[go: up one dir, main page]

JPS61176148A - semiconductor storage device - Google Patents

semiconductor storage device

Info

Publication number
JPS61176148A
JPS61176148A JP60016934A JP1693485A JPS61176148A JP S61176148 A JPS61176148 A JP S61176148A JP 60016934 A JP60016934 A JP 60016934A JP 1693485 A JP1693485 A JP 1693485A JP S61176148 A JPS61176148 A JP S61176148A
Authority
JP
Japan
Prior art keywords
capacitor
insulating film
conductivity type
hole
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60016934A
Other languages
Japanese (ja)
Other versions
JPH0673368B2 (en
Inventor
Yasumi Ema
泰示 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60016934A priority Critical patent/JPH0673368B2/en
Publication of JPS61176148A publication Critical patent/JPS61176148A/en
Publication of JPH0673368B2 publication Critical patent/JPH0673368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に係り、特にキャパシタ容量を
増大せしめたlトランジスタ・1キヤパシタ構造のダイ
ナミック型ランダムアクセスメモリ (D−RAM)セ
ルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and more particularly to a dynamic random access memory (D-RAM) cell having one transistor/one capacitor structure with increased capacitance.

情報処理装置の機能拡大に伴い、該情報処理装置に具備
せしめられるD−RAMも大規模化されて来ており、該
情報処理装置の拡大を抑止するために、該D−RAMの
高密度高集積化が急速に進められている。
As the functions of information processing devices have expanded, the D-RAMs installed in the information processing devices have also become larger in scale. Integration is progressing rapidly.

然しなから、該D−RAMの高密度高集積化を極度に進
めた際には、セル面積の縮小に伴うキャパシタ容量の大
幅な減少のために、該キャパシタに蓄積される情報電荷
量が大幅に減少して、情報読出し精度の低下や、α線に
よるソフトエラーに対する耐性等の低下等を生じて該D
−RAMの信顧度が低下するという問題を生じており、
セル面積が小さく且つキャパシタ容量の大きいD−RA
Mセルが要望されている。
However, when the D-RAM becomes extremely dense and highly integrated, the amount of information charge stored in the capacitor decreases significantly due to a significant reduction in capacitor capacity due to the reduction in cell area. The D
-There is a problem that the credibility of RAM is decreasing,
D-RA with small cell area and large capacitor capacity
M cell is requested.

〔従来の技術〕[Conventional technology]

上記1トランジスタ・1キャパシタ型D−RAMセルに
おいて、キャパシタ容量を増大せしめる構造として当初
提案されたのが第3図に側断面を模式的に示すスタック
ド・キャパシタ型セルである。
In the one-transistor/one-capacitor type D-RAM cell, a stacked capacitor type cell, whose side cross section is schematically shown in FIG. 3, was originally proposed as a structure for increasing the capacitor capacity.

第3図において、1はp−型シリコン基板、2はp型チ
ャネル・カット領域、3はフィールド酸化膜、4はゲー
ト酸化膜、5はゲート電極、6はワード*(隣接する他
セルのトランスファ・トランジスタのゲート電極)、7
は第1の絶縁膜、8はn3型ドレイン領域、9は蓄積ノ
ードとなるn0型領域、10は第1のキャパシタ電極、
11は誘電体膜、12は第2のキャパシタ電極、Trは
トランス° ファ・トランジスタ、Cはキャパシタを示
す。
In FIG. 3, 1 is a p-type silicon substrate, 2 is a p-type channel cut region, 3 is a field oxide film, 4 is a gate oxide film, 5 is a gate electrode, and 6 is a word・Transistor gate electrode), 7
is a first insulating film, 8 is an n3 type drain region, 9 is an n0 type region which becomes a storage node, 10 is a first capacitor electrode,
11 is a dielectric film, 12 is a second capacitor electrode, Tr is a transfer transistor, and C is a capacitor.

