JPS61140861A - Liquid chromatography - Google Patents
Liquid chromatographyInfo
- Publication number
- JPS61140861A JPS61140861A JP26387284A JP26387284A JPS61140861A JP S61140861 A JPS61140861 A JP S61140861A JP 26387284 A JP26387284 A JP 26387284A JP 26387284 A JP26387284 A JP 26387284A JP S61140861 A JPS61140861 A JP S61140861A
- Authority
- JP
- Japan
- Prior art keywords
- column
- sample
- concentration
- thf
- eluate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004811 liquid chromatography Methods 0.000 title claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000012141 concentrate Substances 0.000 claims abstract description 6
- 239000002904 solvent Substances 0.000 claims abstract description 5
- 239000003480 eluent Substances 0.000 claims description 15
- 238000000926 separation method Methods 0.000 claims description 12
- 239000003960 organic solvent Substances 0.000 claims description 10
- 238000005192 partition Methods 0.000 claims description 6
- 238000004587 chromatography analysis Methods 0.000 claims 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 abstract description 66
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 abstract description 32
- 238000004458 analytical method Methods 0.000 abstract description 10
- 238000007865 diluting Methods 0.000 abstract 2
- 239000000463 material Substances 0.000 abstract 2
- 239000000727 fraction Substances 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 37
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 18
- 238000010790 dilution Methods 0.000 description 18
- 239000012895 dilution Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 9
- 238000010828 elution Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 239000003317 industrial substance Substances 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 101100462972 Mus musculus Pcdh8 gene Proteins 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000012468 concentrated sample Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
- G01N30/46—Flow patterns using more than one column
- G01N30/461—Flow patterns using more than one column with serial coupling of separation columns
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、液体クロマトグラフィーに関L、更に詳述す
ると、有機溶媒系GPCカラム及び逆相分配型カラムの
如く互に分離モードの異なる第1カラム及び第2カラム
ケ連結して成分の分離ケ行なう方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to liquid chromatography, and more specifically, to first columns having different separation modes, such as an organic solvent-based GPC column and a reversed phase distribution type column. and a method for separating components by connecting a second column.
従来の技術及びその問題点
複雑な物質の混合物或いは構造の類似した物質の混合物
を液体クロマトグラフィーにより分析する場合、単一の
分離カラムでは試料中の各成分全分離できないことがあ
る。この場合、互に分離モードの異なる第1カラム及び
第2カラム金連結して成分の分離?行なうことが考えら
れ、例えば従来、生体試料の分析方法として、水系GP
CカラムとODSカラム等の逆相分配型カラムとを連結
した液体クロマトグラフケ用いる方法が提案されておシ
、これによって複雑な組成の生体試料を各成分に分離す
ることが行なわれている。Conventional techniques and their problems When analyzing a complex mixture of substances or a mixture of substances with similar structures by liquid chromatography, it may not be possible to completely separate each component in the sample using a single separation column. In this case, the first and second columns, which have different separation modes, are connected to separate the components. For example, water-based GP is a conventional method for analyzing biological samples.
A method using liquid chromatography in which a C column and a reverse phase distribution column such as an ODS column are connected has been proposed, and a biological sample having a complex composition is separated into its components by this method.
上述した方法においては、水系GPCカラムの溶出液?
逆相分配型カラムに直接導入しているもので、この場合
比較的良好がピークを得ることができる。しかしながら
、この方法を工業化学物質の分析に応用しようとすると
、工業化学物質には対水溶解度が低いものが多いため、
GPCカラムとして有機溶媒系のもの金柑いる必要があ
るが、有機溶媒系GPCカラムの溶出液を直接逆相分配
型カラムに導入した場合、彼達する実験例に示すように
良好なピークが得られないという問題がある。In the above method, the eluent of the aqueous GPC column?
It is directly introduced into a reversed phase distribution type column, and in this case relatively good peaks can be obtained. However, when trying to apply this method to the analysis of industrial chemicals, many industrial chemicals have low solubility in water;
It is necessary to use an organic solvent-based GPC column, but when the eluate from an organic solvent-based GPC column is directly introduced into a reversed-phase partition column, good peaks cannot be obtained as shown in their experimental example. There is a problem.
μL岬LA(ζ甥1医でr−るーI−の一11障」漿ユ
ん4−や〕乍1本発明は、上記事情に鑑み表されたもの
で、上述しFjN機溶媒系GPCカラム及び逆相分配型
カラムの如く互に分離モードの異なる第1カラム及び第
2カラムを連結して成分の分離會行なう液体クロマトグ
ラフィーにおいて、各成分の良好ナヒークゲ得ることが
でき、従って複雑な物質の混合物或いは構造の類似した
物質の混合物全確実に分析できるようにするため、上記
第1カラムと第2カラムとの間に濃縮カラム金介装する
と共に、第1カラムからの溶出液にこの溶出液中の成分
全上記濃縮カラムに濃縮するような溶媒全混合し、この
混合液を上記濃縮カラムに導入して上記成分を濃縮カラ
ムに濃縮した後、この@縮カラムに濃縮カラム中の濃縮
成分を溶出させると共に第2カラムの溶離液として作用
する溶液ケ通して濃縮カラム中の濃縮成分ケ第2カラム
に導入するようにしたものである。。The present invention was developed in view of the above circumstances, and is based on the above-mentioned FjN organic solvent-based GPC column. In liquid chromatography, in which components are separated by connecting a first column and a second column with different separation modes, such as a reversed-phase partition type column, it is possible to obtain good separation of each component, and therefore, it is possible to obtain a good separation of each component. In order to ensure complete analysis of mixtures or mixtures of substances with similar structures, a concentration column is interposed between the first column and the second column, and this eluate is added to the eluate from the first column. Mix all the solvents to be concentrated in the above concentration column, introduce this mixture into the above concentration column, concentrate the above components in the concentration column, and then transfer the concentrated components in the concentration column to this @condensation column. The concentrated component in the concentration column is introduced into the second column through the solution that is eluted and acts as an eluent for the second column.
