[go: up one dir, main page]

JPS61149833A - Fourier transform infrared spectrophotometer - Google Patents

Fourier transform infrared spectrophotometer

Info

Publication number
JPS61149833A
JPS61149833A JP59278701A JP27870184A JPS61149833A JP S61149833 A JPS61149833 A JP S61149833A JP 59278701 A JP59278701 A JP 59278701A JP 27870184 A JP27870184 A JP 27870184A JP S61149833 A JPS61149833 A JP S61149833A
Authority
JP
Japan
Prior art keywords
photodetector
fourier transform
interferogram
transform infrared
infrared spectrophotometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59278701A
Other languages
Japanese (ja)
Other versions
JPH0566533B2 (en
Inventor
Osamu Yoshikawa
治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59278701A priority Critical patent/JPS61149833A/en
Publication of JPS61149833A publication Critical patent/JPS61149833A/en
Publication of JPH0566533B2 publication Critical patent/JPH0566533B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ・産業上の利用分野 本発明はフーリエ変換型赤外分光光度計において、赤外
光検知器の位置調整手段に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to means for adjusting the position of an infrared photodetector in a Fourier transform infrared spectrophotometer.

口・従来の技術 赤外、遠赤外領域の分光光度計では赤外光検知器の窓材
に可視光域では不透明なGeとかAs2583 Wを用
いている。このため検知器の受光面を直接目視できない
ので、検知器の位置調整は大へん困難である。特に液体
Heとか液体窒素のような冷媒で冷却しながら使用する
MCTとか工n8n等の結晶を用いた検出器の場合には
使用の際取付は不使用の際取外すので、使用の度に一々
位置調整をしなければならず、使用者にとって非常な負
担であった。
- Conventional technology Spectrophotometers in the infrared and far-infrared regions use Ge or As2583 W, which is opaque in the visible light region, for the window material of the infrared light detector. For this reason, the light-receiving surface of the detector cannot be directly observed, making it extremely difficult to adjust the position of the detector. In particular, in the case of a detector using a crystal such as MCT or N8N, which is used while being cooled with a refrigerant such as liquid He or liquid nitrogen, it is installed and removed when not in use, so each time it is used, the Adjustments had to be made, which was a huge burden on the user.

ハ・ 発明が解決しようとする問題点 光検知器の位置調整を自動化すると、とによシ、赤外域
のフーリエ変換型分光光度計の人手による光検知器の位
置合せの困難を解消しようとするものである。
C. Problems to be solved by the invention By automating the position adjustment of the photodetector, the difficulty of manually aligning the photodetector of a Fourier transform spectrophotometer in the infrared region can be solved. It is something.

二・問題点解決のだめの手段 光検知器を干渉計の光軸に垂直な平面内でX。2.Means to solve the problem X the photodetector in a plane perpendicular to the optical axis of the interferometer.

y2方向に移動させる駆動手段を設け、インターフェロ
グラムを測定して、インターフェログラムの最大値と最
小値の差が最大になる光検知器の位置を自動的に探索す
るようにした。
A driving means for moving in the y2 direction is provided, the interferogram is measured, and the position of the photodetector where the difference between the maximum value and the minimum value of the interferogram becomes the maximum is automatically searched.

ホ5作用 フーリエ変換型分光光度計は干渉計の移動鏡を動かした
ときの干渉計出射光の強度変化を移動鏡の移動量を横座
標にとって表わしたインターフェログラムを測定し、こ
のインターフェログラムをフーリエ変換してもとの光の
スペクトルを得るもので、光検出器の受光面の中心が干
渉計の光軸か盃 らずれていると、インターフェログラムの形がfむので
、フーリエ変換しても正しいスペクトルが求まらないか
ら、光検知器の位置調整が必要なのであるが、検知器の
受光面が光軸からずれているときはインターフェログラ
ムの最大値と最小値との差が小さくなるので、本発明は
このことを利用し、この差が大きくなる方向を探っては
光検知器をその方向に移動させて差が最大になる位置を
検出すれば、そのとき光検知器の受光面中心と干渉計の
光軸とが一致しているのでおる。
5-action Fourier transform spectrophotometer measures an interferogram that represents the intensity change of the interferometer output light when the movable mirror of the interferometer is moved, with the amount of movement of the movable mirror as the abscissa; The method obtains the original spectrum of light by Fourier transform.If the center of the light receiving surface of the photodetector is shifted from the optical axis of the interferometer, the shape of the interferogram will be f, so Fourier transform However, if the photodetector's light-receiving surface is off the optical axis, the difference between the maximum and minimum values of the interferogram will increase. The present invention makes use of this fact, searches for the direction in which this difference increases, moves the photodetector in that direction, detects the position where the difference is maximum, and then the photodetector The center of the light-receiving surface of the interferometer coincides with the optical axis of the interferometer.

