JPS61141116A - Semiconductor substrate - Google Patents
Semiconductor substrateInfo
- Publication number
- JPS61141116A JPS61141116A JP26336484A JP26336484A JPS61141116A JP S61141116 A JPS61141116 A JP S61141116A JP 26336484 A JP26336484 A JP 26336484A JP 26336484 A JP26336484 A JP 26336484A JP S61141116 A JPS61141116 A JP S61141116A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- semiconductor substrate
- thin
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims description 32
- 239000004065 semiconductor Substances 0.000 title claims description 22
- 239000010409 thin film Substances 0.000 claims description 37
- 239000013078 crystal Substances 0.000 claims description 11
- 239000010408 film Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/0251—Graded layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Lasers (AREA)
- Recrystallisation Techniques (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、化合物半導体デバイス用の半導体基板忙関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to semiconductor substrates for compound semiconductor devices.
近年、0(L AAIを始めとする化合物半導体材料を
用い定デバイスの研究が活発に行な、われている。In recent years, research on fixed devices using compound semiconductor materials such as LAAI has been actively conducted.
これkは、高純度で欠陥密度の小ざい単結晶半導体基板
が不可欠である。This k requires a single crystal semiconductor substrate of high purity and low defect density.
従来、化合物半導体の単結晶基板としては、GIZ 1
8や工npが用いられているが、基板サイズが小さい上
に高価であるという難点を抱えている危め、Si単結晶
基板上にGaA&の単結晶薄膜をエピタキシャル成長プ
せ、これを化合物半導体デバイス用の単結晶基板として
用いようとする試入が行なわれている(例えば、WZt
gndad kb8tract80f the 16t
h(1984International、l 0o
nftrence onsolid。Conventionally, GIZ 1 has been used as a single crystal substrate for compound semiconductors.
8 and NPs have been used, but they have the disadvantages of small substrate size and high cost. Therefore, a single crystal thin film of GaA and silicon is grown epitaxially on a Si single crystal substrate, and this is used for compound semiconductor devices. (For example, WZt
gndad kb8tract80f the 16t
h (1984 International, l 0o
nftrence on solid.
8tatt Devices and Materia
ls、p、 115.1984)fa2図は、この従来
の半導体基板の構成を示す断面図である。Bi単結晶基
板201上ICGe薄膜202が形成され、メら忙該G
e薄膜上VcGn、に8薄膜が形成メれている。8tatt Devices and Materia
ls, p, 115.1984) FA2 is a sectional view showing the structure of this conventional semiconductor substrate. An ICGe thin film 202 is formed on a Bi single-crystal substrate 201.
Eight thin films were formed on the VcGn thin film.
しかし、このよ’+に構成ばれ友従来の半導体基板は次
のような欠点を有している。すなわち、下の表IVC示
すよ)に、GeとG(L Al1の格子定数及び線膨張
係数は非常建良く一致し、極めて良好な結晶成長が可卵
であるが、8iとGeは格子定数h’−約4%、線膨張
係数が約1.8倍、それぞれ異なるため、Si上のGe
薄膜のエビタキクヤル成長は極めて困難である。このた
め、Si上のGe中には多くの転位h′−存在し、界面
準位密度も高い。こhらは表 1
Ge J:に形成されるGσA8薄膜の結晶性にも悪影
響を与え、欠陥密度の低い良質なCkn、kS薄陣を実
現することhζ困難であった。However, conventional semiconductor substrates having such a structure have the following drawbacks. In other words, as shown in Table IVC below, the lattice constants and linear expansion coefficients of Ge and G (L Al1 agree very well, and extremely good crystal growth is possible, but 8i and Ge have a lattice constant h ' - about 4%, and the linear expansion coefficient is about 1.8 times different, so Ge on Si
It is extremely difficult to grow thin films. Therefore, many dislocations h'- exist in Ge on Si, and the density of interface states is high. These also adversely affected the crystallinity of the GσA8 thin film formed in Table 1 Ge J:, making it difficult to realize a high-quality Ckn, kS thin film with low defect density.
