[go: up one dir, main page]

JPS61195133A - Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer - Google Patents

Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer

Info

Publication number
JPS61195133A
JPS61195133A JP3457885A JP3457885A JPS61195133A JP S61195133 A JPS61195133 A JP S61195133A JP 3457885 A JP3457885 A JP 3457885A JP 3457885 A JP3457885 A JP 3457885A JP S61195133 A JPS61195133 A JP S61195133A
Authority
JP
Japan
Prior art keywords
olefin polymer
gel
solvent
alpha
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3457885A
Other languages
Japanese (ja)
Other versions
JPH0471416B2 (en
Inventor
Koichi Kono
公一 河野
Shoichi Mori
森 省一
Kenji Miyasaka
宮坂 健司
Joichi Tabuchi
田渕 丈一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP3457885A priority Critical patent/JPS61195133A/en
Priority to DE8686301047T priority patent/DE3676211D1/en
Priority to EP86301047A priority patent/EP0193318B1/en
Priority to US06/832,916 priority patent/US4734196A/en
Publication of JPS61195133A publication Critical patent/JPS61195133A/en
Publication of JPH0471416B2 publication Critical patent/JPH0471416B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:A finely porous, uniform, thin, and high-strength film having a large number of fine through holes with a narrow distribution, by drawing ultra-high- molecular-weight olefin gel in a high draw ratio. CONSTITUTION:A finely porous membrane consisting of an alpha-olefin polymer having >=5X10<5>, preferably 1X10<6>-15X10<6> alpha-olefin polymer, having through holes with 0.01-1mum average pore diameter and 30-90% void, stretched twice, preferably 5-20 times, drawn <=10 times, preferably 25-200 times in face draw ratio. Polypropylene is used as the alpha-olefin. Gel molded from a solution of the alpha-olefin polymer is subjected to solvent removal treatment, the alpha-olefin polymer carried in the gelatinous molded article is adjusted to a fixed amount and the molded article is drawn, to remove the remaining solvent. The amount of the solvent removed from the gelatinous molded article is at least 10wt%, and the amount of the alpha-olefin polymer contained in the gelatinous molded article is 10-90wt%.

Description

【発明の詳細な説明】 本発明は、超高分子量α−オレフィン1合体微多孔膜に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microporous membrane incorporating one ultra-high molecular weight α-olefin.

従来の技術 多孔質膜は、例えば電池用セパレーター、電解コンデン
サー用隔膜、各種フィルター、透湿性防水衣料など各種
の用途に用いられているが、最近、機器の小型軽量化お
よび性卵向上をはかるために、より薄く強度の向上が要
求されている。
Conventional technologyPorous membranes are used in a variety of applications, such as battery separators, electrolytic capacitor diaphragms, various filters, and moisture-permeable waterproof clothing.Recently, however, porous membranes have been used to reduce the size and weight of equipment and improve sexual performance. Therefore, there is a demand for thinner and improved strength.

a−オレフィン重合体の代表例であるポリプロピレンの
多孔膜の製造方法としては、例えばポリプロピレンに無
機化合物を配合し、温度勾配のある領域で高剪断力をか
けてキャストし、このキャストフィルムt−延伸する方
法(特開昭58−74327号公報)がある。しかし、
この方法で得られる多孔膜は、分子量が50万未満のポ
リプロピレンが用いられているため延伸による薄膜化お
よび高強度化には限界があった。
As a method for producing a porous membrane of polypropylene, which is a typical example of an a-olefin polymer, for example, polypropylene is blended with an inorganic compound, cast under high shear force in an area with a temperature gradient, and the cast film is t-stretched. There is a method (Japanese Unexamined Patent Publication No. 74327/1983). but,
Since the porous membrane obtained by this method uses polypropylene with a molecular weight of less than 500,000, there is a limit to how thin the membrane can be made and the strength can be increased by stretching.

また、農の高強度および高弾性率が期待される超高分子
量ポリプロピレンは、通常の分子tt有するポリプロピ
レンに比べて分子鎖のからみが著しく、従来の押出成形
による延伸薄膜化は困難であった。
In addition, ultra-high molecular weight polypropylene, which is expected to have high strength and high elastic modulus, has significantly entangled molecular chains compared to normal polypropylene having a tt molecule, making it difficult to stretch into a thin film using conventional extrusion molding.

一方、超高分子量ポリプロピレンの成形物の製造方法と
しては、例えば実質的にポリエチレンまたはポリプロピ
レンである超高分子量熱可塑結晶性重合物を非揮発性溶
剤に溶解し、この溶液からゲルを成形し、この非揮発性
溶剤を含むゲルまたはゲル中に含1れる溶剤を揮発性溶
剤で抽出除去した乾燥ゲルを加熱延伸する実質的に繊維
である熱可塑性形状物品の#進方法(特開昭58−52
28号公報)が提案されている。しかし、この方法では
、超高分子量α−オレフィン重合体から微細で分布の狭
い多数の貫通孔を有し、均一で高倍率延伸の微多孔膜社
得られない。
On the other hand, a method for producing a molded article of ultra-high molecular weight polypropylene includes, for example, dissolving an ultra-high molecular weight thermoplastic crystalline polymer that is essentially polyethylene or polypropylene in a non-volatile solvent, and molding a gel from this solution. A method for producing a thermoplastic article that is substantially a fiber by heating and stretching a gel containing a non-volatile solvent or a dry gel obtained by extracting and removing the solvent contained in the gel with a volatile solvent 52
No. 28) has been proposed. However, with this method, it is not possible to obtain a microporous membrane having a large number of fine and narrowly distributed through holes from an ultra-high molecular weight α-olefin polymer, and which can be stretched uniformly and at a high magnification.

