JPS61181538A - Catalyst for purifying exhaust gas - Google Patents
Catalyst for purifying exhaust gasInfo
- Publication number
- JPS61181538A JPS61181538A JP60021207A JP2120785A JPS61181538A JP S61181538 A JPS61181538 A JP S61181538A JP 60021207 A JP60021207 A JP 60021207A JP 2120785 A JP2120785 A JP 2120785A JP S61181538 A JPS61181538 A JP S61181538A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- weight
- oxide
- carrier
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、主として内燃機関、家庭用燃焼器等より発生
する排ガス中の有害成分を浄化する触媒体に関し、特に
−酸化炭素、炭化水素を酸化し。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a catalyst body that purifies harmful components in exhaust gas mainly generated from internal combustion engines, domestic combustors, etc. .
窒素酸化物を還元して浄化する触媒体に関する。The present invention relates to a catalyst body that reduces and purifies nitrogen oxides.
従来の技術
従来、この種の触媒体として、アルミン酸石灰を主とし
た担体に白金族金属触媒を担持したもの(特開昭64−
35888)や触媒粒子のシンタリングを抑制するため
酸化チタンを添加したもの(特開昭56−126447
)などが知られている。Conventional technology Conventionally, as this type of catalyst, a platinum group metal catalyst supported on a carrier mainly composed of lime aluminate (Japanese Patent Application Laid-Open No. 1983-1999)
35888) and those to which titanium oxide is added to suppress sintering of catalyst particles (JP-A-56-126447).
) etc. are known.
発明が解決しようとする問題点
しかしながら、前者の触媒は、触媒物質および担体のシ
ンタリングによる熱劣化が激しく、また。Problems to be Solved by the Invention However, the former catalyst suffers from severe thermal deterioration due to sintering of the catalyst material and carrier.
後者の触媒体は、熱劣化防止についてはかなりの改善が
見られたが、低温触媒活性の向上という点では不十分で
あった。また、自動車排ガス浄化用触媒などの三元触媒
性能を必要とする触媒体において、従来の触媒体では、
Rhが不可欠であシ。Although the latter catalyst showed considerable improvement in preventing thermal deterioration, it was insufficient in terms of improving low-temperature catalytic activity. In addition, in catalyst bodies that require three-way catalyst performance, such as catalysts for automobile exhaust gas purification, conventional catalyst bodies
Rh is essential.
同時に使用するPjに対して1/6〜1/11のfth
が用いられている。一方、Rhの産出量は、白金に比し
て、1/11以下であり、!た価格も白金の約2倍と高
価であることより、このRhの使用量の削減が特に強く
望まれ、従来の上述した触媒体では、この点においても
不十分なものであった。1/6 to 1/11 fth for Pj used at the same time
is used. On the other hand, the production amount of Rh is less than 1/11 that of platinum! Since the price of Rh is about twice as high as that of platinum, there is a strong desire to reduce the amount of Rh used, and the conventional catalysts described above have been insufficient in this respect as well.
本発明は、以上のような従来の触媒体の問題点を解決し
、触媒体の低温触媒活性の向上を図るとともに、触媒使
用量の削減およびそれ【伴う低コスト化を図り、高性能
かつ安価な触媒体を提供することを目的とする。The present invention solves the problems of conventional catalyst bodies as described above, improves the low-temperature catalytic activity of the catalyst body, and also aims to reduce the amount of catalyst used and the corresponding cost reduction, thereby achieving high performance and low cost. The purpose of this invention is to provide a catalytic body.
問題点を解決するだめの手段
本発明の触媒体は、ランタン酸化物、バリウム酸化物お
よび炭酸バリウムよりなる群よシ選ばれる助触媒物質と
、結合剤のアルミン酸石灰より構成された担体に、白金
族触媒物質を担持させたものである。Means for Solving the Problems The catalyst body of the present invention comprises a carrier comprising a cocatalyst material selected from the group consisting of lanthanum oxide, barium oxide and barium carbonate, and lime aluminate as a binder. It supports a platinum group catalyst material.