未発明はこのよ5な従来の問題点を解決するものであり
、その目的とするところはSi基板上に結晶性の良好な
GQ、 ASS薄紫有する半導体基板を提併するところ
にある。The present invention is intended to solve these five conventional problems, and its purpose is to provide a semiconductor substrate having good crystallinity of GQ and ASS light purple on a Si substrate.
r問題点を解決するための手段〕 本発明は前記Si基板と前記Ge薄膜の間に。rMeans for solving problems] The present invention is provided between the Si substrate and the Ge thin film.
Sj、、 Ge x薄膜を7977層として設けたこと
を特徴とする。また、llf Sj、、 Cke Z薄
膜の組成比χをsi基板側からGe薄1ti忙向けて、
x=0からX=1まで連続的かつ単調に変化させたこと
tt%微とする。It is characterized by having 7977 layers of Sj, Ge x thin films. In addition, the composition ratio χ of the llf Sj, Cke Z thin film is directed from the Si substrate side to the Ge thin 1ti layer,
It is assumed that the value is changed continuously and monotonically from x=0 to x=1 by tt%.
本発明の上記の構成によれば、格子不整合の大きいSi
基板とGe薄膜の間忙1両者の中間的な性質を有する5
i1−エae Z薄膜を設けるため、格子不整合が緩和
謬れる。また、組成比2を連続的1c変化させること罠
より、Siの組成からGeの組成に至るまで5i1−エ
ae Z薄膜の組成がなめらかに変化し、より一層、格
子不整合を緩和することができる。このため、Si上に
形成;れfl−(1g薄膜の結晶性を著しく改善するこ
とができる。According to the above configuration of the present invention, Si with large lattice mismatch
Between the substrate and the Ge thin film 1 Has intermediate properties between the two 5
Since the i1-air ae Z thin film is provided, the lattice mismatch can be alleviated. In addition, by continuously changing the composition ratio 2 by 1c, the composition of the 5i1-air Z thin film changes smoothly from the Si composition to the Ge composition, which further alleviates the lattice mismatch. can. Therefore, the crystallinity of a 1g thin film formed on Si can be significantly improved.
第1図は1本発明の実施例における半導体基板1の断面
図である。S<基板101上に、バー17ア層となるs
i、、zae Z薄膜102が形成されてかり、その上
にGe薄膜103とGA A&薄膜104が形成されて
いる。ま友gi、、 ae r;薄膜の組成比2け、下
のSi基板101と接する位置でけz=0、ナなわちS
iの組成となっており、十のGe薄@103と接する位
置でけx=1.すなわちGeの組成とt「つている。FIG. 1 is a sectional view of a semiconductor substrate 1 in an embodiment of the present invention. S<s to become the bar 17a layer on the substrate 101
A Z thin film 102 is formed, and a Ge thin film 103 and a GA A& thin film 104 are formed thereon. Mayugi,, ae r; The composition ratio of the thin film is 2 digits, and the position in contact with the lower Si substrate 101 is z=0, that is, S
The composition is x=1. In other words, t is similar to the composition of Ge.
その間では、Xの値け0から1まで連続的かつ単調に変
化し、SiとGe間の不整合を緩和している。In between, the value of X changes continuously and monotonically from 0 to 1, thereby alleviating the mismatch between Si and Ge.
上述のSt、1−z Gv z i9膜は、例えばモノ
シラン(Bi H4)ガスとゲルマン(GeH4)ガス
を用いて減圧0VD(化学気相成長)法忙より形成する
ことhtできる。組成比Xけそり、ぞhのガスの流量比
により制御でれガス流量比を連続的かつ単調に変化シせ
ることにより組成比X″1r+’5i望辿9忙賓えるこ
とができる。The above-mentioned St, 1-z Gv z i9 film can be formed by a low pressure 0VD (chemical vapor deposition) method using, for example, monosilane (BiH4) gas and germane (GeH4) gas. By continuously and monotonically changing the gas flow rate ratio, which can be controlled by the gas flow rate ratio of the composition ratio X, the composition ratio X''1r+'5i can be adjusted.