本発明は、超高分子量α−オレフィン重合体のゲルを高
倍率で延伸することによる、微細でかつ分布の狭い多数
の貫通孔を有する薄くて高強度の超高分子量α−オレフ
ィン重合体微多孔膜を得ることを目的とする。
The present invention produces a thin, high-strength, microporous ultra-high molecular weight α-olefin polymer having a large number of fine and narrowly distributed through-holes by stretching a gel of an ultra-high molecular weight α-olefin polymer at a high magnification. The purpose is to obtain a membrane.

本発明者らは、超高分子量α−オレフィン重合体微多孔
Sを得る方法について種々検討を行った結果、超高分子
量α−オレフィン重合体の溶液から成形したゲル状物を
脱溶媒処坤してゲル状成形物中に含まれるσ−オレフィ
ン重合体量の特定範囲において延伸して残存溶媒を除去
することにより、本発明の目的を達成すること全見出し
、本発明を完敗した。
The present inventors conducted various studies on methods for obtaining ultra-high molecular weight α-olefin polymer microporous S, and found that a gel-like material formed from a solution of ultra-high molecular weight α-olefin polymer was subjected to solvent removal treatment. It was discovered that the object of the present invention could be achieved by removing the remaining solvent by stretching within a specific range of the amount of σ-olefin polymer contained in the gel-like molded product, but the present invention was completely defeated.

すなわち、本発gAは、1量平均分子量が5×105 
 以上のa−オレフィン重合体からなつ、平均孔径0.
01〜1μ票 の貫通孔、空孔率30〜90%を有し、
1軸方向に2倍以上かつ面倍率でIO倍以上延伸してな
ること紮特徴とするHilII分子Jla−オレフィン
重合体微多孔層である。
That is, the gA of the present invention has a weight average molecular weight of 5 x 105
Made of the above a-olefin polymer, the average pore size is 0.
It has a through hole of 01 to 1μ, a porosity of 30 to 90%,
This is a microporous layer of a HilII molecule Jla-olefin polymer, which is characterized by being stretched 2 times or more in the uniaxial direction and IO times or more in terms of area magnification.

本発明において用いる超高分子量α−オレフィン重合体
は、重量平均分子量が5×10 以上、好ましく灯冒×
106〜15X10’の範囲のものである。重量平均分
子量が5×10 未満では、極薄で高強度の微多孔膜が
得られない。
The ultra-high molecular weight α-olefin polymer used in the present invention has a weight average molecular weight of 5×10 or more, preferably
It is in the range of 106 to 15X10'. If the weight average molecular weight is less than 5×10 5 , an ultrathin and high-strength microporous membrane cannot be obtained.

−万、上限は特に限定されないが、f5XlO’を越え
るものは延伸加工による薄膜化が雌かしい。このような
超高分子量α−オレフィン1合体としては、プロピレン
、1−ブテン、4−メチル−1−ペンテン、1−ヘキセ
ンなどを重合した結晶性の単諌重合体″!九はこれらα
−オレフィンと10モル%以下のエチレンもしくは他の
α−オレフィンとの共重合体があげられる。
-10,000, although the upper limit is not particularly limited, if it exceeds f5XlO', it is recommended to thin the film by stretching. Such an ultra-high molecular weight α-olefin 1 polymer is a crystalline monopolymer of propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, etc.
Copolymers of -olefins and 10 mol% or less of ethylene or other α-olefins can be mentioned.

これらのうちではプロピレンを主体とする超高分子量ポ
リプロピレンが好ましい。なお、上記の超高分子量α−
オレフィン重合体には必要に応じて酸化防止剤、紫外線
吸収剤、滑剤、アンチブロッキング剤、顔料、染料、無
機充填剤などの各S添加剤を本発明の目的を損わない範
囲で添加することができる。
Among these, ultra-high molecular weight polypropylene mainly composed of propylene is preferred. In addition, the above-mentioned ultra-high molecular weight α-
S additives such as antioxidants, ultraviolet absorbers, lubricants, anti-blocking agents, pigments, dyes, and inorganic fillers may be added to the olefin polymer as necessary to the extent that the purpose of the present invention is not impaired. I can do it.

本発明の超高分子lα−オレフィン重合体微多孔膜の平
均孔径は、0.01〜Iμm の範囲をもち、かつ狭い
孔径分布をもつことにより高透水性、高透気性などの優
れた透過性訃を保持しながら優れた選択透過性を兼ね備
える。平均孔径が0.01μm未満では透過速度が遅く
なり、一方1μm を越える場合/Ii選択透過性が低
下するために好ましくない。また、空孔率は30〜90
%である。を孔率が30%未満では透過速度が遅くなり
、一方90%を越えると膜の機械的強度が小さくなり実
用に供することが難かしい。さらに、微多孔膜は、1軸
方向に2倍以上、かつ面倍率で10倍以上に延伸したも
のである。
The ultrahigh molecular weight lα-olefin polymer microporous membrane of the present invention has an average pore diameter in the range of 0.01 to I μm, and has a narrow pore size distribution, which provides excellent permeability such as high water permeability and high air permeability. It has excellent selective permeability while retaining its properties. If the average pore diameter is less than 0.01 .mu.m, the permeation rate will be slow, while if it exceeds 1 .mu.m/Ii, the permselectivity will decrease, which is not preferable. In addition, the porosity is 30 to 90
%. If the porosity is less than 30%, the permeation rate will be slow, while if it exceeds 90%, the mechanical strength of the membrane will be low, making it difficult to put it to practical use. Furthermore, the microporous membrane is one that has been stretched uniaxially by a factor of 2 or more and by an area magnification of 10 times or more.

