of the cam ring, and by moving the cam ring, the ratio between the pump discharge amount and the water pressure motor suction amount is changed. The energy recovery pump according to claim 1, characterized in that the energy recovery pump is configured to be able to
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25481884A JPS61132791A (en) | 1984-12-01 | 1984-12-01 | Pump |
| DE19853541668 DE3541668A1 (en) | 1984-12-01 | 1985-11-26 | Pump |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25481884A JPS61132791A (en) | 1984-12-01 | 1984-12-01 | Pump |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS61132791A true JPS61132791A (en) | 1986-06-20 |
Family
ID=17270301
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25481884A Pending JPS61132791A (en) | 1984-12-01 | 1984-12-01 | Pump |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JPS61132791A (en) |
| DE (1) | DE3541668A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101696703B (en) | 2009-10-14 | 2011-02-09 | 山东交通学院 | Double-variable double-acting vane hydraulic transformer with manual control |
| CN101566178B (en) | 2009-05-26 | 2012-05-09 | 山东交通学院 | Double-acting vane type hydraulic transformer controlled by hydraulic cylinder |
| CN101660546B (en) | 2009-09-15 | 2012-06-27 | 山东交通学院 | Blade-type hydraulic transformer controlled by motor |
| CN101598144B (en) | 2009-07-09 | 2012-06-27 | 山东交通学院 | Electronic control difunctional vane type hydraulic transformer |
| CN109179580A (en) * | 2018-10-21 | 2019-01-11 | 张玉新 | Reverse osmosis membrane pump one desalinization unit |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19613042C2 (en) * | 1996-04-01 | 1998-05-20 | Pahnke Hans Joachim | Pump test bench with energy recovery |
-
1984
- 1984-12-01 JP JP25481884A patent/JPS61132791A/en active Pending
-
1985
- 1985-11-26 DE DE19853541668 patent/DE3541668A1/en not_active Withdrawn
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101566178B (en) | 2009-05-26 | 2012-05-09 | 山东交通学院 | Double-acting vane type hydraulic transformer controlled by hydraulic cylinder |
| CN101598144B (en) | 2009-07-09 | 2012-06-27 | 山东交通学院 | Electronic control difunctional vane type hydraulic transformer |
| CN101660546B (en) | 2009-09-15 | 2012-06-27 | 山东交通学院 | Blade-type hydraulic transformer controlled by motor |
| CN101696703B (en) | 2009-10-14 | 2011-02-09 | 山东交通学院 | Double-variable double-acting vane hydraulic transformer with manual control |
| CN109179580A (en) * | 2018-10-21 | 2019-01-11 | 张玉新 | Reverse osmosis membrane pump one desalinization unit |
Also Published As
| Publication number | Publication date |
|---|---|
| DE3541668A1 (en) | 1986-06-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4973408A (en) | Reverse osmosis with free rotor booster pump | |
| US11707715B2 (en) | Reverse osmosis system | |
| US6139740A (en) | Apparatus for improving efficiency of a reverse osmosis system | |
| Gude | Energy consumption and recovery in reverse osmosis | |
| US4243523A (en) | Water purification process and system | |
| US6946081B2 (en) | Desalination system | |
| EP2121169B1 (en) | Central pumping and energy recovery in a reverse osmosis system | |
| US20060037895A1 (en) | Pressure exchange apparatus with integral pump | |
| US20080105617A1 (en) | Two pass reverse osmosis system | |
| WO2007096679A1 (en) | System for energy recovery and reduction of deposits on the membrane surfaces in (variable power and variable production) reverse osmosis desalination systems | |
| GB2208155A (en) | Water treatment assembly | |
| EP0570350B1 (en) | A valve arrangement for a pressurized water purifier | |
| JPS61132791A (en) | Pump | |
| CN201292269Y (en) | Membrane separation device, in particular reverse osmosis sea water desalting apparatus | |
| WO2012111734A1 (en) | Compound desalination system | |
| AU2016286651A1 (en) | Method for controlling a desalination plant fed by a source of renewable energy and associated plant | |
| US8377302B2 (en) | Continuous process batch-operated reverse osmosis system with in-tank membranes and circulation | |
| JP2014133189A (en) | Desalination system | |
| CN109469629A (en) | A high-pressure pump with an energy recovery turbine | |
| Riedinger et al. | Considerations of energy consumption in desalination by reverse osmosis | |
| JPS60222113A (en) | Energy recovering device in membrane separating apparatus | |
| CN110436655B (en) | Reverse Osmosis Desalination System | |
| EP1315552B1 (en) | Method and apparatus for improving efficiency of a reverse osmosis system | |
| WO2016006344A1 (en) | Desalination system | |
| US12227437B1 (en) | Water treatment system using reverse osmosis process for high salinity low temperature water |