へ・実施例 第1図は本発明の一実施例を示す。1は固定鏡、2は移
動鏡、3はビームスプリッタ−で、これらによってマイ
ケルンン干渉計が構成されておシ、生は赤外光光源、5
は光検知器でX、  Y、 Z3軸方向可動のステージ
6に取付けられるようになっており、Mxはステージ6
をX方向に移動させるパルスモータ、M7は同じくY方
向に移動させるパルスモータ、Mzはステージを2方向
に移動させるパルスモータである。7は制御回路でマイ
クロコンピュータが用いられる。制御回路7は光検知器
5の出力を読込みメモリ8に格納すると共に、モータM
x、My、Mzに制御パルスを送ってこれを駆動する。
Embodiment FIG. 1 shows an embodiment of the present invention. 1 is a fixed mirror, 2 is a movable mirror, 3 is a beam splitter, and these constitute a Michael interferometer.
is a photodetector that can be attached to stage 6, which is movable in the three axes of X, Y, and Z.
M7 is a pulse motor that moves the stage in the X direction, M7 is a pulse motor that also moves the stage in the Y direction, and Mz is a pulse motor that moves the stage in two directions. 7 is a control circuit using a microcomputer. The control circuit 7 reads the output of the photodetector 5 and stores it in the memory 8, and also controls the motor M.
Control pulses are sent to x, My, and Mz to drive them.

光検知器5の位置調整の際の制御回路7の動作を略述す
る。まずインターフェログラムを測定してそのデータを
メモリ8に格納する。次にMxにパルスを送ってステー
ジ6をXの正方向に一ステップ移動させ、再びインター
フェログラムを測定する。そして、最大値を1としてデ
ータを規格化した上で前回と今回のインターフェログラ
ムの最大と最小との差Δを比較し、後の方がΔが大きけ
れば更にステージを同方向に−ステップ駆動し、後の方
がΔが小さければステージを反対方向に2ステツプ駆動
して二度目のインター7エロダラムを測定し% 2回目
と3回目のインター7エログラムでΔを比較してステー
ジの駆動方向を決める0こうしてΔが最大になった所で
光検知器5のX方向の位置が決まる。以下Y方向2 X
方向とも同様にして位置が決められる。
The operation of the control circuit 7 when adjusting the position of the photodetector 5 will be briefly described. First, an interferogram is measured and the data is stored in the memory 8. Next, a pulse is sent to Mx to move the stage 6 one step in the positive direction of X, and the interferogram is measured again. Then, after normalizing the data with the maximum value as 1, the difference Δ between the maximum and minimum of the previous and current interferograms is compared, and if Δ is larger in the latter one, the stage is further driven in the same direction by steps. However, if Δ is smaller in the latter case, drive the stage two steps in the opposite direction and measure the second inter-7 erodulum. Determine 0 In this way, the position of the photodetector 5 in the X direction is determined at the point where Δ becomes maximum. Below Y direction 2
The position and direction are determined in the same manner.

第2図は光検知器の中心位置によってインターフェログ
ラムの形がどのように変るかを示したもので、第2図A
は光検知器の中心の位置を干渉計の光軸を原点とする座
標で示したもので、1,2.3,4の4位置に対応して
第2図Bに示すようにインターフェログラムは1〜4の
ように形が変化し、光検知器が光軸から離れるに従い最
大値と最小値の差Δが小さくなることが分る。
Figure 2 shows how the shape of the interferogram changes depending on the center position of the photodetector.
indicates the position of the center of the photodetector in coordinates with the optical axis of the interferometer as the origin, and the interferograms shown in Figure 2B correspond to the four positions 1, 2, 3, and 4. It can be seen that the shape changes like 1 to 4, and the difference Δ between the maximum value and the minimum value becomes smaller as the photodetector moves away from the optical axis.