このような延伸により、大きな空孔率と高強度、例えば
破断強度100ky/cm’以上の強度を有する極薄微
多孔膜の実用化を可能とする。上記の延伸倍率に溝ない
ものは、を孔率および機械的強度が不十分であり好まし
くない。
Such stretching makes it possible to put into practical use an ultra-thin microporous membrane having a large porosity and high strength, for example, a breaking strength of 100 ky/cm' or more. Those without grooves at the above-mentioned stretching ratio are undesirable because the porosity and mechanical strength are insufficient.

本発明において原料となる超高分子量α−オレフィン重
合体の溶液は、上記の重量平均分子3l−5X105 
以上のα−オレフィン重合体を溶媒中で加熱溶加して調
製する。この溶媒としては、該α−オレフィン重合体を
十分に溶解できるものであれば%に限定されない。例え
ば、ノナン、デカン、ウンデカン、ドデカン、デカリン
、パラフィン油などの脂肪族または環式の炭化水素ある
いは沸点がこれらに対応する鉱油留分などがあげられる
が、溶媒含有状態が安定なゲル状成形物を得るためには
パラフィン油のような不揮発性の溶媒が好ましい。加熱
溶解は、該α−オレフィン重合体が溶媒中で完全に溶解
する温度で攪拌しながら行う。その温度は使用される重
合体および溶媒により異なるが例えばポリプロピレンの
場合には160〜250Cの範囲である。また、α−オ
レフィン重合体溶液の濃度は分子量によって異なるが1
〜10重量%が好ましい。あまり濃度が高いと均一な溶
液のpt製が難かしくなる。なお、加熱溶解にあたって
はα−オレフィン重合体の酸化劣化を防止するために酸
化防止剤を添加することが好ましい。
In the present invention, the solution of the ultra-high molecular weight α-olefin polymer used as a raw material has the above-mentioned weight average molecular weight of 3l-5×105
It is prepared by heating and melting the above α-olefin polymer in a solvent. This solvent is not limited to % as long as it can sufficiently dissolve the α-olefin polymer. Examples include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, and paraffin oil, or mineral oil fractions with boiling points corresponding to these, and gel-like molded products that are stable in a solvent-containing state. A non-volatile solvent such as paraffin oil is preferred. The heating and dissolving is performed while stirring at a temperature at which the α-olefin polymer is completely dissolved in the solvent. The temperature varies depending on the polymer and solvent used, but for example, in the case of polypropylene, it is in the range of 160 to 250C. In addition, although the concentration of the α-olefin polymer solution varies depending on the molecular weight,
~10% by weight is preferred. If the concentration is too high, it will be difficult to produce a uniform solution of PT. In addition, it is preferable to add an antioxidant in order to prevent oxidative deterioration of the α-olefin polymer during heating and melting.

次に1このa−オレフィン重合体加熱溶液を適宜選択さ
れたダイスからシート状またはチューブ状に押出し、あ
るいは支持体上に流延し、水浴、空気浴、溶剤などでゲ
ル化温度以下、好ましく15〜25Cの温度に少くとも
50C/分の速度で冷却してゲル状化する。ゲル状成形
物の厚さは通常0.1〜5n程度に成形される。
Next, 1. this a-olefin polymer heated solution is extruded into a sheet or tube shape from an appropriately selected die, or cast onto a support, and heated to a temperature below the gelling temperature in a water bath, air bath, solvent, etc., preferably at 15 Gell by cooling to a temperature of ~25C at a rate of at least 50C/min. The thickness of the gel-like molded product is usually about 0.1 to 5 nm.

このゲル状成形物は、α−オレフィン重合体溶解時の溶
媒で膨潤されたもので脱溶媒処理が必要である。
This gel-like molded product is swollen with the solvent used to dissolve the α-olefin polymer, and requires removal of the solvent.

脱溶媒処理は、ゲル状成形物金易揮発性溶剤に浸漬し抽
出して乾燥する方法、圧縮する方法、加熱する方法また
はこれらの組合せによる方法などがあげられるが、ゲル
状成形物の構造を著しく変化させることなく溶媒を除去
できる易揮発性溶剤による抽出除去が好ましい。この易
揮発性溶剤としては、ペンタン、ヘキサン、ヘプタン、
などの炭化水素、塩化メチレン、四塩化炭素などの塩素
化炭化水素、三フフ化エタンなどのフッ化炭化水素、ジ
エチルエーテル、ジオキサンなどのエーテル類、その他
メタノール、エタノール、プロパツールなどのアルコー
ル類などがあげられる。これらの溶剤はα−オレフィン
重合体の溶解に用いた溶媒により適宜選択し、単独もし
くは混合して用いられる。
Examples of solvent removal treatment include immersing the gel-like molded product in a volatile solvent, extracting it, and drying it, compressing it, heating it, or a combination of these methods. Extractive removal using a readily volatile solvent is preferred since the solvent can be removed without significant changes. Examples of this easily volatile solvent include pentane, hexane, heptane,
, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as trifluoroethane, ethers such as diethyl ether and dioxane, and other alcohols such as methanol, ethanol, propatool, etc. can be given. These solvents are appropriately selected depending on the solvent used to dissolve the α-olefin polymer, and are used alone or in combination.