作用
結合剤に用いるアルミン酸石灰は、水硬性を有するため
、従来のコージライトやムライト等の触媒担体を製造す
る際に必要な焼結処理が不要であシ、無焼結で比表面積
の大なる触媒担体を得ることができる。この比表面積が
大なることにより、従来の上記焼結型担体において比表
面積拡大に必要なウォッシュコート処理が不要となる。Since the lime aluminate used as the functional binder has hydraulic properties, it does not require the sintering process that is required when manufacturing conventional catalyst supports such as cordierite and mullite. A catalyst carrier can be obtained. This increase in specific surface area eliminates the need for wash coat treatment, which is necessary for increasing the specific surface area in the conventional sintered carrier.
アルミン酸石灰は、固体塩基触媒能を有するため、排ガ
ス中の有害成分、特に炭化水素化合物(以下HGと略す
)の浄化に非常に良好な活性を示す。Since lime aluminate has a solid base catalytic ability, it exhibits very good activity in purifying harmful components in exhaust gas, particularly hydrocarbon compounds (hereinafter abbreviated as HG).
アルミン酸石灰の担体中での含有量は16重量%以上、
50重量%以下である。アルミン酸石灰の含有量が15
重量%以下では十分な機械的強度が望めず、また50重
量%を超えると耐スポーリング特性が著しく低下する。The content of lime aluminate in the carrier is 16% by weight or more,
It is 50% by weight or less. The content of lime aluminate is 15
If it is less than 50% by weight, sufficient mechanical strength cannot be expected, and if it exceeds 50% by weight, the spalling resistance will be significantly reduced.
アルミン酸石灰は、一般式mAR203・ncaoで示
され、含まれるアルミナ分が5o重量%以上、86重量
%以下が望ましく、特に60重量%以上。Lime aluminate is represented by the general formula mAR203·ncao, and preferably contains alumina of 50% by weight or more and 86% by weight or less, particularly 60% by weight or more.
80重量%以下が望ましい。これは、アルミン酸石灰中
に含まれるアルミナ分が50重量%未満では、触媒体の
熱劣化が著しくなり、またアルミナ分が85重量%を超
えると、アルミン酸石灰の結合力が著しく弱くなるとと
もに、硬化速度が著しく早くなるため、ハニカム形状等
の複雑な成形加工が困難となるためである。80% by weight or less is desirable. This is because if the alumina content in the aluminate lime is less than 50% by weight, the thermal deterioration of the catalyst will be significant, and if the alumina content exceeds 85% by weight, the binding strength of the aluminate lime will be significantly weakened. This is because the curing speed becomes extremely high, making it difficult to form complex shapes such as honeycomb shapes.
ランタン酸化物は5窒素設化物(以下kioxと略す)
の吸着能に優れ、またボ素に対する親和性も大である。Lanthanum oxide is a 5-nitrogen compound (hereinafter abbreviated as kiox)
It has excellent adsorption ability for boron, and also has a high affinity for boron.
このため、白金族金属のPt、Pdとともに用いること
によって、理論空燃比よりも燃料の濃い側で燃焼させた
場合に排ガス中に含まれる窒素酸化物の上記Pt、 P
dによる浄化特性改善に寄与し、この特性を著しく改善
する助触媒物質として働く。また、バリウム酸化物およ
び炭酸バリウムについても同様の作用がある。Therefore, by using the platinum group metals Pt and Pd, the nitrogen oxides contained in the exhaust gas are reduced when the fuel is combusted on the richer side than the stoichiometric air-fuel ratio.
d, and acts as a cocatalyst that significantly improves these properties. Further, barium oxide and barium carbonate have similar effects.
ランタン酸化物およびバリウム酸化物は、その塩化物、
水酸化物、酢酸塩、蓚酸塩、硫酸塩、硝酸塩、炭酸塩、
硫酸アンモニウム塩、硝酸アンモニウム塩を出発物質と
し、使用する前に焼成するか、あるいは成形体としだ後
に焼成し、酸化物として用いる方法と、触媒担持の焼成
過程で、触媒担持と同時に前記ランタン化合物、バリウ
ム化合物を酸化物にする方法等がある。Lanthanum oxide and barium oxide are their chlorides,
hydroxide, acetate, oxalate, sulfate, nitrate, carbonate,
There is a method in which ammonium sulfate or ammonium nitrate is used as a starting material, and the lanthanum compound or barium is used as an oxide, either by firing it before use, or by firing it into a molded product and using it as an oxide. There are methods such as converting a compound into an oxide.