次に実施例ヶ示し、本発明を具体的に説明する。Next, the present invention will be specifically explained by showing examples.
実施例
第1図は本発明液体クロマトグラフィーの実施に用いる
多次元モード高速液体クロマトグラフの一例?示すもの
である。図中1は8個の通路口1a〜1h2有する四方
バルブ(第1バルブ)で、との六方パルプ1の通路口1
aには一端がTHF(テトラヒドロフラン)槽2に連結
されかつTHF送液ポンプ3及びサンプルインソエ〃り
4が介装された試料導入管5の他端が連通している。ま
た、通路口1bKは有機溶媒系GPCカラム(第1カラ
ム)6及びGPC溶出液モニター用UV検出器7が介装
された第1分離流路管8の一端が連通していると共に、
との流路管8の他端は通路口ICに連通している。通路
口1dには容量的2−の〇PC溶出フラクション貯留用
ループ9が介装された試料貯留用流路管10の一端が連
通していると共に、との流路管10の他輸は通路口1h
に連通している。なお、通路口1fは閉塞されていると
共に、通路口1gには一端が系外に開放した第1排出管
11の他端が連通している、
また、12は4個の通路口12a〜12dを有する四方
バルブ(第2パルプ)で、この四方ノ々ルブ12の通路
口12aと前記六方ノ々ルブ1の通路口1e′(!:の
間は第1連絡流路13により連絡されずいる。なお、通
路口12bには一端が系外に開放した第2排出管14の
他端が連通していると共に、通路口12Cは閉塞されて
いる。Example FIG. 1 is an example of a multidimensional mode high performance liquid chromatograph used to carry out the liquid chromatography of the present invention. It shows. In the figure, 1 is a four-way valve (first valve) having eight passage ports 1a to 1h2, and the passage port 1 of the hexagonal pulp 1.
One end is connected to a THF (tetrahydrofuran) tank 2, and the other end of a sample introduction tube 5, in which a THF liquid feed pump 3 and a sample inlet 4 are interposed, communicates with a. In addition, the passage port 1bK communicates with one end of a first separation channel pipe 8 in which an organic solvent-based GPC column (first column) 6 and a UV detector 7 for monitoring GPC eluate are interposed.
The other end of the flow path pipe 8 communicates with the passage port IC. One end of a sample storage channel tube 10 in which a capacitance 2-〇 PC elution fraction storage loop 9 is interposed is communicated with the passageway opening 1d, and the other end of the flow channel tube 10 is connected to the channel opening 1d. Road entrance 1h
is connected to. Note that the passage port 1f is closed, and the other end of the first discharge pipe 11, one end of which is open to the outside of the system, communicates with the passage port 1g. A four-way valve (second pulp) having a passage opening 12a of the four-way knob 12 and a passage opening 1e' (!: of the six-way knob 1) are not connected by the first communication channel 13. Note that the passage port 12b communicates with the other end of the second discharge pipe 14, one end of which is open to the outside of the system, and the passage port 12C is closed.
更に、15は6個の通路口15a〜15fi有する六方
バルブ(第3バルブ)で、との六方バルブ15の通路口
15aと前記四方バルブ12の通路口12dとの間は第
2連絡流路管16により連絡されている。なお、この第
2連絡流路管16には一端が濃縮用希釈水槽17に連結
されかつ濃縮用希釈水送液ポンプ18が介装された希釈
水導入管19の他端が連結されている。、また、通路口
15cにはGPC溶出フラクション濃縮用ODSカラム
20が介装された試料濃縮用流路管21の一端が連通し
ていると共に、この流路管21の他端は通路口15fに
連通している。通路口15dには一端がODS用溶離溶
離液セトニトリル−水など)槽22に連結されかつOD
S用溶離溶離液送液ポンプ23装され7jODS用溶離
液導入管24の他端が連通している。通路口15eには
一端が系外に開放しかつ逆相分配型OD8カラム25及
びODS溶出液モニター用UV検出器26が介装された
第2分離流路管27の他端が連通している。Furthermore, 15 is a six-way valve (third valve) having six passage ports 15a to 15fi, and a second communicating flow pipe is connected between the passage port 15a of the six-way valve 15 and the passage port 12d of the four-way valve 12. 16. In addition, one end of this second communication channel pipe 16 is connected to a dilution water tank 17 for concentration, and the other end of a dilution water introduction pipe 19 in which a dilution water supply pump 18 for concentration is interposed is connected. Furthermore, one end of a sample concentration flow pipe 21 in which an ODS column 20 for GPC elution fraction concentration is interposed is connected to the passage port 15c, and the other end of this flow pipe 21 is connected to the passage port 15f. It's communicating. One end of the passageway port 15d is connected to the ODS eluent eluent (cetonitrile-water, etc.) tank 22.