第3図は、本発明による半導体基板における格子定数の
深情分布を模式的忙示すグラフである。FIG. 3 is a graph schematically showing the deep distribution of lattice constants in a semiconductor substrate according to the present invention.
縦軸は格子定数であり、横軸は深さ方向の位置を表わし
ているつ点AけSi基板とSi、−エG4 Z 薄膜
との界面を1点BはSSi1−2G Z薄膜とGe薄膜
との界面を、点CけGe薄膜とG(L AI9薄嗅との
界面をそれぞれ示している。図より明らかなよへに、S
i基板の格子定数とGe薄膜の格子定数の差を、バ・・
)7層のSi、、GIZ薄模が徐AK緩和している。The vertical axis is the lattice constant, and the horizontal axis is the position in the depth direction. Point A is the interface between the Si substrate and the Si, -G4 Z thin film. Point B is the interface between the SSi1-2G Z thin film and the Ge thin film. Point C indicates the interface between the Ge thin film and G(LAI9).As is clear from the figure, S
The difference between the lattice constant of the i-substrate and the lattice constant of the Ge thin film is
) 7-layer Si, GIZ thin pattern exhibits gradual AK relaxation.
従来は、バッファ層となるs7.−πGv z薄膜が存
在しなかつたために、lpAと点Bが一致しており、格
子定数が不連続VC!化し、Ge薄膜とGcy、As薄
膜の結晶性に悪影4tを及ぼして(/にた。Conventionally, s7. -πGv z Since there was no thin film, lpA and point B coincide, and the lattice constant is discontinuous VC! , which has a negative impact on the crystallinity of Ge thin films, Gcy, and As thin films.
本発明は以下忙述べるよ5な効果を有している。 The present invention has five effects as described below.
第1T/C1Si基板上忙結晶性の優れたaa 1g薄
膜を形成することができる。これは、剪述の如く、バ・
H7ァ層と【7てei、4 as z薄膜を設けたこと
Kよる。これによりE4i$板上のGe薄膜の結晶性が
改善ばれ、この結果、欠陥密度の小ざい良好なaaAs
薄膜を形成することができる。An aa 1g thin film with excellent crystallinity can be formed on the first T/C1Si substrate. This is, as stated above,
This is due to the fact that the H7a layer and the [7tei, 4asz thin film were provided. This improves the crystallinity of the Ge thin film on the E4i$ plate, resulting in a good aaAs film with a small defect density.
A thin film can be formed.
第2に、 上記に伴って、si基板上K 5(LkBを
用いた化合物半導体デバイスを形成することがで舞る。Second, along with the above, it is possible to form a compound semiconductor device using K5 (LkB) on a Si substrate.
このようなデバイスとしては、半導体レーザなどの発光
デバイスや、トランジスタなどの高速デバイスミt挙げ
られる。発光デバイスでは、GCLk8薄膜中の結晶欠
陥は非発光再結合中心となる定め効率の骨減(出力の減
少)やしきい値電流の増大などの悪影響を及ぼす。高速
デバイスでは、GIZAS薄膜中の結晶欠陥はキャリア
の散乱源となるため移動度の減少(動作速度の低下)な
どの悪影響を及ぼす。本発明によれば、結晶欠陥の少な
いGCLAR薄1@に*現で^る友め、Si基板上に高
性能な化合物半導体デバイス、を実現中ることhiでき
る。Such devices include light emitting devices such as semiconductor lasers and high speed devices such as transistors. In light emitting devices, crystal defects in the GCLk8 thin film become non-radiative recombination centers and have negative effects such as loss of efficiency (reduction in output) and increase in threshold current. In high-speed devices, crystal defects in the GIZAS thin film become a source of carrier scattering, resulting in negative effects such as a decrease in mobility (decreased operating speed). According to the present invention, it is now possible to realize a high-performance compound semiconductor device on a Si substrate using a thin GCLAR with few crystal defects.