ランタン酸化物、バリウム酸化物、炭酸バリウムより構
成される本発明の助触媒物質は、担体中の含有量が1重
量多以上、50重量多以下が望ましい。前記含有量が1
重量%未満では、前記助触媒物質の十分な添加効果が望
めず、また50重量%を超えると、それに見合うだけの
助触媒作用の増加が望めないばかシかHC浄化能が逆に
低下してくる。The content of the cocatalyst material of the present invention composed of lanthanum oxide, barium oxide, and barium carbonate in the carrier is preferably 1 weight or more and 50 weight or less. The content is 1
If it is less than 50% by weight, a sufficient effect of the addition of the co-catalyst substance cannot be expected, and if it exceeds 50% by weight, the co-catalyst effect cannot be expected to increase commensurately, and the HC purification ability will actually decrease. come.
一般に、ランタン酸化物は、PtあるいはPdと同時に
用いることにより、理論空燃比より燃料比率の高い領域
で運転した場合に出す排ガス(以後リッチ側での排ガス
と記す)中に含まれるNOxのPt、Pdによる浄化特
性を著しく向上させるが、同時に、理論空燃比より燃料
希薄条件でエンジンを運転した際発生する排ガス(以後
リーン側での排ガスと記す。)中に含まれるHC浄化能
を低下させてしまう。バリウム酸化物、炭酸塩について
も同様である。この現象は特に自動車三元用触媒として
用いる場合に非常に大きな問題点でラシ。In general, when used together with Pt or Pd, lanthanum oxide can reduce Pt in NOx contained in exhaust gas (hereinafter referred to as rich side exhaust gas) emitted when operating in a region where the fuel ratio is higher than the stoichiometric air-fuel ratio. It significantly improves the purification characteristics of Pd, but at the same time reduces the ability to purify HC contained in the exhaust gas (hereinafter referred to as exhaust gas on the lean side) that is generated when the engine is operated under conditions where the fuel is leaner than the stoichiometric air-fuel ratio. Put it away. The same applies to barium oxide and carbonate. This phenomenon is a very serious problem especially when used as an automobile three-way catalyst.
前述した従来のコージライト等の焼結型触媒担体を用い
た触媒体ではこの問題点の解決が難しかった。一方前述
したように1本発明の触媒担体は固体塩基触媒能を有す
るアルミン酸石灰を含むため、これによるHC浄化作用
によシリーン側排ガスでも、HC浄化能の低下のない触
媒体を得ることができる。さらにランタン酸化物、バリ
ウム酸化物。It was difficult to solve this problem with the conventional catalyst body using a sintered catalyst carrier such as cordierite as described above. On the other hand, as mentioned above, since the catalyst carrier of the present invention contains aluminate lime having solid base catalytic ability, it is possible to obtain a catalyst body without a decrease in HC purifying ability even in the exhaust gas on the cylinder side due to the HC purifying effect thereof. can. In addition, lanthanum oxide and barium oxide.
バリウム炭酸塩等の助触媒物質とアルミン酸石灰を同時
に用いることによシ低温での触媒活性が非常に改善され
る。さらにセリウム酸化物あるいは酸化チタンを上記助
触媒物質とともに用いることによりさらに低温触媒活性
が増大する。特に、セリウム酸化物は、酸素ストレージ
能を有するため、自動車用触媒として用いた場合、その
ウィンドウ幅も広いものが得られ望ましいものである。The simultaneous use of cocatalyst materials such as barium carbonate and lime aluminate greatly improves the catalytic activity at low temperatures. Furthermore, by using cerium oxide or titanium oxide together with the above-mentioned promoter, the low-temperature catalytic activity is further increased. In particular, cerium oxide has an oxygen storage ability, so when used as an automobile catalyst, it is desirable because it can provide a wide window width.