The other end of the 7j ODS eluent inlet pipe 24 is connected to the S eluent eluent feeding pump 23. One end is open to the outside of the system and the other end of a second separation channel pipe 27 is connected to the passage port 15e, and the other end is connected to a reverse phase distribution type OD8 column 25 and a UV detector 26 for monitoring ODS eluate. .
なお、通路口15bには一端が系外に開放した第3排出
管28の他端が連通している。Note that the other end of a third exhaust pipe 28, one end of which is open to the outside of the system, communicates with the passage port 15b.
捷た、29及び30はそれぞれ検出器7及び26に接続
した記録計、31はポンプ3及び18に接続され、これ
らポンプ3及び18の流量を制御する制御装置である。29 and 30 are recorders connected to the detectors 7 and 26, respectively, and 31 is a control device connected to the pumps 3 and 18 to control the flow rates of these pumps 3 and 18.
上述した装置にJ、り試料の分析を行なう場合、まず四
方バルブ1紫図中実線で示す流路状態として流路口1a
とlb、lcとld、leとif。When analyzing a sample using the above-mentioned apparatus, first set the flow path state of the four-way valve 1 as shown by the solid line in the purple diagram at the flow path opening 1a.
and lb, lc and ld, le and if.
1gとlhi連通する。次いで、この状態においてTH
F送液ヂンデンジ3全作動てTHFHF的のTHF全試
料導入管5に流すと共に、サンプルインジェクタ4から
試料導入管5に試料を導入する。そして、試料が溶解し
たTHF’に通路口1a。1g and lhi communicate. Then, in this state, TH
The F liquid feeding station 3 is fully activated to flow all THF into the THF sample introduction tube 5, and at the same time, the sample is introduced from the sample injector 4 into the sample introduction tube 5. Then, the passage port 1a is inserted into THF' in which the sample is dissolved.
1bv!−通って第1分離管8に流入させ、GPCカラ
ム6に導入してここで試料の分離を行なった後、溶出液
を検出器7、通路1c、ld、試料貯留用流路管10、
通路口1h、Ig、第1排出管11という流路に流し、
この間に所定のGPC溶出フラクションを貯留ループ9
に貯留する。1bv! - through the first separation tube 8, introduced into the GPC column 6, where the sample is separated;
Flow through the flow path of the passage port 1h, Ig, and the first discharge pipe 11,
During this time, a predetermined GPC elution fraction is stored in the storage loop 9.
to be stored.
次に、四方バルブ1を図中点線で示す流路状態として通
路口1bとlc、ldと1 e 、 lfとIg。Next, the flow path states of the four-way valve 1 are shown by dotted lines in the figure: passage ports 1b and lc, ld and 1e, and lf and Ig.
1hとlai連通し、四方バルブ12を図中実紡で示す
流路状態として通路口12bと12C912dと12a
Q連通し、六方バルブ15を図中実線で示す流路状態と
して通路1bとlc、ldとle、lfと1aQ連通す
る。この状態においてデンジ3全作動させ、TI(F’
e試料導入管5、通路口1 a 、 1 h2通って流
路管10に流した後、更に通路口1 d 、 1 e、
第1連絡流路管13、通路口12a、12di通って第
2連絡流路管16に流す。そして、ポンプ18を作動さ
せて希釈水槽17内の希釈水全希釈水導入管19から第
2連絡流路管16に流し、THFに希釈水全混合した後
、この混合液を通路口15a、15f、試料濃縮用流路
管21、通路口15c、15b、第3排出管28に流し
、これによ、jりGPC溶出フラクションを濃縮用OD
Sカラム20に濃縮する。1h and lai, and the four-way valve 12 is shown as a flow path in the figure with passage ports 12b, 12C, 912d, and 12a.
The passages 1b and lc, ld and le, and lf and 1aQ are in communication with each other, with the six-way valve 15 in a flow path state shown by the solid line in the figure. In this state, fully operate Denji 3 and TI (F'
e After passing through the sample introduction tube 5, passage ports 1a, 1h2, and flowing into the channel tube 10, the sample is further passed through passage ports 1d, 1e,
The water passes through the first communication channel pipe 13, the passage ports 12a and 12di, and flows into the second communication channel pipe 16. Then, the pump 18 is operated to flow all of the dilution water in the dilution water tank 17 from the dilution water inlet pipe 19 to the second communication channel pipe 16, and after completely mixing the dilution water with THF, this mixed liquid is poured into the passage ports 15a and 15f. , the flow path pipe 21 for sample concentration, the passage ports 15c and 15b, and the third discharge pipe 28, thereby directing the GPC elution fraction to the OD for concentration.