このセル構造によれば、電荷蓄積用の第1のキャパシタ
電極が自己セルのトランスファ・トランジスタTrのゲ
ート電極5と隣接するワード[6の上部にまで延在せし
められるので、上記第2のn゛型領領域8キャパシタの
一電極とする通常のD−RAMセルに比べ、キャパシタ
容量は2〜3倍程度に増大される。
According to this cell structure, the first capacitor electrode for charge storage extends to the upper part of the word [6] adjacent to the gate electrode 5 of the transfer transistor Tr of the own cell, so that the second Compared to a normal D-RAM cell in which eight mold regions serve as one electrode of the capacitor, the capacitance of the capacitor is increased approximately two to three times.

然しなから高集積化が大幅に進んでいる状況においては
上記2〜3倍程度の容量増大では、蓄積情報の検出精度
及びソフトエラーα線耐性の面で不充分であり、更にキ
ャパシタ容量を増大せしめる構造として従来提供された
のがトレンチ・キャパシタ型セルである。
However, in a situation where high integration has progressed significantly, increasing the capacitance by a factor of 2 to 3 is insufficient in terms of detection accuracy of stored information and resistance to soft error alpha rays, and it is necessary to further increase the capacitor capacity. A trench capacitor type cell has conventionally been provided as a structure for this purpose.

第4図は上記トレンチ・キャパシタ型セルの側断面を模
式的に示したもので、図中、12a及び12bはトレン
チ、13a及び13bは電荷蓄積領域(空乏層)、14
はキャパシタ電極、その他の符号は第3図と同一対象物
を示す。
FIG. 4 schematically shows a side cross section of the trench capacitor type cell, in which 12a and 12b are trenches, 13a and 13b are charge storage regions (depletion layers), and 14
indicates a capacitor electrode, and other symbols indicate the same objects as in FIG.

このトレンチ・キャパシタ型セルは、トレンチの深さを
深くすることによって、同一セル面積を有する前記スタ
ックド・キャパシタ型セルに比べ、キャパシタ容量を更
に大幅に増大出来るという利点を持っている。
This trench capacitor type cell has the advantage that by increasing the depth of the trench, the capacitor capacity can be further increased significantly compared to the stacked capacitor type cell having the same cell area.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し該トレンチ・キャパシタ型D−RAMセルにおいて
は、キャパシタ電極14に印加される電圧によってトレ
ンチ12a、12b等の周囲に形成される空乏層からな
る電荷蓄積領域13a、13b等が大きく拡がる(図の
ようにバックバイアスが強く機能するトレンチ先端部と
チャネル・カット領域が機能するトレンチ基部との中間
部で特に太き(拡がる)ために、隣接するセルのトレン
チ例えば12aと12bを接近して設けた場合、蓄積電
荷のリークを生じて情報が失われるという現象を生じる
However, in the trench capacitor type D-RAM cell, the charge storage regions 13a, 13b, etc., which are made up of depletion layers formed around the trenches 12a, 12b, etc., greatly expand due to the voltage applied to the capacitor electrode 14 (as shown in the figure). The trenches of adjacent cells, for example, 12a and 12b, are provided close to each other because the back bias is particularly thick (widened) in the middle between the tip of the trench where it functions strongly and the base of the trench where the channel cut region functions. In this case, leakage of accumulated charges occurs and information is lost.

そのため各セル間の分離領域幅即ちフィールド酸化膜3
が配設される領域の幅を広くとる必要があり、これによ
って集積度の向上が妨げられるという問題があった。
Therefore, the width of the isolation region between each cell, that is, the field oxide film 3
It is necessary to widen the width of the region in which the ICs are arranged, which poses a problem in that the improvement in the degree of integration is hindered.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、−導電型半導体基板上に形成されたMI
S型トランスファ・トランジスタと・該トランジスタ上
に形成された絶縁膜と、該絶縁膜に形成された該トラン
ジスタの第1の反対導電型領域を表出する第1のスルー
ホールと、該スルーホールの内面に形成された底部が該
第1の反対導電型領域に接する゛円筒状の第1のキャパ
シタ電極と、該第1のキャパシタ電極の内面及び該キャ
パシタ電極の内部に表出する該第1の反対導電型領域面
に形成された誘電体膜と、該第1のキャパシタ電極の内
部に該誘電体膜を介して埋め込まれ且つ上部が該絶縁膜
上に延在する第2のキャパシタ電極と、該絶縁膜に形成
された該トランジスタの第2の反対導電型領域を表出す
る第2のスルーホールと、該第2のスルーホール内に埋
め込まれ底部が該第2の反対導電型領域に接し且つ上部
がビット線に接続された導電層とを有してなる本発明に
よる半導体記憶装置によって解決される。
The above problems are: - MI formed on a conductive type semiconductor substrate;
an S-type transfer transistor; an insulating film formed on the transistor; a first through hole that exposes a first opposite conductivity type region of the transistor formed in the insulating film; a cylindrical first capacitor electrode whose bottom portion formed on the inner surface is in contact with the first opposite conductivity type region; a dielectric film formed on a surface of the opposite conductivity type region; a second capacitor electrode embedded within the first capacitor electrode via the dielectric film and having an upper portion extending above the insulating film; a second through hole that exposes a second opposite conductivity type region of the transistor formed in the insulating film; The problem is solved by a semiconductor memory device according to the present invention, which has a conductive layer whose upper portion is connected to a bit line.