また、ゲル状成形物中の溶媒の除去量は、含まれる溶媒
に対して少くとも10重量%で、該ゲル状成形物中に含
まれる超高分子量α−オレフィン重合体が10〜90重
量%、好ましくは20〜60重量%になるように脱溶媒
処理することが必要である。ゲル状成形物からの溶媒の
除去1が含まれる溶媒に対して+oit%未清で、ゲル
状成形物中に含まれる該α−オレフィン重合体が10重
量%未満では、ゲル状成形物の網状組織が溶媒で高度に
膨潤しでいるために加熱延伸においてゲルの溶′Mを起
し易い。また、部分的に不均一延伸を起し易く厚さの均
一な延伸成形物が得難く、延伸成形物中に形成される細
孔の孔径分布が大さくなり好ましくない。さらに延伸に
ともなう溶媒の滲み出しなど取扱いの上からも好ましく
ない。一方、ゲル成形物中に含まれる該α−オレフィン
重合体が901jL量%を越える過度の脱溶媒処理は、
ゲル状成形物の網状組織の緻密化が進み過ぎて、高倍率
の延伸が困難となり薄くて高強度の延伸成形物が得難く
、延伸成形物中に形成される微細孔の孔径および空孔率
がともに低下して好ましくない。
Further, the amount of solvent removed from the gel-like molded product is at least 10% by weight based on the solvent contained, and the amount of the ultra-high molecular weight α-olefin polymer contained in the gel-like molded product is 10 to 90% by weight. , preferably 20 to 60% by weight. Removal of solvent from gel-like molded product If the amount of the α-olefin polymer contained in the gel-like molded product is less than 10% by weight, the network shape of the gel-like molded product is Since the structure is highly swollen by the solvent, gel dissolution is likely to occur during heating and stretching. In addition, uneven stretching tends to occur locally, making it difficult to obtain a stretched product with a uniform thickness, and the pore size distribution of pores formed in the stretched product becomes undesirable. Furthermore, it is unfavorable from the viewpoint of handling, such as oozing of solvent during stretching. On the other hand, excessive desolvation treatment in which the α-olefin polymer contained in the gel molded product exceeds 901jL amount %,
The network structure of the gel-like molded product becomes too dense, making it difficult to stretch at a high magnification, making it difficult to obtain a thin and high-strength stretched product, and reducing the pore size and porosity of the micropores formed in the stretched product. Both decrease, which is not desirable.

なお、ゲル状成形物中に含む溶媒の除去量は、ゲル状成
形物に対する易揮発性溶剤の接触量、時間あるいはゲル
状成形物の圧縮圧力などによって調節することができる
The removal amount of the solvent contained in the gel-like molded product can be adjusted by the amount of contact of the easily volatile solvent with the gel-like molded product, the time, the compression pressure of the gel-like molded product, etc.

また、ゲル状成形物の易揮発性溶剤による脱溶媒処理で
は、ゲル状成形物中に置換された易揮発性溶剤の蒸発に
伴ないゲル状成形物が3軸方向への収縮やたわみを生ず
るために、これを防止し、均一で高倍率の延伸を可能と
する平滑で二軸(縦、横)方向に収縮の小さい原反を得
るため、ゲル状成形物l・厚さ方向に選択的に収縮する
ことが好ましい。その収縮率は、厚さ方向に50%以上
、好ましくは70%以上で、また2軸方向に#″i20
%i20%以下が好ましい。ゲル状成形物の厚さ方向へ
の選択的な収縮は、例えばゲル化成形物全平滑な支持体
へ密着、2軸方向からの把持あるいは多孔質板で挾むな
どの状態で易揮発性溶剤を蒸発させる方法があげられる
In addition, when desolventizing a gel-like molded product using a readily volatile solvent, the gel-like molded product shrinks or bends in three axes as the easily volatile solvent substituted in the gel-like molded product evaporates. Therefore, in order to prevent this and obtain a smooth original fabric with small shrinkage in the biaxial (longitudinal and horizontal) directions, which enables uniform and high stretching, the gel-like molded material is selectively stretched in the thickness direction. It is preferable that it shrinks to . Its shrinkage rate is 50% or more in the thickness direction, preferably 70% or more, and #″i20 in the biaxial direction.
%i is preferably 20% or less. Selective shrinkage of the gel-like molded product in the thickness direction can be achieved by, for example, applying a highly volatile solvent to the gel-formed molded product while adhering it to a completely smooth support, gripping it from two axes, or sandwiching it between porous plates. One method is to evaporate it.