Concentrate into S column 20.
その後、四方バルブ12紮切シ換え、図中点線で示す流
路状態として通路口12aと12b。After that, the four-way valve 12 is switched, and the passage ports 12a and 12b are set to the flow path state shown by the dotted line in the figure.
12cと12di連通する。そして、希釈水のみを上述
した流路に流し、濃縮用ODSカラム2゜内のTHF’
?希釈水で置換する。12c and 12di communicate. Then, only the dilution water was passed through the flow path mentioned above, and the THF'
? Replace with dilution water.
次に、六方バルブ15ケ図中点線で示す流路状態として
通路口1aとlh、lcとld、leと 。Next, the channel states of the 15 six-way valves are shown by dotted lines in the figure, with passage ports 1a and lh, lc and ld, and le.
1fを連通する。そして、この状態においてIンプ23
の作動によりODS用溶離液槽22内の溶離液を溶離液
導入管から通路口15d、15c。Connect 1f. In this state, the Imp 23
The eluent in the ODS eluent tank 22 is transferred from the eluent inlet pipe to the passage ports 15d and 15c.
試料濃縮用流路管21、通路口15f、15e、第2分
離流路管27という流路に流し、これにょす溶離液によ
り濃縮用カラム20内の濃縮試料を溶出し、これを逆相
分配型ODSカラム25に導入し、試料の分析を行なう
ものである。The concentrated sample in the concentration column 20 is eluted by the eluent, which is passed through a flow path including the sample concentration flow path tube 21, the passage ports 15f and 15e, and the second separation flow path tube 27, and this is subjected to reverse phase distribution. The sample is introduced into a type ODS column 25 and analyzed.
上述した実施例においては、W機溶媒(THF)系GP
Cカラム6と逆相分配型ODSカラム25とを濃縮用O
DSカラム20vf−インターフェースとして連結する
と共に、GPCカラム6からの溶出液に希釈水を混合し
てこの混合液全濃縮用カラム20に導入し、更にGPC
カラム6の溶出フラクションを濃縮用カラム20に濃縮
した後、濃縮用カラム20内のTHFi水で置換し、次
いでこの濃縮用カラム20にODS用溶離溶離液全通濃
縮用カラム20中の濃縮成分’eODSカラム25に導
入するようにしたので、複雑な成分が混合した工業化学
物質を良好に分析することができる。In the embodiments described above, W solvent (THF)-based GP
The C column 6 and the reversed phase distribution type ODS column 25 are connected to O for concentration.
In addition to connecting the DS column 20vf as an interface, the eluate from the GPC column 6 is mixed with dilution water, and this mixture is introduced into the column 20 for total concentration.
After concentrating the eluted fraction of the column 6 in the concentration column 20, it is replaced with THFi water in the concentration column 20, and then the ODS eluate is passed through the concentration column 20, and the concentrated components in the concentration column 20 are Since it is introduced into the eODS column 25, industrial chemicals containing a mixture of complex components can be well analyzed.
次に実験例を示し、本発明の効果を具体的に説明する。Next, experimental examples will be shown to specifically explain the effects of the present invention.
実験例1
逆相分配型ODSカラムのみにより下記試料■〜■の分
離を行なった。結果を第2図■〜0に示す。Experimental Example 1 The following samples ① to ② were separated using only a reversed phase partition type ODS column. The results are shown in Figure 2 - 0.
試料■:11000ppのベンゼン及び500 pI)
mのトルエンを含有するTHF溶液(第2図(4))試
料■: 10 ppmの2、.4−6−ドリメチルフエ
ノール及び10ppmのp −5ee−ブチルフェノー
ルを含有するTHF溶液(第2図(3))
試料■: 1000 m)l)mのベンゼン、500p
pmのトルエン、10ppmの2.4.6− )リメチ
ルフェノール及び10 ppmのp −5ec−ブチル
フェノールを含有するTHF溶液(第2図0、)
第2図■〜0の結果よ!J、ODSカラムではぺンゼン
と2.4.6− )リメチルフェノール、及びドルエン
ドp−5ec−ブチルフェノールが分離でe−&いこと
が認められた。Sample ■: 11000 pp of benzene and 500 pI)
THF solution containing 10 ppm of toluene (Figure 2 (4)) Sample ■: 10 ppm of 2, . THF solution containing 4-6-drimethylphenol and 10 ppm p-5ee-butylphenol (Figure 2 (3)) Sample ■: 1000 m) l) m benzene, 500 p
A THF solution containing pm of toluene, 10 ppm of 2.4.6-)limethylphenol, and 10 ppm of p-5ec-butylphenol (Figure 2 0,) Results shown in Figure 2 - 0! In the J, ODS column, it was observed that penzene, 2.4.6-)limethylphenol, and doruendo p-5ec-butylphenol were separated.
実験例2
有機溶媒(T、F(F )系GPCカラムのみ上記試料
■の分離を行なった。結果を第3図に示す。Experimental Example 2 The above sample (2) was separated only using an organic solvent (T, F (F)) based GPC column. The results are shown in FIG.