〔作用〕[Effect]

即ち本発明のD−RAMセルにおいては、トランスファ
・トランジスタの上部に厚い絶縁膜を設け、該絶縁膜に
該絶縁膜を貫通して該トランスファ・トランジスタの蓄
積ノードとなる不純物拡散領域に接する円筒状のキャパ
シタを形成するものであり、該絶縁膜を厚く形成するこ
とによってキャパシタ容量の大幅な増大が可能であるの
で、情報の検出精度及びソフトエラーα線耐性の向上が
図れ、且つ隣接するセルのキャパシタとの間が該絶縁膜
によって完全に分離されるので、蓄積電荷のリークを生
ずることがなく蓄積情報の信顛度は向上する。
That is, in the D-RAM cell of the present invention, a thick insulating film is provided above the transfer transistor, and a cylindrical insulating film is formed in the insulating film so as to penetrate through the insulating film and contact the impurity diffusion region that becomes the storage node of the transfer transistor. By forming the insulating film thickly, the capacitor capacity can be greatly increased, which improves information detection accuracy and soft error α-ray resistance, and also improves the resistance of adjacent cells. Since the capacitor is completely separated from the capacitor by the insulating film, leakage of stored charges does not occur, and the reliability of stored information is improved.

〔実施例〕〔Example〕

以下本発明を図示実施例により、具体的に説明する。 The present invention will be specifically described below with reference to illustrated embodiments.

第1図は本発明に係わるlトランジスタ・1キヤパシタ
構造のD−RAMセルの一実施例を示す模式平面図(a
)及び模式側断面図(b)で、第2図はその製造方法を
示す工程断面図である。
FIG. 1 is a schematic plan view (a
) and a schematic side sectional view (b), and FIG. 2 is a process sectional view showing the manufacturing method.

企図を通じ同一対象物は同一符号で示す。Identical objects are designated by the same reference numerals throughout the design.

第1図において、1はp−型シリコン基板、2はp型チ
ャネル・カット領域、3はフィールド酸化膜、4はゲー
ト酸化膜、5a、5b、5cは第1の多結晶シリコン層
PAよりなるゲート電極(ワード線)、8はn++ドレ
イン領域、9は蓄積ノードとなるn°型領領域21は化
学気相成長(CVD)法で形成した厚さ例えば1〜2μ
m程度の二酸化シリコン(Si(h)絶縁膜、22は蓄
積ノードとなるn゛型領領域表出する例えば1.5〜2
μm口程度の第1のスルーホール、23はn++ドレイ
ン領域を表出する例えば0.7〜1μm口程度の第2の
スルーホール、24は第2の多結晶シリコン層(PB)
よりなる電荷蓄積用キャパシタ電極、25は同じくPR
よりなるドレイン電極、26は厚さ例えば100人程デ
ボ3i0.よりなる誘電体膜、27は第3の多結晶シリ
コン層PCよりなる対向キャパシタ電極、28は燐珪酸
ガラス(PSG)絶縁膜、29はコンタクト窓、30は
アルミニウム等よりなるビット配線、Trはトランスフ
ァ・トランジスタ、Cはキャパシタを示す。
In FIG. 1, 1 is a p-type silicon substrate, 2 is a p-type channel cut region, 3 is a field oxide film, 4 is a gate oxide film, and 5a, 5b, and 5c are first polycrystalline silicon layers PA. The gate electrode (word line), 8 is an n++ drain region, and 9 is an n° type region 21 which becomes a storage node, and has a thickness of, for example, 1 to 2 μm, formed by chemical vapor deposition (CVD).
A silicon dioxide (Si(h) insulating film with a thickness of approximately 1.5 to 2 m, for example 1.5 to 2
A first through hole with a diameter of about μm, 23 a second through hole with a diameter of about 0.7 to 1 μm, for example, which exposes the n++ drain region, 24 a second polycrystalline silicon layer (PB)
The charge storage capacitor electrode 25 is also PR.
The drain electrode 26 has a thickness of about 100, for example, 3i0. 27 is a counter capacitor electrode made of a third polycrystalline silicon layer PC, 28 is a phosphosilicate glass (PSG) insulating film, 29 is a contact window, 30 is a bit wiring made of aluminum or the like, and Tr is a transfer wire.・Transistor, C indicates a capacitor.

同図に示すように本発明に係わるD−RAMセルは、 トランスファ・トランジスタTrの上部に厚いSt〇−
絶縁膜21を設け、 この5ift絶縁膜21にトランスファ・トランジスタ
Trの蓄積ノードとなるn゛型領領域9表出するキャパ
シタ用の第1のスルーホール22とn+型トドレイン領
域8表出する第2のスルーホール23を形成し、 上記第1のスルーホール22内にトランスファ・トラン
ジスタTrの蓄積ノードとなるn゛型領領域9底部が接
する筒状の電荷蓄積用キャパシタ電橋24と、 この電極24の内面と上面及びこの電極24の内部に表
出するn+型領領域9表面に形成された誘電体膜26と
、 この電荷蓄積用キャパシタ電極24内に上記誘電体膜2
6を介して埋め込まれ、上部がSiO□絶縁膜21に延
在する対向キャパシタ電極27とよりなるキャパシタC
が設けられ、 トランスファ・トランジスタTrのn0型ドレイン領域
8が、上記第2のスルーホール23内に埋め込まれたド
レイン電極25及びコンタクト窓29を介しビット配線
30に接続されてなっている。
As shown in the figure, the D-RAM cell according to the present invention has a thick St〇-
An insulating film 21 is provided, and this 5ift insulating film 21 has a first through-hole 22 for a capacitor that exposes an n-type region 9 which becomes a storage node of a transfer transistor Tr, and a second through-hole 22 that exposes an n+-type drain region 8. A through hole 23 is formed in the first through hole 22, and a cylindrical charge storage capacitor bridge 24 is in contact with the bottom of the n-type region 9 which becomes a storage node of the transfer transistor Tr; a dielectric film 26 formed on the inner and upper surfaces of the n+ type region 9 exposed inside the electrode 24;
A capacitor C consisting of a counter capacitor electrode 27 embedded through the capacitor 6 and whose upper part extends to the SiO□ insulating film 21.
The n0 type drain region 8 of the transfer transistor Tr is connected to the bit wiring 30 via the drain electrode 25 buried in the second through hole 23 and the contact window 29.

上記D−RAMセルは、例えば以下に第2図(a)乃至
(e)に示す工程断面図を参照して説明する方法によっ
て形成される。
The D-RAM cell is formed, for example, by the method described below with reference to process cross-sectional views shown in FIGS. 2(a) to 2(e).

第2図(al参照 通常の方法によりp−型シリコン基板1上にトランスフ
ァ・トランジスタTrを形成した後、CVD法により該
基板上に厚さ例えば1〜2μm程度のSiO□絶縁膜2
1を形成し、 次いで通常のりアクティブ・イオンエツチング(RI 
E)法により上記Si0g絶縁膜21に蓄積ノードとな
るn+型領領域9表出する例えば1.5〜2μm口程度
の第1のスルーホール22、及びn1型ドレイン領域8
を表出する例えば0.7〜1μm口程度の第2のスルー
ホール23を形成する。
After forming a transfer transistor Tr on a p-type silicon substrate 1 by a conventional method, a SiO□ insulating film 2 with a thickness of about 1 to 2 μm, for example, is formed on the substrate by a CVD method.
1, followed by regular glue active ion etching (RI).
E) A first through hole 22 with a diameter of, for example, about 1.5 to 2 μm is exposed in the Si0g insulating film 21 to expose an n+ type region 9 that will become a storage node, and an n1 type drain region 8 is formed by the method E).
A second through hole 23 with a diameter of, for example, about 0.7 to 1 .mu.m is formed to expose the.