延伸は、脱溶媒処理されたゲル状成形物の原反を加熱し
、通常のテンター法、ロール法、インフレーション法、
圧鷺法もしくはこれらの方法の組合せくよって所定の倍
率で2軸延伸する。
Stretching is performed by heating the original fabric of the gel-like molded product that has been subjected to solvent removal treatment, and using the usual tenter method, roll method, inflation method,
Biaxial stretching is carried out at a predetermined magnification by the pressing method or a combination of these methods.

2軸延伸紘、同時または逐次のどちらであってもよい。Biaxial stretching may be carried out simultaneously or sequentially.

延伸温度は、超高分子量α−オレフィン重合体の融点+
IOC以下、好ましくは結晶分散温度から融点未満の範
囲である。例えば、ポリプロピレンの場合は90〜18
0Cで、より好ましくは130〜l 7QCの範囲であ
る。延伸温度が融点+10C1−越える場合は、樹脂の
過度の溶融により延伸による配向ができない。また。
The stretching temperature is the melting point of the ultra-high molecular weight α-olefin polymer +
The range is below the IOC, preferably from the crystal dispersion temperature to below the melting point. For example, in the case of polypropylene, 90 to 18
0C, more preferably in the range of 130 to 17QC. If the stretching temperature exceeds the melting point +10C1-, the resin will melt excessively and orientation cannot be achieved by stretching. Also.

延伸温度が結晶分散温度未満では、樹脂の軟化が不十分
で延伸において破膜し易く高倍率の道伸ができない。
If the stretching temperature is lower than the crystal dispersion temperature, the resin will not be sufficiently softened and the film will easily break during stretching, making it impossible to stretch at a high magnification.

ま九、延伸倍率は、原反の厚さによって異なるか、1軸
方向で少くとも2倍以上、好ましくは5〜20倍、面倍
率で10倍以上、好ましくは25〜400倍である。面
倍率が10倍未満では延伸が不十分で空孔率の大きい薄
膜が得られないために好ましくない。一方、面倍率が4
00倍を越えると延伸装置、延伸操作などの点で制約が
生じるために好ましくない。
(9) The stretching ratio varies depending on the thickness of the original fabric, or is at least 2 times or more in one axis direction, preferably 5 to 20 times, and 10 times or more in area magnification, preferably 25 to 400 times. If the areal magnification is less than 10 times, it is not preferable because the stretching is insufficient and a thin film with high porosity cannot be obtained. On the other hand, the area magnification is 4
If it exceeds 00 times, it is not preferable because restrictions will arise in terms of stretching equipment, stretching operations, etc.

凰伸後の微多孔膜は、前記の易揮発性溶剤に浸漬して残
留する溶媒を抽出除去した後溶剤を蒸発して乾燥する。
The microporous membrane after stretching is immersed in the above-mentioned easily volatile solvent to extract and remove the remaining solvent, and then the solvent is evaporated and dried.

溶媒の抽出は、微多孔膜中の溶媒を1重量%未満に迄除
去することが必要である。
The solvent extraction requires removing the solvent in the microporous membrane to less than 1% by weight.

本発明の超高分子量α−オレフィン重合体微多孔農の厚
さは、用途に応じて適宜選択され得るが、通常は0.0
5ないし50μ票、好ましくは0.1〜10μ−の範囲
である。
The thickness of the microporous ultrahigh molecular weight α-olefin polymer of the present invention can be appropriately selected depending on the application, but is usually 0.0
It ranges from 5 to 50 microns, preferably from 0.1 to 10 microns.

以上、本発F!AKよれと、微細貫通孔の平均孔径が0
.OI〜1μ舅、空孔率が30〜90%でかつ破断強度
が*ooip/i以上を有する極薄の超高分子量a−オ
レフィン重合体微多孔膜を得ることができる。
That’s it for the original F! AK twist and the average pore diameter of the fine through holes are 0.
.. It is possible to obtain an extremely thin ultra-high molecular weight a-olefin polymer microporous membrane having an OI of 1 μm, a porosity of 30 to 90%, and a breaking strength of *ooip/i or more.

本発明の超高分子量α−オレフィン重合体微多孔膜は、
従来の通常分子量のα−オレフィン重合体微多孔膜では
得られない極薄で高強度を有し、さらに微細な平均孔径
の貫通孔をもち、かつ狭い孔径分布を有するものである
The ultra-high molecular weight α-olefin polymer microporous membrane of the present invention is
It is extremely thin and has high strength that cannot be obtained with conventional α-olefin polymer microporous membranes having a normal molecular weight, has through-pores with a finer average pore diameter, and has a narrow pore size distribution.

本発明の超高分子量α−オレフィン重合体微多孔膜は、
上記のような優れた特性により電池セパレーター、電解
コンデンサー用隔膜、各種フィルター、透湿防水衣料用
多孔膜などく好適で、その小型軽量化や性能向上をはか
ることができる。
The ultra-high molecular weight α-olefin polymer microporous membrane of the present invention is
Due to the above-mentioned excellent properties, it is suitable for battery separators, diaphragms for electrolytic capacitors, various filters, porous membranes for moisture-permeable and waterproof clothing, etc., and can be made smaller and lighter and have improved performance.

実施例 以下に、本発明の実施例を示す。なお、実施例における
試験方法は次の通りである。
Examples Examples of the present invention are shown below. In addition, the test method in Examples is as follows.

(1)フィルムの厚さ:a断面を走査型電子顕微鏡によ
り測定。
(1) Film thickness: Measured in cross section a using a scanning electron microscope.