第3に、安価で大面積の半導体基板を提供することがで
きる。s71仮は、大量の需要を背景として、直径5イ
ンチとい)大面積基板が極めて安価に供給されている。Thirdly, it is possible to provide an inexpensive, large-area semiconductor substrate. Due to the large demand for s71, large-area boards (5 inches in diameter) are being supplied at extremely low prices.
しかも公害や資源枯渇の心配/); r(い。このよ’
IK恵まれたSi基板上にGaA、9薄嘆が形成でき、
化合物半導体デバイスを実現できることは極めて大会す
長所である。Moreover, there are concerns about pollution and resource depletion.
GaA, 9-thickness can be formed on the IK-rich Si substrate,
The ability to realize compound semiconductor devices is an extremely advantageous feature.
以上述べ几よ5に1本発明は数多〈の優れた効果を有す
るものである。As stated above, the present invention has numerous excellent effects.
第1図は本発明による半導体基板の構造を示す断面図で
ある。
第2図は従来の半導体基板の構造を示+断面図である。
第3図は本発明の半導体基板忙おける格子定数の深ζ方
向変化?示ナグラフである。
101゜201川・・・Bi単結晶基板102−曲5f
fl、−,Ge x @膜103 、202 ・−・−
・・att @嗅1n4 、203 ・−−−−・Ga
Aa薄模以 上
出履人 株式会社 諏訪精工舎
第2図
第3図FIG. 1 is a sectional view showing the structure of a semiconductor substrate according to the present invention. FIG. 2 is a sectional view showing the structure of a conventional semiconductor substrate. Figure 3 shows the change in the lattice constant in the depth ζ direction in the semiconductor substrate of the present invention. This is a graph. 101゜201 River...Bi single crystal substrate 102-curve 5f
fl, −, Gex @ film 103, 202 ・−・−
・・att@olfactory1n4, 203 ・----・Ga
Aa thin model or above, Suwa Seikosha Co., Ltd. Figure 2 Figure 3
Claims (2)
有し、該Si_1_−_xGe_x薄膜上にGe薄膜を
有し、該Ge薄膜上にGaAS薄膜を有することを特徴
とする半導体基板。(1) A semiconductor substrate comprising Si_1_-_xGe_x on a Si single crystal substrate, a Ge thin film on the Si_1_-_xGe_x thin film, and a GaAS thin film on the Ge thin film.
、膜厚方向に対して、x=0からx=1まで連続的かつ
単調に変化させたことを特徴とする特許請求の範囲第1
項記載の半導体基板。(2) The composition ratio x of the Si_1_-_xGe_x thin film is continuously and monotonically changed from x=0 to x=1 in the film thickness direction.
Semiconductor substrate described in Section 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP26336484A JPS61141116A (en) | 1984-12-13 | 1984-12-13 | Semiconductor substrate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP26336484A JPS61141116A (en) | 1984-12-13 | 1984-12-13 | Semiconductor substrate |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS61141116A true JPS61141116A (en) | 1986-06-28 |
Family
ID=17388457
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP26336484A Pending JPS61141116A (en) | 1984-12-13 | 1984-12-13 | Semiconductor substrate |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS61141116A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6334994A (en) * | 1986-07-29 | 1988-02-15 | Mitsubishi Electric Corp | Photoelectric integrated circuit device and manufacture thereof |
| US6876010B1 (en) | 1997-06-24 | 2005-04-05 | Massachusetts Institute Of Technology | Controlling threading dislocation densities in Ge on Si using graded GeSi layers and planarization |
| KR100516339B1 (en) * | 2001-12-11 | 2005-09-22 | 샤프 가부시키가이샤 | Semiconductor device and production process thereof |
| JP2010225981A (en) * | 2009-03-25 | 2010-10-07 | Fujitsu Ltd | Optical semiconductor device, integrated device, and method for manufacturing optical semiconductor device |
| JP2011014896A (en) * | 2009-06-05 | 2011-01-20 | Sumitomo Chemical Co Ltd | Optical device, semiconductor substrate, optical device producing method, and semiconductor substrate producing method |
| JP2011114160A (en) * | 2009-11-26 | 2011-06-09 | Sumitomo Chemical Co Ltd | Semiconductor substrate, electronic device and method of manufacturing the semiconductor substrate |