第2図世)参照 次いで該基板上にCVD法により第2のスルーホール2
3を埋める厚さ、例えば5000人程度0第2の多結晶
シリコン層PBを形成する。この際第1のスルーホール
22は埋まらず、その側面及び底面に上記厚さのPB層
が形成される。
Refer to Figure 2) Next, a second through hole 2 is formed on the substrate by CVD method.
A second polycrystalline silicon layer PB is formed to a thickness of, for example, about 5,000 layers to fill the second polycrystalline silicon layer PB. At this time, the first through hole 22 is not filled, and a PB layer having the above-mentioned thickness is formed on the side and bottom surfaces thereof.

第2図(C)参照 次いでRIE法で全面エツチングを行いJSi02絶縁
膜21の上面及び第1のスルーホール22内の蓄積ノー
ドとなるn゛型領領域9面表出させ、次いで熱酸化法に
よりPA層の表面及びn゛型領領域9表出面に厚さ例え
ば100人程0のSing誘電体膜26を形成する。
Refer to FIG. 2(C). Next, the entire surface is etched by RIE to expose the upper surface of the JSi02 insulating film 21 and nine surfaces of the n-type region that will become the storage node in the first through hole 22, and then thermal oxidation is performed to A Sing dielectric film 26 having a thickness of, for example, about 100 layers is formed on the surface of the PA layer and the exposed surface of the n-type region 9.

なお第1のスルーホール22内のPR層は筒状の電荷蓄
積用キャパシタ電極24となり、第2のスルーホール2
3内のPB層はドレイン電極25となる。
Note that the PR layer in the first through hole 22 becomes a cylindrical charge storage capacitor electrode 24, and the PR layer in the first through hole 22 becomes a cylindrical charge storage capacitor electrode 24.
The PB layer in 3 becomes the drain electrode 25.

第2図(d)参照 次いで該基板上にCVD法により上記筒状の電荷蓄積用
キャパシタ電極24の内部を埋める例えば5000λ程
度の第3の多結晶シリコン層pcを形成し、次いでRI
E法により該20層に前記ドレイン電極25の上面を表
出する開孔31を形成する。
Referring to FIG. 2(d), a third polycrystalline silicon layer pc having a thickness of, for example, about 5000λ is formed on the substrate by the CVD method to fill the inside of the cylindrical charge storage capacitor electrode 24, and then RI
An opening 31 exposing the upper surface of the drain electrode 25 is formed in the 20th layer by the E method.

ここで20層は対向キャパシタ電極27となる。Here, the 20th layer becomes a counter capacitor electrode 27.

第2図+11)参照 次いで該基板上にCVD法により厚さ18部程度のPS
G絶縁膜28を形成し、 通常の方法により該PSG絶縁膜28にドレイン電極2
5の上面を表出するコンタクト窓29を形成し、通常の
方法により該絶縁膜29上に上記コンタクト窓29部に
おいてドレイン電極25に接するビット配線30を形成
する。
Refer to Figure 2+11) Next, a PS film with a thickness of about 18 parts is deposited on the substrate by CVD method.
A G insulating film 28 is formed, and a drain electrode 2 is formed on the PSG insulating film 28 by a normal method.
A contact window 29 exposing the upper surface of the contact window 29 is formed, and a bit wiring 30 is formed on the insulating film 29 by a conventional method so as to be in contact with the drain electrode 25 at the contact window 29 portion.

そして、以後図示しないカバー絶縁膜の形成等を行って
本発明に係わるD−RAMセルが完成する。
Thereafter, a cover insulating film (not shown) is formed, and the D-RAM cell according to the present invention is completed.

上記実施例の説明から明らかなように、本発明に係わる
D−RAMセルにおいては、原理的に、CVD法によっ
て導電層が底部まで成長出来る深さであれば筒型のキャ
パシタをいくらでも深く形成することが可能である。従
ってキャパシタ容量を従来に比べ大幅に増大させること
が出来る。
As is clear from the description of the above embodiments, in principle, in the D-RAM cell according to the present invention, the cylindrical capacitor can be formed as deep as the CVD method allows the conductive layer to grow to the bottom. Is possible. Therefore, the capacitance of the capacitor can be significantly increased compared to the conventional one.

また該筒型のキャパシタは絶縁膜内に設けられるので、
隣接するセルの筒型キャパシタとの間が該絶縁膜で分離
されることになり、情報電荷のリークは完全に防止され
る。
Furthermore, since the cylindrical capacitor is provided within the insulating film,
The insulating film separates the cylindrical capacitors of adjacent cells, and leakage of information charges is completely prevented.

更に又、キャパシタが絶縁膜内に設けられることにより
、α線の入射によりシリコン基板内に発生した電荷がキ
ャパシタに到達することがなく、ソフトエラーα線耐性
も増大する。
Furthermore, since the capacitor is provided within the insulating film, charges generated in the silicon substrate due to incidence of α rays do not reach the capacitor, and resistance to soft error α rays is also increased.

なおキャパシタ電極は上記実施例に示す多結晶シリコン
に限られるものではなく、モリブデン・シリサイド等地
の導電物質であっても良い。
Note that the capacitor electrode is not limited to the polycrystalline silicon shown in the above embodiment, but may be made of a conductive material such as molybdenum silicide.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、1トランジスタ・1
キヤパシタ構造のダイナミック型ランダムアクセスメモ
リ (D−RAM)セルの、キャパシタ容量を大幅に増
大し、隣接するキャパシタ間の情報電荷のリークを無く
し、且つソフトエラーα線耐性を向上せしめることがで
きるので、その信顛度が向上する。
As explained above, according to the present invention, one transistor/one
It is possible to significantly increase the capacitance of a dynamic random access memory (D-RAM) cell with a capacitor structure, eliminate information charge leakage between adjacent capacitors, and improve resistance to soft error alpha rays. Its credibility will improve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるlトランジスタ・1キヤパシタ
構造のD−RAMセルの一実施例を示す模式平面図(a
)及び模式側断面図中)、第2図(8)乃至(e)はそ
の製造方法を示す工程断面図、 第3図はスタックド・キャパシタ型D−RAMセルの側
断面図、 第4図はトレンチ・キャパシタ型セルの側断面図である
。 図において、 5a、5b、5cはゲート電極(ワード線)8はn9型
ドレイン領域、 9は蓄積ノードとなるn0型領域、 21は二酸化シリコン絶縁膜、 22は第1のスルーホール、 23は第2のスルーホール、 24は電荷蓄積用キャパシタ電極、 25はドレイン電極、 26は誘電体膜、 27は対向キャパシタ電極、 2日は燐珪酸ガラス絶縁膜、 29はコンタクト窓、 30はビット配線、 Trはトランスファ・トランジスタ、 Cはキャパシタ を示す。 y′I ¥−2必 峯 3酊 拳4酊
FIG. 1 is a schematic plan view (a
) and schematic side sectional view), FIGS. 2(8) to (e) are process sectional views showing the manufacturing method, FIG. 3 is a side sectional view of a stacked capacitor type D-RAM cell, and FIG. 4 is a side sectional view of the stacked capacitor type D-RAM cell. FIG. 2 is a side cross-sectional view of a trench capacitor type cell. In the figure, 5a, 5b, 5c are gate electrodes (word lines) 8 are n9 type drain regions, 9 is an n0 type region which becomes a storage node, 21 is a silicon dioxide insulating film, 22 is a first through hole, 23 is a first through hole. 2 is a through hole, 24 is a charge storage capacitor electrode, 25 is a drain electrode, 26 is a dielectric film, 27 is a counter capacitor electrode, 2 is a phosphosilicate glass insulating film, 29 is a contact window, 30 is a bit wiring, Tr indicates a transfer transistor, and C indicates a capacitor. y'I ¥-2 Hisho 3 Intoxication Fist 4 Intoxication

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板上に形成されたMIS型トランス
ファ・トランジスタと、該トランジスタ上に形成された
絶縁膜と、該絶縁膜に形成された該トランジスタの第1
の反対導電型領域を表出する第1のスルーホールと、該
スルーホールの内面に形成された底部が該第1の反対導
電型領域に接する円筒状の第1のキャパシタ電極と、該
第1のキャパシタ電極の内面及び該キャパシタ電極の内
部に表出する該第1の反対導電型領域面に形成された誘
電体膜と、該第1のキャパシタ電極の内部に該誘電体膜
を介して埋め込まれ且つ上部が該絶縁膜上に延在する第
2のキャパシタ電極と、該絶縁膜に形成された該トラン
ジスタの第2の反対導電型領域を表出する第2のスルー
ホールと、該第2のスルーホール内に埋め込まれ底部が
該第2の反対導電型領域に接し且つ上部がビット線に接
続された導電層とを有してなることを特徴とする半導体
記憶装置。
An MIS transfer transistor formed on a semiconductor substrate of one conductivity type, an insulating film formed on the transistor, and a first conductivity type transfer transistor of the transistor formed on the insulating film.
a first through hole that exposes a region of opposite conductivity type; a cylindrical first capacitor electrode formed on the inner surface of the through hole, the bottom of which touches the first region of opposite conductivity type; a dielectric film formed on the inner surface of the capacitor electrode and the first opposite conductivity type region exposed inside the capacitor electrode; and a dielectric film formed on the first opposite conductivity type region surface exposed inside the capacitor electrode; a second capacitor electrode whose upper portion extends over the insulating film; a second through hole that exposes a second opposite conductivity type region of the transistor formed in the insulating film; a conductive layer embedded in a through hole, a bottom portion of which is in contact with the second opposite conductivity type region, and an upper portion of which is connected to a bit line.
JP60016934A 1985-01-31 1985-01-31 Semiconductor memory device and manufacturing method thereof Expired - Lifetime JPH0673368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016934A JPH0673368B2 (en) 1985-01-31 1985-01-31 Semiconductor memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016934A JPH0673368B2 (en) 1985-01-31 1985-01-31 Semiconductor memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61176148A true JPS61176148A (en) 1986-08-07
JPH0673368B2 JPH0673368B2 (en) 1994-09-14

Family

ID=11929950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016934A Expired - Lifetime JPH0673368B2 (en) 1985-01-31 1985-01-31 Semiconductor memory device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0673368B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278363A (en) * 1987-05-11 1988-11-16 Hitachi Ltd semiconductor storage device
JPS63310162A (en) * 1987-06-12 1988-12-19 Nec Corp MIS type semiconductor memory device
JPH01243569A (en) * 1988-03-25 1989-09-28 Fujitsu Ltd Manufacture of semiconductor device
JPH01262658A (en) * 1988-04-13 1989-10-19 Nec Corp Dynamic random access memory device
JPH0221652A (en) * 1988-07-08 1990-01-24 Mitsubishi Electric Corp Semiconductor storage device
JPH03116965A (en) * 1989-09-29 1991-05-17 Mitsubishi Electric Corp memory cell structure
JPH03230562A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5874756A (en) * 1995-01-31 1999-02-23 Fujitsu Limited Semiconductor storage device and method for fabricating the same
US6744091B1 (en) 1995-01-31 2004-06-01 Fujitsu Limited Semiconductor storage device with self-aligned opening and method for fabricating the same
US6818993B2 (en) 1996-07-18 2004-11-16 Fujitsu Limited Insulation structure for wiring which is suitable for self-aligned contact and multilevel wiring
JP2007189008A (en) * 2006-01-12 2007-07-26 Elpida Memory Inc Semiconductor memory device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108392A (en) * 1977-03-04 1978-09-21 Hitachi Ltd Semiconductor device
JPS55154762A (en) * 1979-05-22 1980-12-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108392A (en) * 1977-03-04 1978-09-21 Hitachi Ltd Semiconductor device
JPS55154762A (en) * 1979-05-22 1980-12-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor memory

