[go: up one dir, main page]

JPS61183142A - Glass capillary manufacturing method - Google Patents

Glass capillary manufacturing method

Info

Publication number
JPS61183142A
JPS61183142A JP2412885A JP2412885A JPS61183142A JP S61183142 A JPS61183142 A JP S61183142A JP 2412885 A JP2412885 A JP 2412885A JP 2412885 A JP2412885 A JP 2412885A JP S61183142 A JPS61183142 A JP S61183142A
Authority
JP
Japan
Prior art keywords
gas
glass
halogen
base material
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2412885A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Hiromi Hidaka
日高 啓視
Takeru Fukuda
福田 長
Koichi Inada
稲田 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2412885A priority Critical patent/JPS61183142A/en
Publication of JPS61183142A publication Critical patent/JPS61183142A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a capillary for chromatography contg. a stationary phase with sufficient adhesive power and having a long life and high resolution by sintering a round rod-shaped preform of glass soot formed by a VAD method in the presence of a specified gas and by boring the resulting base material. CONSTITUTION:A round rod-shaped porous preform of SiO2 glass soot is formed on the tip of a starting rod by a VAD method, and it is sintered in an atmosphere of a gas contg. S and halogen such as SOCl2 or S2Cl2 mixed with an inert gas such as N2. A gas contg. S such as SO2, SO3 or other S oxide and a gas contg. halogen such as Cl2, Br2 or F2 may be used in place of the gas contg. S and halogen. The resulting sintered body is bored to form a cylindrical glass pipe and a glass capillary is obtd. by melt-spinning the pipe.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、クロマトグラフ用の石英ガラスキヤピラリ
イカラムに用いられるガラスキヤピラリイを製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a glass capillary used in a quartz glass capillary column for chromatography.

〔従来技術とその問題点〕[Prior art and its problems]

近時、クロマトグラフ用カラふとして、ステンレス鋼製
カラ五忙代り、石英ガラス製のカラムが用いられつつあ
る。これは、石英ガラス製カラムが不活性であり、移動
相との相互作用が少なく、これによつ【多くの極性の大
きな化合物を高い分解能で分離することができるためで
ある。
Recently, columns made of quartz glass have been used as columns for chromatography instead of stainless steel columns. This is because quartz glass columns are inert and have little interaction with the mobile phase, which allows them to separate many highly polar compounds with high resolution.

しかしながら、このように優秀な石英ガラス製カラムは
、逆にその表面の不活性さのために、石英ガラス表面に
形成されたメチルシリコンなどの固定相の付着力が十分
でなく、剥離または脱落しやすく、カラムとしての寿命
が短いという問題があった。また、石英ガラス表面に水
酸基が存在すると、分解能などの性能が低下するという
問題もあった。
However, due to the inertness of the surface of such an excellent quartz glass column, the adhesion of the stationary phase such as methyl silicon formed on the quartz glass surface is insufficient, resulting in peeling or falling off. There was a problem that the column life was short. Furthermore, the presence of hydroxyl groups on the quartz glass surface causes a problem in that performance such as resolution deteriorates.

〔問題点を解決するための手段〕[Means for solving problems]

WAD法により出発基材の端部に丸棒状のSiQガラス
スートプリフォームを生長形成せしめ、ついでこのプリ
フォームなイオウおよびハロゲンを含むガスの存在下で
焼結して母材を作り、この母材に中ぐり加工を施して円
筒状母材とし、この円筒状母材を溶融紡糸してキャビラ
リイとすることにより、上記問題点を解決するようにし
た。
A round bar-shaped SiQ glass soot preform is grown on the end of the starting base material by the WAD method, and then this preform is sintered in the presence of a gas containing sulfur and halogen to create a base material. The above-mentioned problems were solved by boring a cylindrical base material into a cylindrical base material, and melt-spinning this cylindrical base material to form a cavity.

以下、この発明の詳細な説明する。The present invention will be described in detail below.

まず、VAD法によって出発棒状基材の先端に810、
ガラスよりなる丸棒状の多孔質プリフォームを形成する
。これKは、1本以上の多重管バーナニ、S lCe4
ガス、O,ガス、H,ガス、Arガスなど送給し、火炎
中で加水分解反応及び熱酸化反応を生じせしめて、81
0.ガラス微粉末を生成し、これを回転する棒状基材の
先端部に堆積してゆく通常のVAD法が採用できる。つ
いで、この多孔質プリフォームをイオウとハロゲンを含
むガス雰囲気下で焼結する。このガスには、イオウを含
むガスとハロゲンを含むガスあるいはイオウとハロゲン
を一諸に含むガスが用いられ、イオウとハロゲンとが同
時に存在する雰囲気下で加熱処理される。イオウを含む
ガスとしては、石英ガラス表面に活性基としてSO3基
を生成することからso、、so、などのイオウ酸化物
ガスが王く用いられる。また、ハロゲンを含むガスとし
ては主に脱水効果の高い(1,ガス、Brlガス、F、
ガスなどが好ましく、イオウとへロゲ7を一諸に含むガ
スとしては、SOCg、(塩化チオニル)ガス、S*C
6*ガス、5C14ガス、80、(1,ガス、5tOs
CIl* ガス、クロロスルホン酸ガス、C8cg、ガ
ス、5OBrl ガス、SFa ガスなどがある。これ
らのガスは、N、。
First, 810,
A round bar-shaped porous preform made of glass is formed. This K is one or more multi-tube burnani, S lCe4
81 by supplying gas, O, gas, H, gas, Ar gas, etc. to cause a hydrolysis reaction and a thermal oxidation reaction in a flame.
0. A normal VAD method can be used in which fine glass powder is generated and deposited on the tip of a rotating rod-shaped base material. This porous preform is then sintered in a gas atmosphere containing sulfur and halogen. As this gas, a gas containing sulfur and a gas containing halogen, or a gas containing both sulfur and halogen is used, and the heat treatment is performed in an atmosphere where sulfur and halogen are present simultaneously. As the sulfur-containing gas, sulfur oxide gases such as SO, SO, etc. are often used because they generate SO3 groups as active groups on the surface of quartz glass. In addition, gases containing halogens mainly have a high dehydration effect (1 gas, Brl gas, F,
Gases are preferable, and gases containing sulfur and hydrogen 7 include SOCg, (thionyl chloride) gas, S*C
6*Gas, 5C14 Gas, 80, (1, Gas, 5tOs
Examples include CIl* gas, chlorosulfonic acid gas, C8cg gas, 5OBrl gas, and SFa gas. These gases are N.

Ar、Heなどの不活性ガスと混合されて混合ガスとさ
れたのち、母管内に送られる。不活性ガス −のうちで
は、H・が熱伝導率とガスの拡散の点で特に好適である
。混合ガス中のイオウな含むガスの濃度は、SO,ガス
の場合で5〜20そル%とされる。5モル%未満では十
分な活性基を形成することはできず、20モ/I/%を
越えるとSOよが過剰となり、焼結ガラス中和気泡が残
ることがあり、不都合となる。また、ハロゲンを含むガ
スの濃度はCI、ガスの場合、1〜2モル%とされる。
After being mixed with an inert gas such as Ar or He to form a mixed gas, it is sent into the main pipe. Among the inert gases, H. is particularly suitable in terms of thermal conductivity and gas diffusion. The concentration of sulfur-containing gas in the mixed gas is 5 to 20% in the case of SO gas. If it is less than 5 mol %, sufficient active groups cannot be formed, and if it exceeds 20 mol/I/%, SO may be excessive and neutralization bubbles may remain in the sintered glass, which is disadvantageous. Further, the concentration of the gas containing halogen is 1 to 2 mol % in the case of CI gas.

1モル%未満では十分な脱水酸基効果が得られず、2モ
ル%を越えると、過こ剰となり、焼結ガラス中に残留す
る恐れがある。焼結の温度は、150()−1700℃
の810.ガラス微粉末が溶融して焼結する温度とされ
る。また、時間は処理の程度によって異るが、一般には
5〜40分程度で十分である。
If it is less than 1 mol %, a sufficient dehydroxyl group effect cannot be obtained, and if it exceeds 2 mol %, it may be excessive and may remain in the sintered glass. Sintering temperature is 150()-1700℃
810. This is the temperature at which fine glass powder melts and sinters. Further, although the time varies depending on the degree of treatment, generally about 5 to 40 minutes is sufficient.

ついで、この焼結体を中ぐり加工して円筒状ガラス母管
とし、これを、そのまま溶融紡糸し、ガラスキヤピラリ
イとする。或は上記ガラス母管の上に石英ガラス管をジ
ャケラティングした後溶融紡糸してもよい。
Next, this sintered body is bored into a cylindrical glass mother tube, which is then melt-spun to form a glass capillary. Alternatively, a quartz glass tube may be jacketed onto the glass mother tube and then melt-spun.

かくして得られたキャピラリイは、510tを主成分と
するガラスよりなり、かつこのガラスは水酸基が除去さ
れ、SO8基が生成した状態となっている。このSO3
基はガラス中に適度に分布しておりメチルシリコンなど
の固定相の付着力向上に寄与する。特忙、ここではイオ
ウとハロゲンとを同時に存在せしめて加熱処理している
ので、水酸基の水素が取り除かれた活性残基にイオウ化
合物が効果的に結合し、SO1基の効率的な生成が行わ
れる。
The capillary thus obtained is made of glass containing 510t as a main component, and this glass is in a state in which hydroxyl groups have been removed and SO8 groups have been generated. This SO3
The groups are moderately distributed in the glass and contribute to improving the adhesion of stationary phases such as methyl silicon. Because sulfur and halogen are present at the same time during heat treatment, the sulfur compound effectively binds to the active residue from which the hydrogen of the hydroxyl group has been removed, resulting in efficient generation of SO1 group. be exposed.

このガラスキャビラリイは、乾燥状態を保ったままメチ
ルシリコンなどを内表面に塗布し、固定相を形成してク
ロマトグラフ用カラふとする。
The interior surface of this glass cavity is coated with methyl silicone while it is kept dry to form a stationary phase and used as a chromatographic column.

〔実験例〕[Experiment example]

VAD法により径160稍のS10.からなる多孔質プ
リフォームを作製した。このプリフォームをsO,ガス
7モル%、C6,ガス1モル%を含むH・ガスを流しつ
つ1650℃で焼結した。
S10. of diameter 160mm by VAD method. A porous preform consisting of This preform was sintered at 1650° C. while flowing H gas containing 7 mol% of sO gas and 1 mol% of C6 gas.

この焼結体を軸方向に穿孔加工し、外径50mI+I。This sintered body was perforated in the axial direction to have an outer diameter of 50 mI+I.

内径3a騙の円筒体とし、これに内径80謂、外径55
鶴の石英ガラス管をジャケラティングしたうえ、溶融紡
糸して常法により管内径を増加した後、内径200μm
、外径300μmのガラスキヤピラリイを得た。このキ
ャビラリイよりなるカラムを用いて混合香料を分析した
ところ、200以上のピークかえられた。また寿命は3
00℃で5000時間以上であった。
It is a cylindrical body with an inner diameter of 3a, and an inner diameter of 80 mm and an outer diameter of 55 mm.
After jackering a Tsuru quartz glass tube and increasing the inner diameter by melt spinning using a conventional method, the inner diameter was 200 μm.
A glass capillary with an outer diameter of 300 μm was obtained. When a mixed fragrance was analyzed using a column made of this cavity, more than 200 peaks were detected. Also, the lifespan is 3
The temperature was 5000 hours or more at 00°C.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明のガラスキヤピラリイの
製造方法は、VAD法により810.ガラススートを形
成し、このスートをイオウおよびハロゲンを含むガスの
存在下で焼結し、この焼結ガラスをからガラス母管をつ
くり、これを溶融紡糸するものであるので、得られるガ
ラスキャビラリイの内表面は水酸基が除去され、イオウ
化合物による活性基が適宜の濃度で生成されたものとな
る。よって、このキャピラリイよりなるクロマトグラフ
用カラムはメチルシリコンなどの固定相の付着力が向上
し、剥離、脱落がなく、長寿命となり、かつ高分解能を
発揮するものとなる。
As explained above, the method for manufacturing a glass capillary of the present invention uses 810. A glass soot is formed, this soot is sintered in the presence of a gas containing sulfur and halogen, a glass mother tube is made from this sintered glass, and this is melt-spun. The hydroxyl groups are removed from the inner surface, and active groups from sulfur compounds are generated at an appropriate concentration. Therefore, a chromatographic column made of this capillary has improved adhesion of a stationary phase such as methyl silicon, does not peel or fall off, has a long life, and exhibits high resolution.

Claims (2)

【特許請求の範囲】[Claims] (1)VAD法により出発基材の端部に丸棒状のSiO
_2ガラススートプリフオームを生長形成せしめ、つい
でこのプリフオームをイオウおよびハロゲンを含むガス
の存在下で焼結して母材を作り、この母材に中ぐり加工
を施して円筒状母材とし、この円筒状母材を溶融紡糸す
ることを特徴とするガラスキヤピラリイの製造方法。
(1) Round rod-shaped SiO is attached to the end of the starting substrate using the VAD method.
_2 A glass soot preform is grown and formed, and then this preform is sintered in the presence of a gas containing sulfur and halogen to form a base material, and this base material is bored to form a cylindrical base material. A method for manufacturing a glass capillary, characterized by melt-spinning a cylindrical base material.
(2)円筒状母材上にガラス管をジヤケツテイングした
後溶融紡糸することを特徴とする特許請求の範囲第1項
記載のガラスキヤピラリイの製造方法。
(2) A method for producing a glass capillary according to claim 1, characterized in that the glass tube is jacketed onto a cylindrical base material and then melt-spun.
JP2412885A 1985-02-09 1985-02-09 Glass capillary manufacturing method Pending JPS61183142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412885A JPS61183142A (en) 1985-02-09 1985-02-09 Glass capillary manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412885A JPS61183142A (en) 1985-02-09 1985-02-09 Glass capillary manufacturing method

Publications (1)

Publication Number Publication Date
JPS61183142A true JPS61183142A (en) 1986-08-15

Family

ID=12129671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412885A Pending JPS61183142A (en) 1985-02-09 1985-02-09 Glass capillary manufacturing method

Country Status (1)

Country Link
JP (1) JPS61183142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
US6748767B2 (en) 1998-07-02 2004-06-15 Lucent Technologies Inc. Drawing an optical fiber from a sol-gel preform treated with a non-oxygenated sulfur halide
CN1298649C (en) * 2002-03-14 2007-02-07 日本电气硝子株式会社 Glass preforming blank and its prodn. method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748767B2 (en) 1998-07-02 2004-06-15 Lucent Technologies Inc. Drawing an optical fiber from a sol-gel preform treated with a non-oxygenated sulfur halide
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
WO2002026646A3 (en) * 2000-09-27 2002-10-31 Corning Inc Process for drying porous glass preforms
CN1298649C (en) * 2002-03-14 2007-02-07 日本电气硝子株式会社 Glass preforming blank and its prodn. method

Similar Documents

Publication Publication Date Title
JP2005537210A (en) Low loss optical fiber and manufacturing method thereof
BG30765A3 (en) Method for obtaining of silver cataljst, used for etilene oxide obtaining
JPS61183142A (en) Glass capillary manufacturing method
US3778387A (en) Activated carbon with antioxidant properties and a method of preparing the same
US4859224A (en) Method of manufacturing glass or ceramic bodies
CA1129175A (en) Sulfur and sulfur compounds oxidation process
KR860002430A (en) Manufacturing method of low loss optical fiber
JPH1045474A (en) Production of graphite material coated with pyrolyzed carbon
JPS61183141A (en) Production of glass capillary
Culmo Automatic microdetermination of carbon, hydrogen, and nitrogen: Improved combustion train and handling techniques
JP2897958B2 (en) Amorphous alloy catalyst for exhaust gas purification
KR900005537A (en) Alkali metal steam distributor
KR920013523A (en) Impregnation type cathode manufacturing method
O'Keefe et al. Comparison of concentration techniques for 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin
JPS61163144A (en) Manufacturing method of quartz glass capillary
JP2604466B2 (en) Method for producing rare earth element doped quartz glass
JPH11246278A (en) Method for producing inorganic foam
KR900702315A (en) Heat pipes using hydrogen oxidation means
RU99121644A (en) METHOD FOR PRODUCING SUPERCONDUCTING WIRE
FR2521973A1 (en) PROCESS FOR PURIFYING URANIUM HEXAFLUORIDE CONTAINING TRACES OF PLUTONIUM FLUORIDE AND / OR NEPTUNIUM FLUORIDE
JPS6118454Y2 (en)
SU1502535A1 (en) Method of producing granulated electrocorundum
JPS5727947A (en) Glass tube
SU575856A1 (en) Method of purifying boron nitride
JP2002348174A (en) Heat generation material mainly composed of MoSi2 having a low oxygen diffusible glassy film