第3図は制御回路7の光検知器のX方向位置調整動作の
フローチャートで、他の方向の動作もこれと同じである
。まず駆動方向レジスタ(メモリ8の中に設けておく)
に+X方向と設定(イ)し、インターフェログラムの測
定、データを規格化して最大値の差Δ1の算を行い(ロ
)、駆動方向の設定をチェック(ハ)し、当初設定は+
X方向であるから、モータMxを正方向に1パルス分駆
動(ニ)シ、インターフェログラムの測定、Δ2の算出
を行イ(ホ)、次いで(Δ2−Δ1)=Pを算しくへ)
、Pの正負判別(ト)を行って、正即ちΔ2〉Δ1なら
動作は儒)のステップに戻りモータMxを更に指定方向
(この場合+Xの方向)に駆動し、(ト)の判定が負の
ときは駆動方向レジスタの設定を−Xに変更(テ)シ、
Δ2が成るレベルよシ大であるか判定しくす)、この判
定がNOであれば動作は(ハ)に戻って錦)、(ホ)・
・・と進行し、モータMxを−X方向に駆動する。(す
)の判定がYB2の場合、Δ1.Δ2は極大値に達した
ものとして、光検出器5のX方向の位置調整を終了する
。Δが極大に達したことの判定は、上記(す)のステッ
プにおけるやシ方の他、例えば同一方向への駆動が複数
回(2回で可)引続いて行われた後の駆動方向変更であ
るか否かで判定することもできる。
FIG. 3 is a flow chart of the X-direction position adjustment operation of the photodetector of the control circuit 7, and the operations in other directions are the same. First, drive direction register (provided in memory 8)
Set the +
Since it is in the X direction, drive the motor Mx in the positive direction for one pulse (d), measure the interferogram, and calculate Δ2.
, P is determined to be positive or negative (g), and if it is positive, that is, Δ2>Δ1, the operation returns to step 2), and the motor Mx is further driven in the specified direction (in this case, +X direction), and if the determination in (g) is negative, In this case, change the drive direction register setting to -X,
It is determined whether the level of Δ2 is greater than the level at which Δ2 is formed.
...and drives the motor Mx in the -X direction. If the judgment of (su) is YB2, Δ1. Assuming that Δ2 has reached the maximum value, the position adjustment of the photodetector 5 in the X direction is completed. The determination that Δ has reached the maximum can be made not only in step (S) above, but also in changing the driving direction after driving in the same direction multiple times (two times is possible). It is also possible to determine whether or not.

ト効果 本発明によれば光検出器の位置調整が入手によらず自動
的に行われるので使用者の装置操作上の負担が大幅に軽
減され、その効果は赤外光のような不可視光を扱う場合
において特に大きく、フーリエ変換型分光光度計の場合
、光検出器の位置の違いによシ感度よりも再現されるス
ペクトルの形が変ってしまうものであるから、光検出器
が常に正しい位置に設定されることによって正しいスペ
クトルの測定が行われることになる。
Effects According to the present invention, the position adjustment of the photodetector is automatically performed regardless of the acquisition, which greatly reduces the burden on the user in operating the device. In the case of a Fourier transform spectrophotometer, the shape of the reproduced spectrum changes more than the sensitivity due to the difference in the position of the photodetector, so it is important to ensure that the photodetector is always in the correct position. By setting the value to , correct spectrum measurement will be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の平面図及びブロック図
、第2図は光検出器の位置とインターフェログラムの形
との関係を示すグラフで同図Aは光検出器の位置を示し
、同Bはインターフェログラムを示す。第3図は上記実
施例の光検出器の位置調整動作のフローチャートである
Fig. 1 is a plan view and block diagram of an embodiment of the device of the present invention, Fig. 2 is a graph showing the relationship between the position of the photodetector and the shape of the interferogram, and Fig. A shows the position of the photodetector. B shows the interferogram. FIG. 3 is a flowchart of the position adjustment operation of the photodetector in the above embodiment.