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278363A (en) * 1987-05-11 1988-11-16 Hitachi Ltd semiconductor storage device
JPS63310162A (en) * 1987-06-12 1988-12-19 Nec Corp MIS type semiconductor memory device
US4897700A (en) * 1987-06-12 1990-01-30 Nec Corporation Semiconductor memory device
JPH01243569A (en) * 1988-03-25 1989-09-28 Fujitsu Ltd Manufacture of semiconductor device
JPH01262658A (en) * 1988-04-13 1989-10-19 Nec Corp Dynamic random access memory device
US5028990A (en) * 1988-04-13 1991-07-02 Nec Corporation Semiconductor memory device having improved dynamic memory cell structure
JPH0221652A (en) * 1988-07-08 1990-01-24 Mitsubishi Electric Corp Semiconductor storage device
JPH03116965A (en) * 1989-09-29 1991-05-17 Mitsubishi Electric Corp memory cell structure
JPH03230562A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US6395599B1 (en) 1995-01-31 2002-05-28 Fujitsu Limited Method for fabricating semiconductor storage device
US7795147B2 (en) 1995-01-31 2010-09-14 Fujitsu Semiconductor Limited Semiconductor storage device and method for fabricating the same
US6744091B1 (en) 1995-01-31 2004-06-01 Fujitsu Limited Semiconductor storage device with self-aligned opening and method for fabricating the same
US6791187B2 (en) 1995-01-31 2004-09-14 Fujitsu Limited Semiconductor storage device and method for fabricating the same
US5874756A (en) * 1995-01-31 1999-02-23 Fujitsu Limited Semiconductor storage device and method for fabricating the same
US8674421B2 (en) 1995-01-31 2014-03-18 Fujitsu Semiconductor Limited Semiconductor device
US6992347B2 (en) 1995-01-31 2006-01-31 Fujitsu Limited Semiconductor storage device
US8404554B2 (en) 1995-01-31 2013-03-26 Fujitsu Semiconductor Limited Method of manufacturing semiconductor device
US6818993B2 (en) 1996-07-18 2004-11-16 Fujitsu Limited Insulation structure for wiring which is suitable for self-aligned contact and multilevel wiring
US7649261B2 (en) 1996-07-18 2010-01-19 Fujitsu Microelectronics Limited Highly integrated and reliable DRAM and its manufacture
US8143723B2 (en) 1996-07-18 2012-03-27 Fujitsu Semiconductor Limited Highly integrated and reliable DRAM and its manufacture
US7145242B2 (en) 1996-07-18 2006-12-05 Fujitsu Limited Highly integrated and reliable DRAM
US6930347B2 (en) 1996-07-18 2005-08-16 Fujitsu Limited Semiconductor memory device having electrical connection by side contact
JP2007189008A (en) * 2006-01-12 2007-07-26 Elpida Memory Inc Semiconductor memory device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0673368B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US5021842A (en) Trench DRAM cell with different insulator thicknesses
KR900000170B1 (en) Dynamic memory cell and method of producing it
JPH01262658A (en) Dynamic random access memory device
JPS60152058A (en) semiconductor storage device
JPH0616549B2 (en) Semiconductor integrated circuit device
JPH0430573A (en) Semiconductor memory device
JPH01198065A (en) Semiconductor memory device
US5428236A (en) Semiconductor memory device having trenched capicitor
JPS61176148A (en) semiconductor storage device
JPS6187358A (en) Semiconductor storage device and its manufacturing method
JP2621181B2 (en) MIS type semiconductor memory device
JP2671899B2 (en) Semiconductor storage device
JPS6155258B2 (en)
JPH0294561A (en) Semiconductor storage device and its manufacturing method
JPS60128658A (en) Semiconductor memory device
JPS61108163A (en) Semiconductor memory device and manufacture thereof
JPS61199657A (en) Semiconductor memory
JPH05243517A (en) Semiconductor device
JP2969876B2 (en) Semiconductor device and manufacturing method thereof
JP2702702B2 (en) Semiconductor storage device
JPH0379072A (en) Semiconductor storage device and its manufacturing method
JPS60236260A (en) Semiconductor memory device
JPS60128657A (en) Semiconductor memory device
JPH0691216B2 (en) Semiconductor memory device
JPH0321103B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term