加熱によりセリウム酸化物となるセリウム化合物は、そ
の水酸化物、塩化物、酢酸塩、蓚酸塩、硫酸塩、硝酸塩
、炭酸塩、硫酸アンモニウム塩、硝酸アンモニウム塩な
どがある。セリウム酸化物の望ましい前記担体中の含有
量は6重量%以上。Cerium compounds that become cerium oxide when heated include hydroxides, chlorides, acetates, oxalates, sulfates, nitrates, carbonates, ammonium sulfate salts, and ammonium nitrate salts. The content of cerium oxide in the carrier is preferably 6% by weight or more.
63重量%以下である。It is 63% by weight or less.
酸化チタンも同様に低温触媒活性を向上させる。Titanium oxide also improves low temperature catalytic activity.
酸化チタンの作用機構は明らかではないが、一般に、チ
タンを含む複合金属酸化物には、金属酸化物半導体とし
て知られているものがあり1本発明においてもランタン
とチタンとの金属酸化物半導体が一部形成されることに
よシ、これが助触媒的に働いて触媒活性を向上させてい
るものと考えられる。用いる酸化チタンはアナターゼ型
およびルチル型どちらの構造であっても良好な結果が得
られる。酸化チタンの好ましい担体中の含有量は、2重
量%以上、50重量%以下である。Although the mechanism of action of titanium oxide is not clear, in general, some composite metal oxides containing titanium are known as metal oxide semiconductors. In the present invention, a metal oxide semiconductor of lanthanum and titanium is also used. It is thought that this partially forms, acting as a co-catalyst and improving the catalytic activity. Good results can be obtained regardless of whether the titanium oxide used has an anatase or rutile structure. The content of titanium oxide in the carrier is preferably 2% by weight or more and 50% by weight or less.
本発明の前記担体の形状は粒状、・・ニカム状等の任意
の形状を用いることができ、また成形方法も、押出成形
法、コルゲーティング法等種々の方法を用いることがで
きる。The shape of the carrier of the present invention can be any shape such as granular, .
本発明で用いる白金族触媒物質としては、Pj。The platinum group catalyst material used in the present invention is Pj.
Pd、Rh、Ruがあり、還元・分解してこれらの金属
となる白金族金属化合物を水またはアルコール等の溶媒
に溶解させて用いることができる。There are Pd, Rh, and Ru, and platinum group metal compounds that become these metals by reduction and decomposition can be used by dissolving them in a solvent such as water or alcohol.
なお、前記の担体は耐熱性基骨材を含むことが望ましい
。これは、触媒体の機械的強度、耐熱強度の向上が図れ
るためであシ、耐熱性基骨材には、シリカ系基骨材、シ
リカアルミナ系基骨材、アルミナ系基骨材があり、鉱物
として、ケイ酸塩鉱物、ムライト、コランダム、シリマ
ナイト、β−アルミナ、さらにはマグネシア、クロム、
ドロマイト、マゲクロ、クロマグ系のものを用いること
ができる。Note that the carrier desirably contains a heat-resistant base aggregate. This is because the mechanical strength and heat-resistant strength of the catalyst body can be improved. Heat-resistant base aggregates include silica-based base aggregate, silica-alumina-based base aggregate, and alumina-based base aggregate. Minerals include silicate minerals, mullite, corundum, sillimanite, β-alumina, as well as magnesia, chromium,
Dolomite, Magex black, and Kuromag type materials can be used.
実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.
〈実施例1〜8〉
酸化ランタン(La205) 、 酸化バリウム、炭酸
バリウム、アルミン酸石灰、酸化チタン、酸化セリウム
(Ce0z)および耐熱性基骨材としてのシリカを第1
表に示す組成で配合し、適当量の水を加えて混練した後
、セル壁厚0.26mtx、セル密度400セル/ i
n のハニカム形状に押出成形し、養生・乾燥の後8
00℃で収焼して担体とした。<Examples 1 to 8> Lanthanum oxide (La205), barium oxide, barium carbonate, lime aluminate, titanium oxide, cerium oxide (Ce0z), and silica as a heat-resistant base aggregate were used as the first
After blending with the composition shown in the table, adding an appropriate amount of water and kneading, the cell wall thickness is 0.26 mtx and the cell density is 400 cells/i.
After extrusion molding into a honeycomb shape of n, and curing and drying,
It was burnt off at 00°C and used as a carrier.