| US8686472B2 (en) | 2008-10-02 | 2014-04-01 | Sumitomo Chemical Company, Limited | Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate |
| JP2014197669A (en) * | 2013-03-08 | 2014-10-16 | キヤノン株式会社 | Photoconductive element, method for manufacturing photoconductive element, and terahertz time domain spectral device |
-
1984
- 1984-12-13 JP JP26336484A patent/JPS61141116A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6334994A (en) * | 1986-07-29 | 1988-02-15 | Mitsubishi Electric Corp | Photoelectric integrated circuit device and manufacture thereof |
| US6876010B1 (en) | 1997-06-24 | 2005-04-05 | Massachusetts Institute Of Technology | Controlling threading dislocation densities in Ge on Si using graded GeSi layers and planarization |
| KR100516339B1 (en) * | 2001-12-11 | 2005-09-22 | 샤프 가부시키가이샤 | Semiconductor device and production process thereof |
| US8686472B2 (en) | 2008-10-02 | 2014-04-01 | Sumitomo Chemical Company, Limited | Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate |
| JP2010225981A (en) * | 2009-03-25 | 2010-10-07 | Fujitsu Ltd | Optical semiconductor device, integrated device, and method for manufacturing optical semiconductor device |
| JP2011014896A (en) * | 2009-06-05 | 2011-01-20 | Sumitomo Chemical Co Ltd | Optical device, semiconductor substrate, optical device producing method, and semiconductor substrate producing method |
| JP2011114160A (en) * | 2009-11-26 | 2011-06-09 | Sumitomo Chemical Co Ltd | Semiconductor substrate, electronic device and method of manufacturing the semiconductor substrate |
| JP2014197669A (en) * | 2013-03-08 | 2014-10-16 | キヤノン株式会社 | Photoconductive element, method for manufacturing photoconductive element, and terahertz time domain spectral device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU97110653A (en) | METHOD FOR REDUCING THE FORMATION OF MICROTUBULES AT EPITAXIAL GROWTH OF SILICON CARBIDE AND THE SILICON OBTAINED BY THE SILICON CARBIDE STRUCTURES | |
| JPH03236218A (en) | Compound semiconductor substrate and manufacture thereof | |
| JPS61141116A (en) | Semiconductor substrate | |
| US4789421A (en) | Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal | |
| KR930009805B1 (en) | A semiconductor device having a buffer structure for removing defects from semiconductor layer growth. | |
| JPS5946414B2 (en) | compound semiconductor device | |
| JPS62291909A (en) | GaAs epitaxial growth method | |
| JPH08264456A (en) | Growing method for crystal of compound semiconductor | |
| JPS60211912A (en) | Low-transition semi-insulation substrate | |
| JPH04290423A (en) | Manufacture of semiconductor substrate and semiconductor device | |
| JPS58196057A (en) | semiconductor equipment | |
| JPS6288317A (en) | compound semiconductor substrate | |
| JP2520591B2 (en) | Method for manufacturing semiconductor heterojunction | |
| JPS5336182A (en) | Thin semiconductor single crystal film forming insulation substrate | |
| JP3124616B2 (en) | Method for growing compound semiconductor thin film | |
| JPS6164118A (en) | Manufacturing method of semiconductor device | |
| JPS62104025A (en) | semiconductor crystal substrate | |
| JPS6222443B2 (en) | ||
| JPS589795B2 (en) | Molecular beam crystal growth method | |
| JPH01120011A (en) | Inp semiconductor thin film | |
| JP2830386B2 (en) | Method for producing compound semiconductor crystal having insulating layer on surface | |
| JPS6117491A (en) | Production of thin film of single crystal | |
| JP3319052B2 (en) | Metalorganic vapor phase epitaxy | |
| JPH01184815A (en) | Semiconductor wafer and its manufacturing method | |
| JPS6430210A (en) | Method for growing iii-v compound semiconductor |