第3図の結果より、GPCカラムではベンゼンとトルエ
ンが分離できないことが認められた。From the results shown in Figure 3, it was confirmed that benzene and toluene could not be separated using the GPC column.
実験例3
第1図に示す装置を用い、上述した方法により上記試料
■の分離全行々った。結果を第4図に示す。力お、分析
は下記の手順で行なった。Experimental Example 3 Using the apparatus shown in FIG. 1, the above-mentioned sample (1) was completely separated by the method described above. The results are shown in Figure 4. The analysis was performed according to the following procedure.
(1)試料20μtpapcカラム6に導入する。(1) Introduce a 20 μt sample into the papc column 6.
+2112分後、THF送液ポンプ3 k 0.4++
+4’d、希釈水送液ポンプ1 B ’< 3.6 m
e/緒の流量として濃縮用カラム20に3.5分間送液
する。+2112 minutes later, THF liquid pump 3 k 0.4++
+4'd, dilution water pump 1 B'< 3.6 m
The liquid is sent to the concentration column 20 for 3.5 minutes at a flow rate of 3.5 minutes.
(3)四方パルプ12ケ切シ換えて濃縮用カラム20に
水のみ40.5分間送液する。(3) Switch the 12 square pulps and send only water to the concentration column 20 for 40.5 minutes.
(4)六方バルブ158■換えてODSカラム25へ濃
縮用カラム20に濃縮された試料全導入する。寸た、と
れと同時にODS溶出液モニター用UV検出器26に接
続した記録計30をスタートする。(4) Replace the six-way valve 158 and introduce the entire sample concentrated in the concentration column 20 into the ODS column 25. At the same time as the sample is removed, the recorder 30 connected to the UV detector 26 for monitoring the ODS eluate is started.
第4図の結果よジ、本発明方法によれば、 2,4.6
−ドリメチルフエノール及ヒp−5ec−ブチルフェノ
ールというフェノール系2物質を不純物として含む試料
中のベンゼンとトルエンを分離できるととが詔められた
。According to the method of the present invention, the results shown in Fig. 4 are as follows: 2,4.6
It was proposed that it would be possible to separate benzene and toluene in a sample containing two phenolic substances, -dolimethylphenol and hypo-5ec-butylphenol, as impurities.
実験例4
第5図に示す装置金柑い、第3図におけるS−3のベン
ゼン及びトルエンの溶出部分を濃縮カラムに濃縮せずに
、゛直接ODSカラムに導入した際のODS溶出パター
ンケ調べた。々お、第5図に示す装置において第1図と
同一構成の部分には同一参照符号を付して説明全省略す
る。また、分析は下記の手順で行なった。結果ケ第6図
に示す。Experimental Example 4 Using the apparatus shown in FIG. 5, the ODS elution pattern was investigated when the benzene and toluene eluted portions of S-3 in FIG. 3 were directly introduced into an ODS column without being concentrated in a concentrating column. In the apparatus shown in FIG. 5, parts having the same configuration as those in FIG. Moreover, the analysis was performed according to the following procedure. The results are shown in Figure 6.
(1)入力バルブ1?Il−実線で示す流路状態とし、
ポンプ3の作動によシ上記試料■20μt2サンプルイ
ンソエクタ4からGPCカラム6に導入する。(1) Input valve 1? Il - the flow path state shown by the solid line,
By operating the pump 3, the above sample (2) of 20 μt is introduced from the sample injector 4 into the GPC column 6.
+2112分後、人力バルブ1全切り換えて点線で示す
流路状態とし、ポンプ23の作動により貯留ループ9内
のGPC溶出フラクション’kODsカラム25に導入
すると共に、ODS 。After +2112 minutes, the manual valve 1 is fully switched to the flow path state shown by the dotted line, and the pump 23 is activated to introduce the GPC elution fraction 'kODs column 25 in the storage loop 9 and ODS.
溶出液モニター用UV検出器26に接続した記録計30
金スタートする。Recorder 30 connected to UV detector 26 for monitoring eluate
Gold starts.
+31 1.2分後に、入力パルプ1?切シ換えて実線
で示す流路状態に復帰させる。+31 1.2 minutes later, input pulp 1? Switch to return to the flow path state shown by the solid line.
第6図の結果より、GPCカラムの溶出フラクション?
濃縮カラムに濃縮せずに直接ODSカラムに導入した場
合、ベンゼンとトルエンが分離されないことが認められ
た。From the results in Figure 6, the elution fraction of the GPC column?
It was observed that benzene and toluene were not separated when they were introduced directly into an ODS column without being concentrated in a concentrator column.
実験例5
第1図に示す装置ケ使用し、濃縮カラム2oに試料全濃
縮する際のTI(F :希釈水の混合比の影響を調べた
。Experimental Example 5 Using the apparatus shown in FIG. 1, the influence of the mixing ratio of TI(F2: dilution water) upon total concentration of the sample in the concentration column 2o was investigated.
この場合、GPC溶出フラクション(デンジ3流量とし
て2m1)f水と適宜混合(ポンプ18流速の調節によ
る)し、濃縮カラム20に導入した。In this case, the GPC elution fraction (2 ml as Denji 3 flow rate) was appropriately mixed with water (by adjusting the flow rate of the pump 18) and introduced into the concentration column 20.
これff1ODs溶離液で溶出し、ODSカラムにょシ
分離した。得られたピーク高さと濃縮時のTHF濃度と
の関係を第7図に示す。This was eluted with ff1ODs eluent and separated using ODS column. The relationship between the obtained peak height and the THF concentration during concentration is shown in FIG.
第7図の結果より、いずれの試料もTHF濃度が低い砥
どピークは高くなることが認められた。From the results shown in FIG. 7, it was found that in all samples, the abrasive peak was higher when the THF concentration was lower.
また、この時のm−キシレンのピーク形状を第8図に示
すが、この結果THF濃度が高いほど歪みが犬きくなる
ものであった。Further, the peak shape of m-xylene at this time is shown in FIG. 8, and as a result, the higher the THF concentration, the sharper the distortion.
このよう表ピーク歪みの増大やそれに伴なうピーク高さ
の低下は、濃縮カラム中のTHFがODSカラム先端に
試料がチャージされた瞬間に溶離液組成を大きく乱し、
試料の分布を変形させたために生じるものと推定される
。This increase in peak distortion and the accompanying decrease in peak height is due to the fact that THF in the concentration column greatly disturbs the eluent composition at the moment the sample is charged at the tip of the ODS column.
It is presumed that this is caused by changing the distribution of the sample.
実験例6
実験例5における推定より、濃縮カラムに溶出フラクシ
ョンを濃縮した後、濃縮カラム内を水で置換することに
よるピーク高さ及び形状に及ばず影響を調べた。Experimental Example 6 Based on the estimation in Experimental Example 5, the influence of replacing the inside of the concentration column with water after concentrating the eluted fraction in the concentration column on the peak height and shape was investigated.
その結果、第9図に見られるようにいずれのTHF濃度
においても置換水fl m1以上でほぼ一定のピーク高
さを示すようになることが認められた。捷だ、第10図
に示すように1〜2 ml、以上の置換水を用いればピ
ークの歪みもほぼなくなるものであった。As a result, as shown in FIG. 9, it was found that at any THF concentration, a substantially constant peak height was exhibited at displacement water fl m1 or higher. However, as shown in Figure 10, if 1 to 2 ml or more of replacement water was used, the distortion of the peaks was almost eliminated.
実験例7
実験例6の結果から、匠換水量f1m1以上とすること
により、最高のピーク高”ざ會得られることが知見され
た。これJ:t)、安全基音見込んで置換水素2mtと
し、濃縮カラム(6wnφxaomm)への濃縮時にお
けるT H,F 濃度の捕集効率に及ぼす影響音調べた
。この場合、濃縮時のTHF嬢度2を10〜60%範囲
で変化させた時のトルエン、m−キシレン及びメシチレ
ンのピーク高さと捕集効率の変化全測定した。結果?第
11図及び第12図に示す。Experimental Example 7 From the results of Experimental Example 6, it was found that the highest peak height could be obtained by setting the water exchange amount f1ml or more. We investigated the effect of sound on the collection efficiency of T H,F concentration during concentration in a concentration column (6wnφxaomm).In this case, toluene and The changes in peak height and collection efficiency of m-xylene and mesitylene were all measured.The results are shown in Figures 11 and 12.
第11図の結果より、ピーク冒さばT HF fa度が
低いほど高く、10 % THF/水でもまだ上昇傾向
にあるととが認められる。また、第12図の結果より、
捕集効率は各試料の疎水性の差により若干の違いはある
が、いずれの試料も40%THF/水まではほぼ一定の
値?示すととが認められる。これより、40%THF/
水以下のTHF濃度であれば、はぼ全量が濃縮カラム内
に捕集されることが知見された。From the results in FIG. 11, it can be seen that the lower the THF fa degree is, the higher the peak attack is, and that even at 10% THF/water, there is still an upward trend. Also, from the results in Figure 12,
The collection efficiency varies slightly due to the difference in hydrophobicity of each sample, but all samples have almost constant values up to 40% THF/water. It is recognized that it is shown. From this, 40% THF/
It has been found that if the THF concentration is lower than water, almost the entire amount is collected in the concentration column.
実験例8
次に、濃縮カラムのサイズ?変化させた時のピーク高さ
及び捕集効率に及ぼす影響會実験例7と同様の方法で調
べた。この場合、濃縮カラムとしては6閣φ×30順の
もの及び6咽φ×50咽のもの?用いた。結果?第13
図及び第14図に示す。Experimental Example 8 Next, what is the size of the concentration column? Effects on peak height and collection efficiency when changed were investigated in the same manner as in Experimental Example 7. In this case, the concentration column should be one with 6 holes x 30 holes or one with 6 holes x 50 holes? Using. result? 13th
It is shown in FIG.
その結果、第14図に見られるように濃縮カラムの長さ
を50覇とすることにより60 % THF/水壕でほ
ぼ100チの捕集効率ゲ得ることができるが、第13図
に見られるようにピーク高さは3゜爛のものとあまり変
らないことが認められた。As a result, as shown in Fig. 14, by setting the length of the concentrating column to 50 cm, a collection efficiency of approximately 100 cm can be obtained with a 60% THF/water trench, but as shown in Fig. 13. It was observed that the peak height was not much different from that of the 3° flare.
発明の効果
以上″説明したように、本発明に係る液体クロマトグラ
フィーは、互に分離モードの異なる第1カラム及び第2
カラムを連結して成分の分離ケ行なう液体クロマトグラ
フィーにおいて、第1カラムと第2カラムとの間に濃縮
カラムを介装すると共に、第1カラムからの溶出液にこ
の溶出液中の成分を上記濃縮カラムに濃縮するような溶
媒を混合し、この混合液全上記濃縮カラムに導入して上
記成分を濃縮・・カラムに濃縮した後、この濃縮カラム
に濃縮カラム中の濃縮成分?溶出させると共に第2カラ
ムの溶離液として作用する溶液ケ通して濃縮カラム中の
濃縮成分?第2カラムに導入するようにしたことによp
、複雑な物質の混合物或いは構造の類似した物質の混合
物ケ分析した場合でも各成分を分離し得、それぞれ良好
なピークが得られるものである。Effects of the Invention As explained above, the liquid chromatography according to the present invention has a first column and a second column that have different separation modes.
In liquid chromatography in which components are separated by connecting columns, a concentration column is interposed between the first column and the second column, and the components in this eluate are added to the eluate from the first column. Mix the solvents that will be concentrated in the concentration column, and introduce the entire mixture into the concentration column to concentrate the above components. Concentrated components in the concentration column through a solution that both elutes and acts as an eluent for the second column? By introducing it into the second column, p
Even when analyzing a complex mixture of substances or a mixture of substances with similar structures, each component can be separated and good peaks can be obtained for each.
第1図は本発明液体クロマトグラフィーの実施に用いる
多次元高速液体クロマトグラフの一例?示す概略図、第
2図■〜Oは逆相分配型ODSカラムにより試料の分析
ケ行なったクロマトグラム、第3図は有機溶媒系GPC
カラムにより試料の分析4行なったクロマトグラム、第
4図は第1図に示す装置によυ試料の分析4行なったク
ロマトグラフム、第5図は実験例4において用いた液体
クロマトグラフ?示す概略図、第6図は第5図に示す装
置により試料の分析を行なったクロマトグラム、第7図
は第1図に示す装置により分析を打力つだ場合の希釈水
に対するTHF濃度とピーク高さとの関係を示すグラフ
、第8図は第1図に示す装置により希釈水に対するTI
(F濃度?変化させて試料の分析全行なったクロマトグ
ラム、第9図は第1図に示す装置により分析を行なった
場合の置換水量とピーク高さとの関係を示すグラフ、第
10図は第1図に示す装置によ!llll置換水量化変
化た場合のクロマトグラム、第11図1は第1図に示す
装置を用い置換水it k 2 mtとして分析を行な
った場合の希釈水に対するTHF濃度とピーク高さとの
関係を示すグラフ、第12図は同分析における希釈水に
対するTHF濃度と捕集効率との関係を示すグラフ、第
13図は同分析において濃縮カラムのサイズを変化させ
た場合の希釈水に対するTHF濃度とピーク高さとの関
係を示すグラフ、第14図は同じ場合の希釈水に対する
THF濃度と捕集効率との関係を示すグラフである。
6・・・有機溶媒系GPCカラム(第1カラム)、20
・・・濃縮カラム、25・・・逆相分配型ODSカラム
(第2カラム)。Figure 1 is an example of a multidimensional high-performance liquid chromatograph used to carry out the liquid chromatography of the present invention. The schematic diagram shown in Figure 2 - O is a chromatogram of a sample analyzed using a reversed-phase partition ODS column, and Figure 3 is an organic solvent-based GPC.
Fig. 4 is a chromatogram obtained by performing four analyzes of a sample using the column, Figure 4 is a chromatogram obtained by performing four analyzes of a υ sample using the apparatus shown in Fig. 1, and Fig. 5 is a liquid chromatogram used in Experimental Example 4. Figure 6 is a chromatogram obtained by analyzing a sample using the apparatus shown in Figure 5, and Figure 7 shows the THF concentration and peak in dilution water when analysis is performed using the apparatus shown in Figure 1. A graph showing the relationship with height, Figure 8 shows the TI for dilution water using the apparatus shown in Figure 1.
(F concentration? Chromatogram of all samples analyzed while changing the concentration. Figure 9 is a graph showing the relationship between the amount of water replaced and the peak height when analysis was performed using the apparatus shown in Figure 1. Figure 10 is a graph showing the relationship between the amount of water replaced and the peak height. Figure 1 shows the THF concentration in dilution water when analysis is performed using the apparatus shown in Figure 1 as displacement water it k 2 mt. Figure 12 is a graph showing the relationship between THF concentration in dilution water and collection efficiency in the same analysis, and Figure 13 is a graph showing the relationship between THF concentration and collection efficiency in the same analysis when the size of the concentration column was changed. A graph showing the relationship between THF concentration and peak height for dilution water, and FIG. 14 is a graph showing the relationship between THF concentration and collection efficiency for dilution water in the same case. 6... Organic solvent-based GPC column ( 1st column), 20
...Concentration column, 25...Reverse phase partition type ODS column (second column).
Claims (1)
を連結して成分の分離を行なう液体クロマトグラフィー
において、第1カラムと第2カラムとの間に濃縮カラム
を介装すると共に、第1カラムからの溶出液にこの溶出
液中の成分を上記濃縮カラムに濃縮するような溶媒を混
合し、この混合液を上記濃縮カラムに導入して上記成分
を濃縮カラムに濃縮した後、この濃縮カラムに濃縮カラ
ム中の濃縮成分を溶出させると共に第2カラムの溶離液
として作用する溶液を通して濃縮カラム中の濃縮成分を
第2カラムに導入するようにしたことを特徴とする液体
クロマトグラフィー。 2、第1カラムが有機溶媒系GPCカラムであり、第2
カラムが逆相分配型ODSカラムである特許請求の範囲
第1項記載の液体クロマトグラフィー。 3、第1カラムからの溶出液に水を混合して濃縮カラム
に導入するようにした特許請求の範囲第2項記載の液体
クロマトグラフィー。[Claims] 1. In liquid chromatography in which components are separated by connecting a first column and a second column with different separation modes, a concentrating column is interposed between the first column and the second column. At the same time, the eluate from the first column is mixed with a solvent that will concentrate the components in this eluate into the concentration column, and this mixture is introduced into the concentration column to concentrate the components into the concentration column. After that, the concentrated components in the concentration column are eluted into the concentration column, and the concentrated components in the concentration column are introduced into the second column through a solution that acts as an eluent for the second column. Chromatography. 2. The first column is an organic solvent-based GPC column, and the second column is an organic solvent-based GPC column.
The liquid chromatography according to claim 1, wherein the column is a reversed phase partition type ODS column. 3. The liquid chromatography according to claim 2, wherein water is mixed with the eluate from the first column and the mixture is introduced into the concentration column.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP26387284A JPS61140861A (en) | 1984-12-14 | 1984-12-14 | Liquid chromatography |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP26387284A JPS61140861A (en) | 1984-12-14 | 1984-12-14 | Liquid chromatography |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS61140861A true JPS61140861A (en) | 1986-06-27 |
Family
ID=17395411
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP26387284A Pending JPS61140861A (en) | 1984-12-14 | 1984-12-14 | Liquid chromatography |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS61140861A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002350412A (en) * | 2001-05-23 | 2002-12-04 | Nobuo Tanaka | Multidimensional high performance liquid chromatograph |
-
1984
- 1984-12-14 JP JP26387284A patent/JPS61140861A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002350412A (en) * | 2001-05-23 | 2002-12-04 | Nobuo Tanaka | Multidimensional high performance liquid chromatograph |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6790361B2 (en) | Mobile phase dilution scheme for enhanced chromatography | |
| EP2703808B1 (en) | Method and apparatus for split-flow-mixing liquid chromatography | |
| US11331596B2 (en) | Multi-dimensional chromatographic system for analyzing multiple sample components | |
| US20210333244A1 (en) | Preparative liquid chromatograph | |
| US6955760B2 (en) | Liquid chromatograph | |
| JP3719407B2 (en) | Preparative liquid chromatograph | |
| US7347936B2 (en) | Liquid chromatograph | |
| US20060273012A1 (en) | Column with additional fluid introduction | |
| US20160161454A1 (en) | High resolution analyte recovery system and method | |
| US7767463B2 (en) | Method for screening mobile phases in chromatography systems | |
| DE112012002247B4 (en) | Method and apparatus for enhanced resolution chromatography | |
| KR20210141308A (en) | On-line system for improving detection level of analytes by liquid chromatography and analysis method using the same | |
| WO2000029843A1 (en) | Diffusion promoting apparatus for low flow velocity gradient high-speed liquid chromatography | |
| JPS61140861A (en) | Liquid chromatography | |
| CN111721883A (en) | Supercritical selective dehydration extraction-pressure swing focusing supercritical fluid chromatography online analysis system and analysis method | |
| JP2000028598A (en) | Full automatic refining, analyzing device, method for continuously refining, and analyzing sample | |
| CN211263338U (en) | Two-dimensional liquid chromatograph capable of reducing matrix effect of LC-MS | |
| JPS6219758A (en) | Sample concentrating device for liquid chromatography | |
| Th. Lange et al. | Automated Ion‐pair extraction and Ion‐pair chromatography—a versatile method in water analysis for the determination of highly polar micropollutants | |
| CN115684388B (en) | A multi-channel two-dimensional liquid chromatography separation system | |
| JP2005099015A (en) | Liquid chromatography equipment | |
| JP2743124B2 (en) | Liquid chromatograph | |
| Letter | Automated column selection and switching systems for HPLC | |
| JPH0718997Y2 (en) | Process gas chromatograph | |
| JPH0443958A (en) | Sample condensing device |