Claims (1)

【特許請求の範囲】[Claims] 光検出器を干渉計の光軸に垂直な平面内で2軸方向に移
動可能にして、それら2軸方向の駆動手段を設けると共
に、インターフエログラムを測定してその最大値と最小
値の差が最大になる方向に上記駆動手段を駆動する光検
出器位置調整手段を設けたことを特徴とするフーリエ変
換型赤外分光光度計。
The photodetector is made movable in two axes in a plane perpendicular to the optical axis of the interferometer, and driving means for these two axes is provided, and the interferogram is measured to determine the difference between its maximum and minimum values. A Fourier transform infrared spectrophotometer, characterized in that a photodetector position adjusting means is provided for driving the driving means in a direction in which a maximum value of .
JP59278701A 1984-12-24 1984-12-24 Fourier transform infrared spectrophotometer Granted JPS61149833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278701A JPS61149833A (en) 1984-12-24 1984-12-24 Fourier transform infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278701A JPS61149833A (en) 1984-12-24 1984-12-24 Fourier transform infrared spectrophotometer

Publications (2)

Publication Number Publication Date
JPS61149833A true JPS61149833A (en) 1986-07-08
JPH0566533B2 JPH0566533B2 (en) 1993-09-22

Family

ID=17600978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278701A Granted JPS61149833A (en) 1984-12-24 1984-12-24 Fourier transform infrared spectrophotometer

Country Status (1)

Country Link
JP (1) JPS61149833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268441A (en) * 1991-02-23 1992-09-24 Horiba Ltd Spectral analyzer
JP2016183972A (en) * 2012-10-18 2016-10-20 ブイユーブイ・アナリティクス・インコーポレイテッドVUV Analytics,Inc. Vacuum ultraviolet absorption spectroscopy system
US10677767B2 (en) 2018-06-12 2020-06-09 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268441A (en) * 1991-02-23 1992-09-24 Horiba Ltd Spectral analyzer
JP2016183972A (en) * 2012-10-18 2016-10-20 ブイユーブイ・アナリティクス・インコーポレイテッドVUV Analytics,Inc. Vacuum ultraviolet absorption spectroscopy system
US9696286B2 (en) 2012-10-18 2017-07-04 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US9891197B2 (en) 2012-10-18 2018-02-13 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US9976996B2 (en) 2012-10-18 2018-05-22 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US10338040B2 (en) 2012-10-18 2019-07-02 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US10641749B2 (en) 2012-10-18 2020-05-05 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US10677767B2 (en) 2018-06-12 2020-06-09 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method

Also Published As

Publication number Publication date
JPH0566533B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
EP0566217B1 (en) Method and apparatus for focussing a beam of radiant energy
US5432606A (en) Interferometer for the measurement of surface profile which introduces a spatial carrier by tilting the reference mirror
US5956141A (en) Focus adjusting method and shape measuring device and interference microscope using said focus adjusting method
US10274848B2 (en) Amplitude monitoring system, focusing and leveling device, and defocusing amount detection method
US3584959A (en) Shaft position encoders
JPS61149833A (en) Fourier transform infrared spectrophotometer
JP3003801B2 (en) Interferometry
US4050821A (en) Linewidth measurement method and apparatus
JP2542754B2 (en) Positioning method and apparatus for probe for electric field measurement of integrated circuit
JP2671338B2 (en) Exposure method and substrate attitude control method
US3861806A (en) Sighting goniometer
JPS623280A (en) Diffraction grating exposure device
JPH05264440A (en) Polarization analyzing apparatus
JP2971977B2 (en) Device for measuring the amount of movement of the DUT
JPH06100535B2 (en) Birefringence measuring device
SU1548663A1 (en) Interferometer for checking of surface of rotation
JP2689264B2 (en) Method and device for adjusting direction of laser light in diffraction grating fringe exposure apparatus
JPH05180625A (en) Apparatus for measuring phase delay of reflected light
JPH05815Y2 (en)
SU1693483A1 (en) Method for determination of refractive index of transparent layers on transparent substrates
JP2596944Y2 (en) Headlight tester light distribution screen
JPH02147972A (en) DLTS measurement device
Barrett et al. High-bandwidth interferometer for real-time measurement of deformable mirrors
JPS6375627A (en) Wavelength correction jig for raman spectroscopy
JPS6070318A (en) spectrophotometer