(2)破断強度: ASTM D 882準拠。(2) Breaking strength: Based on ASTM D 882.

(3)  破断伸度: ASTM n a 82準拠。(3) Elongation at break: Based on ASTM n a 82.

(4)  平均孔径、孔径分布:微多孔膜表面に金を真
空蒸着して走査型電子顕微鏡により観測される視野につ
いて、イメージアナライザーで統計処理し、面積平均孔
径φS、数平均孔径φK。
(4) Average pore size, pore size distribution: The field of view observed with a scanning electron microscope after vacuum-depositing gold on the surface of a microporous membrane is statistically processed using an image analyzer to determine the area average pore diameter φS and number average pore diameter φK.

孔径分布(φS/φN)t−求めた。数平均孔径の値を
平均孔径とする。
The pore size distribution (φS/φN) was determined. Let the value of the number average pore diameter be the average pore diameter.

(5)  空孔率:水銀ポロシメーターにより測定。(5) Porosity: Measured using a mercury porosimeter.

実施例言 重量平均分子量(Mw)  4,7 X I O’のポ
リプロピレン4.0重量%を含む流動パラフィン(64
sat / 40 C’ )混合液100重量部に2,
6−ジーt−ブチル−P−クレゾール0.125重量部
とテトラキス〔メチレン−S −(S、S−ジーt−〕
?ルー4−ヒドロキシフェニル)−プロピオネートコメ
タフ0.25重量部との酸化防止剤を加えて混合した。
Example: Liquid paraffin (64
sat / 40 C') 2, to 100 parts by weight of the mixed solution
0.125 parts by weight of 6-di-t-butyl-P-cresol and tetrakis [methylene-S-(S,S-di-t-)]
? 0.25 parts by weight of cometaf (4-hydroxyphenyl)-propionate and an antioxidant were added and mixed.

この混合液を攪拌機付のオートクレーブに充填し、20
0C迄加熱して90分間攪拌して均一な溶液を得た。
Fill this mixed solution into an autoclave equipped with a stirrer, and
Heated to 0C and stirred for 90 minutes to obtain a homogeneous solution.

この溶液を加熱した金型に充填し、15C迄急冷して厚
さ2)Emlのゲル状シートヲ成形した。
This solution was filled into a heated mold and rapidly cooled to 15C to form a gel-like sheet with a thickness of 2) Eml.

このゲル状シートを塩化メチレン中に60分間浸漬した
後、平滑板にはり付けた状態で塩化メチレンを蒸発乾燥
し、ポリプロピレン量が19.4重量%、厚さ方向への
収縮率が79.4%の原反シートを得た。
After immersing this gel-like sheet in methylene chloride for 60 minutes, the methylene chloride was evaporated and dried while it was attached to a smooth plate, and the amount of polypropylene was 19.4% by weight, and the shrinkage rate in the thickness direction was 79.4. % original fabric sheet was obtained.

得られた原反シートを2軸延伸機にセットし、温& t
 s OC1速度50cm1分、倍率aXaの条件で同
時2軸延伸を行った。得られた延伸膜を塩化メチレンで
洗浄して残留する流動パラフィンを抽出除去した後、乾
燥してポリプロピレン微多孔膜を得た。その特性を表−
IK示し良。
The obtained raw sheet was set in a biaxial stretching machine and heated at
s Simultaneous biaxial stretching was performed at an OC1 speed of 50 cm for 1 minute and a magnification of aXa. The obtained stretched membrane was washed with methylene chloride to extract and remove residual liquid paraffin, and then dried to obtain a microporous polypropylene membrane. Table out its characteristics.
Good IK display.

実施例2〜6 実施例1において成形したゲル状シートを表−IK示す
各条件で胸膜した以外は実施例言と同様にしてポリプロ
ピレン微多孔ilKを得た。この特性を表−1に併記し
た。
Examples 2 to 6 Polypropylene microporous ilK was obtained in the same manner as in Example, except that the gel-like sheet molded in Example 1 was pleuralized under the conditions shown in Table IK. These characteristics are also listed in Table-1.

実施例7 実施例1において成形したゲル状シートを表−1に示す
条件で逐時蔦伸した以外は実施例1と同様にしてポリプ
ロピレン微多孔膜を得た。
Example 7 A microporous polypropylene membrane was obtained in the same manner as in Example 1, except that the gel-like sheet molded in Example 1 was stretched at various times under the conditions shown in Table 1.

この特性を表−1に併記し良。This characteristic is also listed in Table 1.

比較例言 実施例1において成形したゲル状シート中の溶媒を除去
しないままで2軸逼伸機にセットし、表−IK示す条件
で#膜し次組外は実施例言と同様にしてポリプロピレン
微多孔mt−得た。その特性を表−IK併記した。得ら
れ九微多孔膜は、表−1にその特性を示すように平均孔
径分布が広く延伸が不均一であった。また、延伸直後の
膜は、滲み出した過剰の溶媒で表面が覆われ所々溜りや
垂れを生じ、その洗浄に多量の溶剤を要した。
Comparative Example: The gel-like sheet formed in Example 1 was set in a biaxial stretching machine without removing the solvent, and # film was formed under the conditions shown in Table IK. Microporous mt- was obtained. Its characteristics are also listed in Table IK. The obtained nine-microporous membrane had a wide average pore size distribution and was non-uniformly stretched, as shown in Table 1. In addition, the surface of the film immediately after stretching was covered with excess solvent that oozed out, causing accumulations and drips in some places, and a large amount of solvent was required to clean them.