この担体に塩化白金酸を用いて白金を担体1 ccあた
り1mg担持して実施例1〜8の触媒体を得た。The catalyst bodies of Examples 1 to 8 were obtained by supporting 1 mg of platinum per 1 cc of the carrier using chloroplatinic acid.
〈比較例1〜3〉
第1表に示す比較例1.2の組成の担体を実施例1〜8
と同様の方法により作り、これに前記実施例と同量の白
金量を担持して比較例1.2の触媒体を得た。またアル
ミナ被覆層を有するコージライトハニカム成形体(平均
セル壁厚0.26mm、セル密度400セル/i、2)
上に、硝酸ランタンを用いて、その熱分解により酸化ラ
ンタンとして成形体重量に対して2重量係となる量担持
した後、白金を前記実施例と同様にして担体1C口あた
り1 mg担持した比較例3の触媒体を得た。<Comparative Examples 1 to 3> The carrier having the composition of Comparative Example 1.2 shown in Table 1 was used in Examples 1 to 8.
A catalyst body of Comparative Example 1.2 was obtained by supporting the same amount of platinum as in the above example. In addition, a cordierite honeycomb molded body with an alumina coating layer (average cell wall thickness 0.26 mm, cell density 400 cells/i, 2)
Comparison in which lanthanum nitrate was used and thermally decomposed to support lanthanum oxide in an amount equal to 2 parts by weight relative to the molded weight, and then 1 mg of platinum was supported per 1C of the support in the same manner as in the above example. A catalyst body of Example 3 was obtained.
(以下余 白)
〈実施例9〜11〉
実施例1の担体に用いたノ・ニカム成形体に、白金、パ
ラジウム、ロジウムまたはルテニウムを第2表に示す量
だけ担持した実施例9〜11の触媒体を調製した。それ
ぞれの白金族金属の担持には。(The following is a blank space) <Examples 9 to 11> Examples 9 to 11 in which platinum, palladium, rhodium, or ruthenium was supported in the amount shown in Table 2 on the non-nicum molded body used as the carrier in Example 1. A catalyst body was prepared. For supporting each platinum group metal.
白金、パラジウムは塩化物を、ロジウム、ルテニウムに
は硝酸塩を用い、これを熱分解して白金族金属として用
いた。Chlorides were used for platinum and palladium, and nitrates were used for rhodium and ruthenium, which were thermally decomposed and used as platinum group metals.
以上で調製した各種の触媒体について1次に示す触媒性
能試験をした。すなわち、2000 ccの排気量のエ
ンジンを用い、1800rpmの回転数でトルクを調整
し、触媒入口温度がsoo℃±10℃で、触媒に対する
空間速度を5ooo。The various catalyst bodies prepared above were subjected to the following catalyst performance test. That is, an engine with a displacement of 2000 cc is used, the torque is adjusted at a rotation speed of 1800 rpm, the catalyst inlet temperature is soo°C ± 10°C, and the space velocity relative to the catalyst is 5ooo.
hr として、エンジンを運転した。この条件で。I ran the engine as hr. Under these conditions.
空燃比(A/F ト以下略す)を14.0〜15.0ま
で変化させ、それぞれのム/F値での三元成分(−酸化
炭素C以下GOと記す) 、 HQ 、 No、)の浄
化能を測定した。第2表に、それぞれの触媒体について
、リンチ側(14,4A/F)でのNOx浄化率および
リーン側(14,8A/F)でのHC。The air-fuel ratio (A/F is abbreviated below) was varied from 14.0 to 15.0, and the ternary components (-carbon oxide C, hereinafter abbreviated as GO), HQ, No,) at each M/F value were determined. Purification ability was measured. Table 2 shows the NOx purification rate on the lynch side (14,4 A/F) and the HC on the lean side (14,8 A/F) for each catalyst body.
CO浄化率を示す。It shows the CO purification rate.
次に、021 %、Go 1000 ppm 、 水
分10チの試験ガスを調製し、これを、200℃から4
00℃まで種々の温度に変化させた触媒体に、空間速度
50000hr で流し、その時のGO浄化率が50%
となる触媒体温度2Tso(℃)として測定した。その
結果も第2表に示す。Next, a test gas containing 0.21% Go, 1000 ppm Go, and 10% moisture was prepared, and this was heated from 200°C to 400°C.
The GO purification rate was 50% when the flow was carried out at a space velocity of 50,000 hr through a catalyst body whose temperature was varied up to 00°C.
The catalyst body temperature was measured as 2Tso (°C). The results are also shown in Table 2.
(以 下金 白)
第2表よシ明らかなように、本発明のアルミン酸石灰と
ランタン酸化物、前記バリウム化合物を用いた触媒体は
、従来のアルミン酸石灰を用いた触媒体比較(例1,2
)に比べ、リッチ側での白金によるNOx浄化能を著し
く高め、従来この領域でのNOx浄化能をロジウムに頼
っていたものを、白金、パラジウムで多くを代替するこ
とが可能であると考えられる。パラジウムについても同
様の浄化性能の向上が得られた。また本発明のランタン
、バリウムの酸化物および炭酸バリウムと。(Hereinafter referred to as "Kinshiro") As is clear from Table 2, the catalyst body using lime aluminate, lanthanum oxide, and the barium compound of the present invention is superior to the catalyst body using conventional lime aluminate (example). 1,2
), the NOx purification ability of platinum on the rich side is significantly improved, and it is thought that it is possible to largely replace the NOx purification ability of rhodium in this region with platinum and palladium. . A similar improvement in purification performance was obtained with palladium. Also, lanthanum, barium oxide and barium carbonate of the present invention.
酸化チタンあるいは酸化セリウムを同時に用いることに
よシ、よシ触媒体の触媒活性を向上することができGO
に対する活性化温度を30〜40’C低減することが可
能であった。By using titanium oxide or cerium oxide at the same time, the catalytic activity of the catalyst can be improved.
It was possible to reduce the activation temperature by 30-40'C.
また従来のコージライト担体を用いランタンでの
被覆した触媒体が、リーン側−p”Hc、Goに対する
触媒活性が低いのに比べ、本発明のアルミン酸石灰を用
いた触媒体は、高い活性を示した。Furthermore, while the conventional catalyst body coated with lanthanum using a cordierite carrier has low catalytic activity towards lean side p''Hc, Go, the catalyst body using lime aluminate of the present invention has high activity. Indicated.
また、白金および/あるいはパラジウムとともにロジウ
ムあるいはルテニウムを用いることにより、さらに良好
な触媒体を得ることができた。Further, by using rhodium or ruthenium together with platinum and/or palladium, an even better catalyst could be obtained.
〈実施例12〜22〉
アルミン酸石灰の担体中の含有量を、第3表に示すよう
に種々変化させ、前記実施例1と同様に成形体を調製し
、触媒物質を担持しない状態で、セル方向の圧縮強度(
A軸圧縮強度)および耐スポーリング性試験をした。耐
スポーリング試験は、500℃より60℃おきに900
℃まで行ない、成形体に最初に亀裂が入った時の炉内温
度を耐スポーリング温度(℃)とした。結果を第3表に
示す。<Examples 12 to 22> The content of lime aluminate in the carrier was varied as shown in Table 3, and molded bodies were prepared in the same manner as in Example 1, with no catalyst material supported. Compressive strength in cell direction (
A-axis compressive strength) and spalling resistance tests were conducted. Spalling resistance test: 900°C every 60°C from 500°C
The temperature inside the furnace at which cracks first appeared in the compact was defined as the spalling resistance temperature (°C). The results are shown in Table 3.
(以 下 余 白)
第3表よシ明らかなように、アルミン酸石灰の成形体中
での含有量が15重量%未満では圧縮強度が低く、また
60重量%を超えると耐スポーリング性が低下した。(Margin below) As is clear from Table 3, if the content of lime aluminate in the compact is less than 15% by weight, the compressive strength will be low, and if it exceeds 60% by weight, the spalling resistance will be poor. decreased.
〈実施例23〉
成形体中のアルミン酸石灰の含有量を30重量%とし、
酸化ランタンの含有量を0.1〜7o重量%まで変化さ
せ、残部をシリカとした種々の成形体を実施例1と同様
にして調製し、それぞれに白金を成形体1ccあたり1
mg担持した。それぞれについて、実施例1に対して行
なったと同様の14.4ム/FにおけるNOx浄化能、
14.8 A/FにおけるHC浄化能を試験した。その
結果を図に示した。<Example 23> The content of lime aluminate in the molded body was 30% by weight,
Various molded bodies were prepared in the same manner as in Example 1, with the content of lanthanum oxide varied from 0.1 to 70% by weight and the balance being silica, and platinum was added to each 1 cc of molded body.
mg was supported. For each, the NOx purification ability at 14.4 μm/F, which was the same as that for Example 1,
14.8 HC purification ability at A/F was tested. The results are shown in the figure.
図よシ明らかなように、酸化ランタンの十分な添加効果
が得られるのは1重量%以上からであり、また60重量
%を超えるとり一ン側でのHC浄化率が低下する。した
がって、ランタン酸化物の望ましい添加量は、1重量%
以上50重量%以下である。As is clear from the figure, a sufficient addition effect of lanthanum oxide can be obtained from 1% by weight or more, and the HC purification rate decreases when the amount exceeds 60% by weight. Therefore, the desirable addition amount of lanthanum oxide is 1% by weight.
The content is not less than 50% by weight.
発明の効果
以上のように、本発明によれば、低温での触媒活性が向
上するとともに、自動車用三元触媒に用いた場合、リッ
チ側での白金、パラジウムのNOX浄化能を著しく高め
るため、ロジウム必要量の低減により、低コスト化を図
ることができる。Effects of the Invention As described above, according to the present invention, the catalytic activity at low temperatures is improved, and when used in a three-way catalyst for automobiles, the NOx purification ability of platinum and palladium on the rich side is significantly increased. By reducing the amount of rhodium required, costs can be reduced.
図は担体中に含まれる酸化ランタンの含有量に対するN
orおよびHC浄化率を示した図である。The figure shows the N content versus the lanthanum oxide content in the carrier.
It is a figure showing or and HC purification rate.
Claims (4)
ウムよりなる群より選ばれる1種以上の助触媒物質と、
結合剤のアルミン酸石灰より構成された担体に、白金族
触媒物質を担持したことを特徴とする排ガス浄化用触媒
体。(1) one or more promoter substances selected from the group consisting of lanthanum oxide, barium oxide, and barium carbonate;
A catalyst body for exhaust gas purification, characterized in that a platinum group catalyst substance is supported on a carrier composed of lime aluminate as a binder.
上、50重量%以下である特許請求の範囲第1項記載の
排ガス浄化用触媒体。(2) The catalyst body for exhaust gas purification according to claim 1, wherein the carrier has a cocatalyst substance content of 1.0% by weight or more and 50% by weight or less.
以上、50重量%以下である特許請求の範囲第1項記載
の排ガス浄化用触媒体。(3) The lime aluminate content in the carrier is 15% by weight.
The catalyst body for exhaust gas purification according to claim 1, wherein the amount is 50% by weight or less.
少なくとも一方を含む特許請求の範囲第1項記載の排ガ
ス浄化用触媒体。(4) The exhaust gas purifying catalyst body according to claim 1, wherein the carrier contains at least one of cerium oxide and titanium oxide.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60021207A JPS61181538A (en) | 1985-02-06 | 1985-02-06 | Catalyst for purifying exhaust gas |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60021207A JPS61181538A (en) | 1985-02-06 | 1985-02-06 | Catalyst for purifying exhaust gas |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS61181538A true JPS61181538A (en) | 1986-08-14 |
| JPH057066B2 JPH057066B2 (en) | 1993-01-28 |
Family
ID=12048542
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60021207A Granted JPS61181538A (en) | 1985-02-06 | 1985-02-06 | Catalyst for purifying exhaust gas |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS61181538A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993007363A1 (en) * | 1991-10-03 | 1993-04-15 | Toyota Jidosha Kabushiki Kaisha | Device for purifying exhaust of internal combustion engine |
| EP0582917A1 (en) * | 1992-08-04 | 1994-02-16 | Toyota Jidosha Kabushiki Kaisha | An exhaust gas purification device for an engine |
| EP0658370A1 (en) * | 1993-12-17 | 1995-06-21 | Toyota Jidosha Kabushiki Kaisha | Process for producing exhaust-gases-purifying catalyst |
| US5951956A (en) * | 1992-03-23 | 1999-09-14 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Catalyst for purifying exhaust gas and method for purifying exhaust gas |
| FR2802917A1 (en) * | 1999-12-28 | 2001-06-29 | Rhodia Terres Rares | COMPOSITION BASED ON LANTHANUM OXIDE, IN EXTRUDED FORM, METHOD FOR PREPARATION AND USE IN CATALYSIS |
-
1985
- 1985-02-06 JP JP60021207A patent/JPS61181538A/en active Granted
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993007363A1 (en) * | 1991-10-03 | 1993-04-15 | Toyota Jidosha Kabushiki Kaisha | Device for purifying exhaust of internal combustion engine |
| US5473887A (en) * | 1991-10-03 | 1995-12-12 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of internal combustion engine |
| US5951956A (en) * | 1992-03-23 | 1999-09-14 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Catalyst for purifying exhaust gas and method for purifying exhaust gas |
| EP0582917A1 (en) * | 1992-08-04 | 1994-02-16 | Toyota Jidosha Kabushiki Kaisha | An exhaust gas purification device for an engine |
| US5472673A (en) * | 1992-08-04 | 1995-12-05 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device for an engine |
| EP0658370A1 (en) * | 1993-12-17 | 1995-06-21 | Toyota Jidosha Kabushiki Kaisha | Process for producing exhaust-gases-purifying catalyst |
| US5547913A (en) * | 1993-12-17 | 1996-08-20 | Toyota Jidosha Kabushiki Kaisha | Process for producing exhaust-gases-purifying catalyst |
| FR2802917A1 (en) * | 1999-12-28 | 2001-06-29 | Rhodia Terres Rares | COMPOSITION BASED ON LANTHANUM OXIDE, IN EXTRUDED FORM, METHOD FOR PREPARATION AND USE IN CATALYSIS |
| WO2001047830A1 (en) * | 1999-12-28 | 2001-07-05 | Rhodia Terres Rares | Lanthanum oxide-based composition, in extruded form, preparation method and use thereof in catalysis |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH057066B2 (en) | 1993-01-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3786954B2 (en) | Layered catalyst composite | |
| US5531972A (en) | Staged three-way conversion catalyst and method of using the same | |
| US6045764A (en) | Exhaust gas purifying method and catalyst used therefor | |
| US4157316A (en) | Polyfunctional catalysts | |
| US6248688B1 (en) | Catalyst composition containing oxygen storage components | |
| US5139992A (en) | Three-way conversion catalyst including a ceria-containing zirconia support | |
| US5981427A (en) | Catalyst composition | |
| JP3953630B2 (en) | Automobile exhaust catalyst and its production method | |
| US20080045404A1 (en) | Catalyst containing little or no rhodium for purifying exhaust gases of internal combustion engine | |
| KR100240976B1 (en) | Catalyst for purifying exhaust gas from internal combustion engine and purifying method thereof | |
| WO2010010747A1 (en) | Catalyst device for exhaust gas purification and method of purifying exhaust gas | |
| JPS60110334A (en) | Preparation of catalyst for purifying exhaust gas | |
| US4552733A (en) | Polyfunctional catalysts and method of use | |
| JPWO2006046316A1 (en) | Exhaust gas purification catalyst | |
| JPH03207445A (en) | Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst | |
| JP3297825B2 (en) | Exhaust gas purification catalyst | |
| EP0427493A2 (en) | Three way conversion catalyst including a ceria-containing zirconia support | |
| JPH08117600A (en) | Exhaust gas purifying catalyst and method for producing the same | |
| JPS61181538A (en) | Catalyst for purifying exhaust gas | |
| CN113631261A (en) | Exhaust gas purification catalyst device | |
| JP4382180B2 (en) | Exhaust gas purification catalyst | |
| JPH07171392A (en) | Exhaust gas purification catalyst | |
| JPS6214337B2 (en) | ||
| JP4503314B2 (en) | Exhaust gas purification catalyst | |
| JP2823251B2 (en) | Exhaust gas purifying catalyst and method for producing exhaust gas purifying catalyst |