実施例8 実施例1において、ボリプ四ピレン2.0重t%を含む
流動パラフィン溶液t−vI4製したことおよび表−I
K示す各条件て製膜し次組外は実施例言と同様にしてポ
リプロピレン微多孔膜を得た。この特性を表−IK併記
した。
Example 8 In Example 1, a liquid paraffin solution t-vI4 containing 2.0% by weight of voliptetrapyrene was prepared, and Table-I
A microporous polypropylene membrane was obtained by forming a film under the conditions shown in K and following the same procedures as in the examples except for the following. These characteristics are also listed in Table IK.

実施例9 実施例1において用いたMw x 4,7 X 10’
のポリプロピレンに代り、 Mw= 2,5 X 10
  のポリプロピレンを用いて6.0重量%の流動パラ
フィン溶液’twinし友ことおよび表−1に示す各条
件で製膜した以外は実施例言と同様にしてポリプロピレ
ン微多孔aを得た。この特性を表−1に併記し良。
Example 9 Mw x 4,7 x 10' used in Example 1
Instead of polypropylene, Mw= 2,5 x 10
Polypropylene microporous a was obtained in the same manner as in Example, except that polypropylene was used in a 6.0% by weight liquid paraffin solution 'twin' and a film was formed under the conditions shown in Table 1. This characteristic is also listed in Table 1.

比較例2 実施例9において調製したポリプロピレン溶液から成形
したゲル状シート中の流動パラフィンの9.0重量%を
除去したことおよび表−1に示す各条件で製膜した以外
は実施例言と同様にしてポリプロピレン微多孔aを得た
。この特性を表−1に併記した。得られ九微多孔膜は、
平均孔径分布が広く、また延伸が不均一であつ九。
Comparative Example 2 Same as Example 2 except that 9.0% by weight of the liquid paraffin in the gel sheet formed from the polypropylene solution prepared in Example 9 was removed and the film was formed under the conditions shown in Table 1. Polypropylene microporous a was obtained. These characteristics are also listed in Table-1. The resulting nine-microporous membrane is
The average pore size distribution is wide and the stretching is non-uniform.

また、延伸直後の膜は、滲み出した過剰の溶媒で表面が
覆われ所々で溜りや垂れを生じた。
In addition, the surface of the film immediately after stretching was covered with excess solvent that oozed out, causing pooling and sag in some places.

比較例3 実施例8において調製したポリプロピレン溶液から成形
したゲル状シート中の流動パラフィンの50重量%を除
去したことおよび表−1に示す条件で#膜した以外は実
施例1と同様にしてポリプロピレン微多孔膜を得九。得
られた微多孔膜は、平均孔径分布が広く、また延伸が不
均一であった。また、延伸直後の膜は、滲み出した過剰
の溶媒で表1面が覆われ所々で溜りや垂れを生じた。
Comparative Example 3 Polypropylene was prepared in the same manner as in Example 1, except that 50% by weight of the liquid paraffin in the gel-like sheet formed from the polypropylene solution prepared in Example 8 was removed and # film was formed under the conditions shown in Table 1. A microporous membrane was obtained. The obtained microporous membrane had a wide average pore size distribution and was non-uniformly stretched. In addition, the entire surface of the film immediately after stretching was covered with excess solvent that oozed out, resulting in pooling and sag in some places.

比較例4 実施例1において成形したゲル状シートl多量の塩化メ
チレン中に60分間浸漬した後、平滑板にはり付けた状
態で塩化メチレンを蒸発乾燥して得られた実質的に流動
パラフィンを含まないゲル状シートを2軸延伸機にセッ
トし、延伸温度を110〜言70Cの範囲、速度30c
rII/分でそれぞれ延伸を試みたが、延伸ムラと破断
により倍率3×3倍以上の延伸はできなかった。
Comparative Example 4 A gel-like sheet formed in Example 1 was immersed in a large amount of methylene chloride for 60 minutes, and then attached to a smooth plate and then evaporated and dried to dry the methylene chloride. Set the gel-like sheet in a biaxial stretching machine, stretch at a temperature of 110 to 70C, and at a speed of 30C.
Stretching was attempted at a rate of rII/min, but stretching at a magnification of 3x3 or more was not possible due to uneven stretching and breakage.

Claims (2)

【特許請求の範囲】[Claims] (1)重量平均分子量が5×10^5以上のα−オレフ
ィン重合体からなり、平均孔径0.01〜1μmの貫通
孔、空孔率30〜90%を有し、1軸方向に2倍以上、
面倍率で10倍以上延伸してなることを特徴とする超高
分子量α−オレフィン重合体微多孔膜。
(1) Made of α-olefin polymer with a weight average molecular weight of 5 x 10^5 or more, has through pores with an average pore diameter of 0.01 to 1 μm, a porosity of 30 to 90%, and doubles in the uniaxial direction. that's all,
1. A microporous membrane of an ultra-high molecular weight α-olefin polymer, which is formed by stretching an area magnification of 10 times or more.
(2)α−オレフィン重合体がポリプロピレンである特
許請求の範囲第1項記載の微多孔膜。
(2) The microporous membrane according to claim 1, wherein the α-olefin polymer is polypropylene.
JP3457885A 1985-02-25 1985-02-25 Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer Granted JPS61195133A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3457885A JPS61195133A (en) 1985-02-25 1985-02-25 Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer
DE8686301047T DE3676211D1 (en) 1985-02-25 1986-02-14 MICROPOROUS MEMBRANE MADE OF AN ALPHA OLEFIN POLYMER WITH ULTRA-HIGH-MOLECULAR WEIGHT.
EP86301047A EP0193318B1 (en) 1985-02-25 1986-02-14 Microporous membrane of ultra-high molecular weight alpha-olefin polymer
US06/832,916 US4734196A (en) 1985-02-25 1986-02-24 Process for producing micro-porous membrane of ultra-high-molecular-weight alpha-olefin polymer, micro-porous membranes and process for producing film of ultra-high-molecular-weight alpha-olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3457885A JPS61195133A (en) 1985-02-25 1985-02-25 Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer

Publications (2)

Publication Number Publication Date
JPS61195133A true JPS61195133A (en) 1986-08-29
JPH0471416B2 JPH0471416B2 (en) 1992-11-13

Family

ID=12418204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3457885A Granted JPS61195133A (en) 1985-02-25 1985-02-25 Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer

Country Status (1)

Country Link
JP (1) JPS61195133A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279562A (en) * 1987-05-11 1988-11-16 Sanyo Electric Co Ltd battery
JPS63295650A (en) * 1987-04-24 1988-12-02 ピーピージー・インダストリーズ・インコーポレイテッド Stretched microporous material
US5051183A (en) * 1989-08-03 1991-09-24 Tonen Corporation Microporous polyolefin membrane and method of producing same
JPH10296839A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Manufacture of polyolefin porous film
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
US6153133A (en) * 1997-10-23 2000-11-28 Tonen Chemical Corporation Method of producing highly permeable microporous polyolefin membrane
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
US6824865B1 (en) 1998-10-01 2004-11-30 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
CN111081948A (en) * 2019-12-26 2020-04-28 江苏厚生新能源科技有限公司 Preparation method of high linear velocity-large width polyethylene diaphragm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227420A (en) * 1983-06-10 1984-12-20 Mitsui Petrochem Ind Ltd Ultra-high molecular weight polyolefin biaxially stretched film and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227420A (en) * 1983-06-10 1984-12-20 Mitsui Petrochem Ind Ltd Ultra-high molecular weight polyolefin biaxially stretched film and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295650A (en) * 1987-04-24 1988-12-02 ピーピージー・インダストリーズ・インコーポレイテッド Stretched microporous material
JPS63279562A (en) * 1987-05-11 1988-11-16 Sanyo Electric Co Ltd battery
US5051183A (en) * 1989-08-03 1991-09-24 Tonen Corporation Microporous polyolefin membrane and method of producing same
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
JPH10296839A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Manufacture of polyolefin porous film
US6153133A (en) * 1997-10-23 2000-11-28 Tonen Chemical Corporation Method of producing highly permeable microporous polyolefin membrane
US6824865B1 (en) 1998-10-01 2004-11-30 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
US8075818B2 (en) 1998-10-01 2011-12-13 Toray Tonen Specialty Separator Godo Kaisha Method of producing a microporous polyolefin membrane
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
CN111081948A (en) * 2019-12-26 2020-04-28 江苏厚生新能源科技有限公司 Preparation method of high linear velocity-large width polyethylene diaphragm

Also Published As

Publication number Publication date
JPH0471416B2 (en) 1992-11-13

Similar Documents

Publication Publication Date Title
US4734196A (en) Process for producing micro-porous membrane of ultra-high-molecular-weight alpha-olefin polymer, micro-porous membranes and process for producing film of ultra-high-molecular-weight alpha-olefin polymer
EP0355214B1 (en) Process for producing microporous ultra-high molecular weight polyolefin membrane
US4620955A (en) Polyethylene microporous membrane and a process for the production of the same
US4600633A (en) Polyethylene superthin film and a process for the production of the same
TWI393735B (en) Polyolefin microporous membrane and preparation method thereof
JP2657430B2 (en) Polyolefin microporous membrane and method for producing the same
JPH06104736B2 (en) Polyolefin microporous membrane
TWI414417B (en) Method for preparing polyolefin microporous membrane and microporous membrane thereof
JP3347835B2 (en) Method for producing microporous polyolefin membrane
KR19980018742A (en) Method of producing microporous polyolefin membrane
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JPS61195133A (en) Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer
JPH0441702B2 (en)
JP3072163B2 (en) Polyolefin microporous membrane, method for producing the same, and battery separator using the same
JP3638401B2 (en) Method for producing polyolefin microporous membrane
JPH0653826B2 (en) Polyethylene microporous membrane
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JPH09169867A (en) Microporous film and its production
JPH0358288B2 (en)
JP3250894B2 (en) Method for producing microporous polyolefin membrane
JP2006111712A (en) Polyolefin microporous membrane
JP3641321B2 (en) Method for producing polyolefin microporous membrane
JPH093228A (en) Production of polyolefin finely porous membrane
JP3967421B2 (en) Method for producing polyolefin microporous membrane
JPS6339602A (en) Fine porous polyethylene membrane and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees