JPS61201759A - High-strength, high-toughness welded clad steel pipes for line pipes - Google Patents
High-strength, high-toughness welded clad steel pipes for line pipesInfo
- Publication number
- JPS61201759A JPS61201759A JP4229685A JP4229685A JPS61201759A JP S61201759 A JPS61201759 A JP S61201759A JP 4229685 A JP4229685 A JP 4229685A JP 4229685 A JP4229685 A JP 4229685A JP S61201759 A JPS61201759 A JP S61201759A
- Authority
- JP
- Japan
- Prior art keywords
- less
- content
- clad steel
- resistance
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、製管時の溶接ままの状態で、内側材が、特
に湿潤な硫化水素をはじめ、炭酸ガスや塩素イオンなど
の腐食性成分を含有する石油や天然ガスなどにさらされ
る環境(以下、I(、S −co。[Detailed Description of the Invention] [Industrial Application Field] The present invention is characterized in that the inner material is free from corrosive components such as wet hydrogen sulfide, carbon dioxide gas, and chloride ions in the as-welded state during pipe manufacturing. Environments exposed to oil, natural gas, etc. containing
−Ct″″環境という)下で優れた耐応力腐食割れ性を
示すと共に、海水に対しては優れた耐孔食・すきま腐食
性を示し、さら(=外側材が高強度と高靭性を有すると
共に、優れた耐硫化水素誘起割れ性を有し、したがって
これらの特性が要求されるラインパイプとして使用する
のに適した溶接クラツド鋼管に関するものである。In addition to exhibiting excellent stress corrosion cracking resistance in the -Ct'' environment), it also exhibits excellent pitting corrosion and crevice corrosion resistance in seawater, and furthermore, The present invention also relates to a welded clad steel pipe that has excellent resistance to hydrogen sulfide-induced cracking and is therefore suitable for use as a line pipe that requires these characteristics.
一般に、内側材がオーステナイト系ステンレス鋼で構成
され、かつ外側材が低合金鋼で構成された溶接クラツド
鋼管がラインパイプとして用いられている。Generally, welded clad steel pipes are used as line pipes, with the inner material made of austenitic stainless steel and the outer material made of low alloy steel.
上記の従来溶接クラツド鋼管においては、クラツド鋼板
よりの溶接による製管に際して、特に内側材であるステ
ンレス鋼中に炭化物が粒界析出し、この炭化物は特(:
上記のHas −CO,−Ct−環境において耐応力腐
食割れ性(以下、耐SCC性という)を劣化させる原因
となるもめであることから。In the above-mentioned conventional welded clad steel pipe, when the pipe is manufactured by welding from the clad steel plate, carbides are precipitated at the grain boundaries, especially in the stainless steel that is the inner material, and these carbides are particularly (:
This is because this is a problem that causes deterioration of stress corrosion cracking resistance (hereinafter referred to as SCC resistance) in the above-mentioned Has -CO, -Ct- environment.
耐食性向上をはかる目的で、製管後の溶接クラツド鋼管
に対して溶体化処理を施し、前記炭化物を素地中に固溶
させる処理を行なうことが検討された0
しかしながら、この溶体化処理によって前記内側材の耐
食性は向上するようになるが、外側材である低合金鋼は
、その組織が焼入れ組織となり、硬化することから、特
に靭性が劣化するようになり、したがって高強度と高靭
性、並びに優れた耐食性が要求される上記Has −C
o、 −Ct−″環境下のラインパイプとして使用する
には、靭性の点で問題があり、さらにこのラインパイプ
を海水中に敷設する場合、外部の海水圧力による管の圧
潰防止のためにラインパイプ中に封入される海水が、内
側材に対して孔食・すきま腐食を起し易いという問題が
あった。For the purpose of improving corrosion resistance, it has been considered to perform solution treatment on welded clad steel pipes after pipe production to dissolve the carbides in the matrix. Although the corrosion resistance of the material improves, the structure of the outer material, low alloy steel, becomes a quenched structure and hardens, resulting in a deterioration in toughness. The above Has-C which requires corrosion resistance
o, -Ct-'' environment, there is a problem in terms of toughness, and when this line pipe is laid in seawater, the line pipe is There was a problem in that the seawater enclosed in the pipe was likely to cause pitting and crevice corrosion to the inner material.
また、この場合、溶体化処理後に、さらに焼戻し処理を
施すことも検討されたが、焼戻し処理を施すと、内側材
であるステンレス鋼にも焼戻し処理が施されることにな
り、この結果、再び炭化物が粒界析出するようになって
耐食性が劣化するようになるという問題が生じ、したが
って現実的(:は溶接クラツド鋼管には溶体化処理を行
なわず、耐食性1;問題があっても製管時の溶接ままの
状態で実用に供しているのが現状である。In addition, in this case, it was considered to perform further tempering treatment after solution treatment, but if tempering treatment was performed, the stainless steel that was the inner material would also be tempered, and as a result, it would be necessary to re-temper it. A problem arises in that carbides begin to precipitate at grain boundaries and the corrosion resistance deteriorates. Currently, it is being put into practical use in the same welded state.
そこで1本発明者等は、上述のような観点から製管時の
溶接ままの状態で、高強度と高靭性を有し、かつ耐食性
にも優れた溶接クラツド鋼管を得べく研究を行なった結
果、溶接クラツド鋼管の内側材(内側となる部材)が、
重量釜で(以下係は重量%を示す)、
C:0.02%以下、 Si:1%以下、Mn:2%
以下、 P:0.034以下、S:0.005
係以下、 aol、Al : 0.3係以下、Ni:2
7〜45%、 Cr:18〜25 %、Cu:0.
3〜3%、 N : 0.0 5〜0.3%
、Mo:2〜5壬およびW:2%以下のうちの1橿また
は2種。Therefore, from the above-mentioned viewpoints, the present inventors conducted research to obtain a welded clad steel pipe that has high strength and toughness as well as excellent corrosion resistance in the as-welded state during pipe manufacturing. , the inner material (inner member) of the welded clad steel pipe is
In a weight pot (the following indicates weight%), C: 0.02% or less, Si: 1% or less, Mn: 2%
Below, P: 0.034 or less, S: 0.005
0.3 or less, aol, Al: 0.3 or less, Ni: 2
7-45%, Cr: 18-25%, Cu: 0.
3-3%, N: 0.0 5-0.3%
, Mo: 2 to 5% and W: 2% or less.
を含有し、残りがFeと不可避不純物からなる組成を有
し、かつ、
CrN+3Mo(’11+1.5W(@+16NetG
≧33係、2幅≦Mo(イ)+1/2W(イ)≦5係、
の組成条件を満足する高合金鋼で構成され、−万作側材
(外側となる部材)が。CrN+3Mo('11+1.5W(@+16NetG
≧ 33 sections, 2 width ≦ Mo (a) + 1/2 W (a) ≦ 5 sections,
It is constructed of high-alloy steel that satisfies the compositional conditions of - Mansaku side material (outer member).
C:0.05〜0.2%、 Si:0.01〜O85嗟
。C: 0.05-0.2%, Si: 0.01-085%.
Mn: 0.8〜2%、 P : 0.0154
以下、S:0.002係以下、
Ca: 0.0005〜0.02%、
を含有し、さらに必要に応じて
Cu: 0.05〜0.51%Ni: 0.05〜0.
5%、Cr: 0.05〜0.5 %、 Mo : 0
.05〜O−5%、Nb:0.01〜0.1%、 V
: 0.01〜0.1%、Ti:0.005〜0.05
%。Mn: 0.8-2%, P: 0.0154
Below, S: 0.002% or less, Ca: 0.0005-0.02%, and further contains Cu: 0.05-0.51%, Ni: 0.05-0.
5%, Cr: 0.05-0.5%, Mo: 0
.. 05~O-5%, Nb: 0.01~0.1%, V
: 0.01-0.1%, Ti: 0.005-0.05
%.
B:O,0O05〜0.008゛ 壬、のうちの1種ま
たは2種以上、
を含有し、残りがFeと不可避不純物からなる組成を有
する低合金鋼で構成されたクラツド鋼板より製造された
溶接クラツド鋼管においては、製管時の溶接ままの状態
で、上記内側材に炭化物の粒界析出がないので、特にH
,S −Co、 −C1−環境下で優れた耐SCC性を
示すと共に、海水に対゛しては。B: Manufactured from a clad steel plate made of low alloy steel containing one or more of the following: In welded clad steel pipes, there is no grain boundary precipitation of carbides in the inner material in the welded state during pipe manufacturing, so H
,S-Co,-C1- exhibits excellent SCC resistance in the environment, and is resistant to seawater.
上記のN含有量およびC嘴+3M0(イ)+15阪+1
6N陶の規定量により、優れた耐孔食・丁きま腐食性を
示し、かつ上記外側材は、高強度と高靭性を有し、さら
に優れた耐硫化水素誘起割れ性(以下、耐)(IC性と
いう)をもつことから、これを、これらの特性が要求さ
れる石油や天然ガスなどのラインパイプとして用いた場
合に優れた性能を著しく長期に亘って発揮するという知
見を得た。The above N content and C beak + 3 M0 (a) + 15 beak + 1
The specified amount of 6N porcelain shows excellent pitting corrosion and edge corrosion resistance, and the outer material has high strength and toughness, as well as excellent hydrogen sulfide-induced cracking resistance (hereinafter referred to as resistance). It has been found that when used as a line pipe for oil, natural gas, etc., which require these characteristics, it exhibits excellent performance over an extremely long period of time.
この発明は、上記知見にもとづいて発明されたものであ
って、以下に溶接り2ツド鋼管における内側材および外
側材の成分組成範囲を上記の通りに限定した理由を説明
する。This invention was invented based on the above knowledge, and the reason why the composition ranges of the inner material and outer material of the welded two-piece steel pipe are limited as described above will be explained below.
入 内側材
(a) C
種々のC含有量を有する内側材に1000℃×30分+
(650℃〜850℃)圧延+ACの条件下で圧延仕上
げ処理を施して、このC含有量と650℃〜850℃の
圧延仕上げ温度が粒界腐食に及ぼす影響をストラウス試
験(JIS−G−0575)によって調査したところ、
C成分の含有量が0.024以下では上記温度範囲にお
いて応力腐食割れが抑制されるのに対して、その含有量
が0.02%を越えると、溶接による製管時に、粒界に
炭化物が析出するようになり、応力腐食割れが起り易く
なることから、その含有量を0.024以下に制限した
。Inner material (a) C Inner material with various C contents is heated at 1000°C for 30 minutes +
A Strauss test (JIS-G-0575) performed rolling finishing treatment under rolling + AC conditions (650°C to 850°C) to examine the effects of this C content and rolling finishing temperature of 650°C to 850°C on intergranular corrosion. ), it was investigated by
If the content of the C component is 0.024 or less, stress corrosion cracking is suppressed in the above temperature range, whereas if the content exceeds 0.02%, carbides may be formed at the grain boundaries during pipe manufacturing by welding. The content is limited to 0.024 or less because it tends to precipitate and cause stress corrosion cracking.
(b) 5I
Si成分は脱酸成分として不可欠の成分であるが、た0
(c) Mn
Mn成分にはSi成分と同様に脱酸作用があり、2ヂま
°で含有させても特性に悪影響を及ぼさないことから、
2憾までの含有を許容させた。(b) 5I The Si component is an essential component as a deoxidizing component, but (c) Mn The Mn component has a deoxidizing effect like the Si component, and even if it is contained up to 2°, the characteristics will not change. Since it does not have any negative effects,
It is allowed to contain up to 2.
1d)P
P成分には、応力腐食割れに対する感受性を高める作用
があり、この作用は、その含有量が0.03壬を越える
と急激に現われるよう(=なることから、その含有量を
0.034以下と定めた。1d) P The P component has the effect of increasing the susceptibility to stress corrosion cracking, and this effect appears rapidly when the content exceeds 0.03 tsu. 034 or less.
(e) S
S成分には熱間加工性を劣化させる作用があり、この作
用は、その含有量が0.0054を越えると著しく現わ
れるよう(二なることから、その含有量をO,OO54
以下と定めた。(e) SS The S component has the effect of deteriorating hot workability, and this effect appears markedly when the content exceeds 0.0054 (for two reasons, the content is reduced to O, OO54).
It was determined as follows.
(f) sot、A/:
A4成分はStおよび励成分と同様(二脱酸作用をもつ
ので必要な成分であるが、その含有量がaot、Atで
0.3 %を越えると特性に悪影響を及ぼすようになる
ことから、その含有量を5ot4tで0.3%以下と定
めた〇
(g) Ni
Ni成分には耐食性、特に耐SCC性を向上させる作用
があるが、その含有量が27憾未満では所望の優れた耐
SCC性を確保することができず、一方45憾を越えて
含有させても耐SCC性にさらに一段の向上効果が現わ
れず、経済性を考慮して、その含有量を27〜45t6
と定めた%、(ハ)Cr
Cr成分には、Ni並びに後述のMOおよび/またはW
さらにNの各成分との共存において、耐食性を著しく向
上させる作用があるが、その含有量が184未満では所
望の優れた耐食性を確保することができないので、】8
係以上含有させる必要があるが、25t6を越えて含有
させてもより一層の耐食性向上効果は現われず、したが
って経済性をも考慮して、その含有量を18〜25係と
定めた。(f) sot, A/: The A4 component is the same as St and excitation component (it is a necessary component because it has a double deoxidizing effect, but if its content exceeds 0.3% for aot and At, it will have an adverse effect on the characteristics. 〇 (g) Ni Ni component has the effect of improving corrosion resistance, especially SCC resistance, but its content is set at 0.3% or less for 5 ot 4 t. If the content is less than 45%, the desired excellent SCC resistance cannot be ensured, and on the other hand, if the content exceeds 45%, no further improvement in SCC resistance will be achieved. The amount is 27-45t6
(iii) Cr The Cr component includes Ni and MO and/or W as described below.
Furthermore, when N coexists with each component, it has the effect of significantly improving corrosion resistance, but if the content is less than 184, the desired excellent corrosion resistance cannot be ensured.
However, even if the content exceeds 25t6, no further improvement in corrosion resistance will be obtained.Therefore, in consideration of economic efficiency, the content was set at 18 to 25t6.
(i) Cu
Cu成分は耐食性を向上させる作用があるが、その含有
量が0.3%未満では所望の耐食性を確保することがで
きず、一方3憾を越えて含有させると熱間加工性が劣化
するようになることから、その含有量を0.3〜3係と
定めた。(i) Cu Although the Cu component has the effect of improving corrosion resistance, if the content is less than 0.3%, the desired corrosion resistance cannot be ensured, while if the content exceeds 3%, hot workability is impaired. The content was determined to be 0.3 to 3.
(j) N
N成分は、上記のNiおよびCr並びに後述のMOおよ
び/またはWの各成分との共存において海水に対する耐
孔食・すきま腐食性を著しく向上させる作用があり、そ
の含有量が0.051未満では所望の優れた耐孔食・す
きま腐食性を確保することができないので0.051以
上含有させる必要があるが、これを0.3係を越えて含
有させても、上記作用の一層の向上は認められないとこ
ろから、その含有量を0.05〜0.34と定めた。(j) N The N component has the effect of significantly improving pitting corrosion resistance and crevice corrosion resistance against seawater in coexistence with the above-mentioned Ni and Cr and the MO and/or W components described below, and its content is 0. If it is less than 0.051, the desired excellent pitting corrosion and crevice corrosion resistance cannot be secured, so it is necessary to contain it at least 0.051. However, even if it is contained in excess of 0.3, the above effects cannot be achieved. Since no further improvement was observed, the content was determined to be 0.05 to 0.34.
■ M。■ M.
MO酸成分、前述のように、 Nt 、 (::rおよ
びN、またはさらにWの各成分との共存において耐食性
を向上させる作用があるが、その含有量が2係未満では
所望の優れた耐食性を確保することができず、一方5憾
を越えて含有させても、環境温度が150℃以下のH,
S −Cot−Ct−環境下では、さらに一段の耐食性
向上効果が得られないことから、経済性を考慮して、そ
の含有量を2〜5係と定めた。As mentioned above, the MO acid component has the effect of improving corrosion resistance when coexisting with each component of Nt, (::r and N, or even W), but if its content is less than 2 parts, the desired excellent corrosion resistance is not achieved. On the other hand, even if it contains more than 5 H,
In an S-Cot-Ct environment, the effect of further improving corrosion resistance cannot be obtained, so the content was determined to be between 2 and 5 in consideration of economic efficiency.
(6W
W成分は? Moと同様に、 Ni e CrおよびN
、またはさらにMOの各成分との共存において耐食性を
向上させる作用を有すると共に、MOζ二比べて熱間加
工性を向上させる作用も有し、 MOの代をl:、また
はMOと共同して添加されるが、2憾を越えて含有させ
ても環境温度が150℃以下のH,S −Co。(6W What is the W component? Similar to Mo, Ni e Cr and N
, or further has the effect of improving corrosion resistance in coexistence with each component of MO, and also has the effect of improving hot workability compared to MOζ2. However, even if more than 2 H,S-Co is contained, the environmental temperature is 150°C or less.
−Ct−環境下では、さらに一段の耐食性向上効果が得
られないことから、経済性を考慮して、その含有量を2
1以下と定めた。-Ct- Since further improvement in corrosion resistance cannot be obtained in an environment, the content is reduced to 2 in consideration of economic efficiency.
It was set as 1 or less.
frd Mo%+1/2W−
MOとWの含有量に関して1条件式=MO(至)+17
2W−で規定するのはイWがMoに対し原子量が約2倍
で、効果の点では約172で均等となるという理由によ
るもので、この値が2係未満では、特に上記の150℃
以下のH,S −co、 −CL−環境下で所望の耐食
性を確保することができず、一方この値が54を越える
ものとしても、上述のとおり。frd Mo%+1/2W- 1 conditional expression regarding the content of MO and W = MO (to) + 17
The reason why it is specified as 2W- is that the atomic weight of IW is about twice that of Mo, and in terms of effects, they are equal at about 172.
Even if the desired corrosion resistance cannot be ensured in the following H, S -co, -CL- environment, and this value exceeds 54, as described above.
実際(二不必要な量のMoおよびWを含有させることと
なって経済的でなく、したがって前記MO(1)+17
2W輸の値を2〜54と定めた。In fact, it is not economical to include unnecessary amounts of Mo and W, and therefore the MO(1)+17
The value of 2W import was set as 2 to 54.
(id Cr(1+3MoeQ+1.5W(11+1
6Ne61Ni、並び(二Cr + Mo 、Wおよび
Nの含有量を種々変化させたNi−Cr−Mo−N系、
N1−Cr−W−N系およびNi−Cr−Mo−W−N
系の鋼を溶製し、鍛造し、鍛伸し、熱間圧延して板厚ニ
ア飼の熱延鋼板とし、ついでこの熱延鋼板:二、溶接鋼
管製造時の冷間加工、例えばU−0フオーミングを考慮
して20憾の加工率で冷間圧延を施し、この冷延鋼板よ
り圧延方向と直角に厚さ:2fi×幅:10mX長さニ
ア5四の寸法をもった試験片を切出し、この試験片につ
いて、4点曲げ冶具な用い、0.2%耐力に相当する引
張応力を付加した状態で、10気圧のH,Sおよび10
気圧のCO2でH,SおよびCO8を飽和させた2 0
4 NaCt溶液(液温:150℃)中に360時間浸
漬の応力腐食割れ試験(SCC試験)を行ない、試験後
、前記試験片における割れ発生の有無を観察し、この観
察結果にもとづき、発明者等が独自に設定した条件式:
Cr(イ)+3 M o(イ)+i、sw(イ)+16
N(至)の値・とNi含有量との関係を、Cr@+3M
o(イ)+1.5W(儂+16N(至)を横軸にとり、
一方Ni(イ)を縦軸にとってプロットしたところ%N
1(イ)≧27係。(id Cr(1+3MoeQ+1.5W(11+1
6Ne61Ni, and (Ni-Cr-Mo-N system with various contents of Cr + Mo, W and N,
N1-Cr-W-N system and Ni-Cr-Mo-W-N
The steel is melted, forged, forged, and hot-rolled to produce a hot-rolled steel plate with a near-thickness.Then, this hot-rolled steel plate is subjected to cold processing during the production of welded steel pipes, such as U- Cold rolling was carried out at a processing rate of 20 mm in consideration of zero forming, and a test piece with dimensions of thickness: 2 fi x width: 10 m x length near 54 was cut out from this cold rolled steel plate at right angles to the rolling direction. , This test piece was subjected to 10 atm H, S and 10 atm using a 4-point bending jig and applying a tensile stress equivalent to 0.2% proof stress.
20 saturated H, S and CO8 with CO2 at atmospheric pressure
4 A stress corrosion cracking test (SCC test) was conducted by immersing the specimen in a NaCt solution (liquid temperature: 150°C) for 360 hours, and after the test, the presence or absence of cracking in the test piece was observed, and based on this observation result, the inventor Conditional expressions set independently by etc.:
Cr(I)+3 M o(I)+i, sw(I)+16
The relationship between the value of N and the Ni content is expressed as Cr@+3M
Taking o (I) + 1.5W (I + 16N (to) on the horizontal axis,
On the other hand, when Ni (A) is plotted on the vertical axis, %N
Section 1(a)≧27.
Cr(@+3MoWa+1.5WC@+16Nf@≧3
3憾の範囲で所望の優れた耐SCC性を示し、別に、N
l含有量が27〜45略の範囲にある前記各種の試験片
を。Cr(@+3MoWa+1.5WC@+16Nf@≧3
It shows the desired excellent SCC resistance in the range of 3.
The above various test pieces have l content in the range of 27 to 45.
試験温度=30℃としたJIS−G−0578−198
1による孔食・すきま腐食試験にかけ、試験後、それら
各試験片において発生した孔食・すきま腐食にもとづく
試験片の減量(mg / d ) を調査したところ
、前記条件式の値が33q6以上の範囲で安定した所望
の耐孔食・すきま腐食性が得られるのに対し、その値が
33憾から下がると、前記孔食・すきま腐食による減量
が急激に増大した。したがってこのようなSCC試験と
孔食・すきま腐食試験にもとづいて、それぞれNiの含
有量の下限値を27憾、C増+3M−千1群(至)+1
6園の下限値を33憾と定めた。JIS-G-0578-198 with test temperature = 30°C
1, and after the test, the weight loss (mg/d) of the test piece based on the pitting and crevice corrosion that occurred in each test piece was investigated. While the desired pitting corrosion/crevice corrosion resistance was stably obtained within this range, when the value decreased from 33, the weight loss due to the pitting/crevice corrosion rapidly increased. Therefore, based on the SCC test and the pitting corrosion/crevice corrosion test, the lower limit of the Ni content was set to 27, C increase + 3M - 1,000 groups (to) + 1, respectively.
The lower limit for six schools was set at 33.
B 外側材 (a) C C成分は強度を確保する上で必要な成分であり。B Outer material (a) C The C component is a necessary component to ensure strength.
このためには0.051以上の含有が望ましいが、0.
2%を越えて含有させると、偏析増大(=関与するよう
になって耐HIC性が劣化するようになることから、そ
の含有量を0.05〜0.2係と定めた。For this purpose, the content is preferably 0.051 or more, but 0.051 or more is desirable.
If the content exceeds 2%, segregation increases (=involves) and HIC resistance deteriorates, so the content was set at 0.05 to 0.2%.
伽)St
Sl成分(:は脱酸作用があるが、その含有量が0.0
1%未満では所望の脱酸効果を確保することができず、
一方その含有量が0.5%を越えると靭性が低下するよ
う(:なるところから、その含有量を0.01〜0.5
壬と定めたつ
(c) Mn
Mn成分は、鋼の強度を向上させる作用のほか、脱酸作
用をもつが、その含有量が0.81未満では所望の強度
を確保することができず、一方2憾を越えて含有させる
と、偏析が増大するようになって耐HIC性が劣化する
ようになるばかりでなく、靭性や溶接性も劣化するよう
I:なることから、その含有量を0.8〜2幅と定めた
。佽) St Sl component (: has a deoxidizing effect, but its content is 0.0
If it is less than 1%, the desired deoxidizing effect cannot be achieved,
On the other hand, if the content exceeds 0.5%, the toughness will decrease (:), so the content should be adjusted to 0.01 to 0.5%.
(c) Mn In addition to improving the strength of steel, the Mn component also has a deoxidizing effect, but if its content is less than 0.81, the desired strength cannot be achieved; If the content exceeds 0.2, not only will segregation increase and HIC resistance deteriorate, but also toughness and weldability will deteriorate, so the content should be reduced to 0. It was set at 8 to 2 width.
(イ) P
P成分は、Ill析を形成して鋼の耐HIC性を劣化さ
せる不可避不純物なので、その含有量はできるだけ低い
方が望ましいが、その含有量が0.015優を越えると
偏析が急増して、耐HIC性の劣化が著しくなることか
ら、0.0154を越えて含有させてはならない。(b) P The P component is an unavoidable impurity that forms Ill precipitates and deteriorates the HIC resistance of steel, so it is desirable that its content be as low as possible, but if the content exceeds 0.015%, segregation will occur. The content should not exceed 0.0154, since this will cause a rapid increase in HIC resistance and a significant deterioration of HIC resistance.
(e) S
S成分は、非金属介在物を形成して、P成分と同様に鋼
の耐HIC性を低下させる不可避不純物なので、その含
有量はできるだけ低い方が望ましいが、その含有量が0
.0021を越えると非金属介在物の増加が著しくなっ
て耐HIC性が急激に低下するようになることから0.
0021を越えて含有させてはならない。(e) SS The S component is an unavoidable impurity that forms nonmetallic inclusions and reduces the HIC resistance of steel like the P component, so it is desirable that its content be as low as possible;
.. If it exceeds 0.021, nonmetallic inclusions will increase significantly and HIC resistance will drop sharply.
The content must not exceed 0.0021.
(f) Ca
Ca成分には、介在物を球状化して、これが割れの起点
となることを防止し、もって鋼の耐HIC性を向上させ
る作用があるが、その含有量がo、 o o o s
係未満では前記作用に所望の効果が得られず、一方0.
0296を越えて含有させてもより一層の向上効果は見
られないことから、その含有量を0.0005〜0.0
2 ’1と定めた。なお、硫化物介在物に対しては、C
d/潰 : 2〜6を満足した場合に特に顕著な効果が
ある。(f) Ca The Ca component has the effect of spheroidizing inclusions and preventing them from becoming crack starting points, thereby improving the HIC resistance of steel, but if the content is o, o o o s
If it is less than 0.0%, the desired effect cannot be obtained;
Even if the content exceeds 0.0296, no further improvement effect is observed, so the content is set at 0.0005 to 0.0.
It was set as 2'1. In addition, for sulfide inclusions, C
d/Destruction: There is a particularly remarkable effect when conditions 2 to 6 are satisfied.
(m Cu5Ni+Cr+Mo+Nb+V+Ti、お
よびB
これらの成分には、いずれも偏析を助長することなく、
鋼の強度を向上させる作用があるので、特に高強度が要
求される場合に必要C:応じて含有されるが、その含有
量が、それぞれCu:0.05憾未満、Ni : 0.
054未満、Cr:0.05%未満、M。(m Cu5Ni+Cr+Mo+Nb+V+Ti, and B None of these components promotes segregation,
Since it has the effect of improving the strength of steel, C is included as required when particularly high strength is required, but the content is less than 0.05 for Cu and 0.05 for Ni.
054, Cr: less than 0.05%, M.
:0.0596未満、Nb:0.011未満、V:0.
01憾未満、’I’i : O,OO5畳未満、および
B : 0.0005チ未満では所望の強度向上効果が
得られず、一方。: less than 0.0596, Nb: less than 0.011, V: 0.
On the other hand, if the value is less than 0.01 tatami, 'I'i: O, OO less than 5 tatami, and B: less than 0.0005 tatami, the desired strength improvement effect cannot be obtained.
その含有量がそれぞれCu : 0.5 tly 、
Ni : 0.54、Cr: 0.5e61Mo: 0
.5憾、Nb: 0.1 %、V : 0.1(i。The content is Cu: 0.5 tly, respectively.
Ni: 0.54, Cr: 0.5e61Mo: 0
.. 5, Nb: 0.1%, V: 0.1 (i.
Ti:0.05憾、およびB:o、00B憾を越えても
より一段の向上効果は見られず、経済性を考慮して、そ
の含有量を、それぞれCu:0.05〜0.5%、Ni
: 0.05〜0.54.Cr: 0.05〜0.5
qblMo:0.05〜0.5 %、Nb:0.01〜
0.1%、V : 0.01〜0.14.Ti: 0
.005〜0.05係、およびB:o、ooos〜o、
oossと定めた。Even if Ti: 0.05 and B: o, 00B were exceeded, no further improvement effect was observed, and in consideration of economic efficiency, the content was changed to Cu: 0.05 to 0.5, respectively. %, Ni
: 0.05~0.54. Cr: 0.05~0.5
qblMo: 0.05~0.5%, Nb: 0.01~
0.1%, V: 0.01-0.14. Ti: 0
.. 005~0.05 section, and B: o, ooos~o,
It was determined as ooss.
つぎに、この発明の溶接クラツド鋼管を実施例により具
体的に説明する。Next, the welded clad steel pipe of the present invention will be specifically explained using examples.
それぞれ第1表および第2表に示される成分組成をもっ
た溶鋼を通常の溶解法にて調製し、750wqX250
m+の偏平インゴットに鋳造し、このインゴットに加工
開始温度: 1280℃にて熱間鍛造および熱間鍛伸加
工を施して板厚:60m+の板材とし、さらにこの板材
に1150℃の圧延開始温度にて熱間圧延を施して、そ
れぞれ製造せんとする溶接クラツド鋼管の内側材および
外側材となる熱延鋼板を製造し、ついで、これらの内側
材および外側材を、それぞれ第3表に示される組合せに
て重ね合わせ。Molten steel having the compositions shown in Tables 1 and 2, respectively, was prepared by a normal melting method, and 750 wq x 250
m+ flat ingot was cast, and this ingot was subjected to hot forging and hot forging at a processing start temperature of 1280°C to obtain a plate material with a thickness of 60m+, and this plate material was further heated to a rolling start temperature of 1150°C. hot rolling to produce hot-rolled steel sheets that will serve as the inner and outer materials of the welded clad steel pipe to be manufactured, respectively, and then combine these inner and outer materials into the combinations shown in Table 3. Superimposed at.
加熱温度=900〜1100℃。Heating temperature = 900-1100°C.
クラッド圧延温度二650〜850℃。Cladding rolling temperature: 2650-850°C.
の条件にてクラッドして板厚:13mのクラツド鋼板と
し、引続いて、このクラツド鋼板より通常のU−0フオ
ーミング製管法にて、外径:406調×内径:394諷
×長さ:6000鱈の寸法を有し、かつ内側材厚さ:3
.7−および外側材厚さ:8.3mの本発明溶接クラツ
ド鋼管1〜12および従来溶接クラツド鋼管をそれぞれ
製造した。A clad steel plate with a thickness of 13 m was obtained by cladding under the following conditions, and then the clad steel plate was made using the normal U-0 forming pipe manufacturing method: Outer diameter: 406 mm × Inner diameter: 394 mm × Length: It has the dimensions of 6000 cod, and the inner material thickness: 3
.. Welded clad steel pipes 1 to 12 of the present invention and conventional welded clad steel pipes having outer material thickness of 8.3 m were manufactured, respectively.
ついで、この結果得られた本発明溶接クラット。Next, the welded crat of the present invention obtained as a result.
鋼管1〜12および従来溶接クラツド鋼管から、それぞ
れ引張試駆用、シャルピー衝撃試験(vE−20)用、
SCC試験用、孔食・すきま腐食試験用、およびHIC
試験用の試験片をそれぞれ切出し、それぞれの試験を行
なった。Steel pipes 1 to 12 and conventional welded clad steel pipes were used for tensile testing, Charpy impact test (vE-20),
For SCC testing, pitting/crevice corrosion testing, and HIC
Test specimens were cut out and each test was conducted.
なお、SCC試験は、
試験片寸法−幅:10mX厚さ=2諷X長さニア、 5
m 。In addition, the SCC test is as follows: Specimen dimensions - Width: 10m x Thickness = 2 length x length near, 5
m.
使用冶具:4点曲げ冶具、
付加圧カニ 0.21耐力に相当する引張応力、使用溶
液=10気圧のH,Sおよび10気圧のCO,でH,S
およびCO,を飽和させた2 04 NaC6溶液、
溶液温度=150℃
試験時間=336時間、
の条件で行ない、孔食・すきま腐食試験は、試験片寸法
−幅:20興×厚さ: 2 w* X長さ:40調、
使用溶液: 104 FeC1,6H,0試験源度=3
0℃
試験時間=24時間
の条件で行ない、またHIC試験は、
試験片寸法−幅:25鰐×厚さ:10smX長さ:10
0調、
使用溶液:NACE浴(0,5繋酢酸+54食塩の水溶
液にH,Sを飽和させたもの)、溶液温度:25℃
試験時間:96時間、
の条件で行ない、上記SCC試験では試験後の内側材に
おける割れ発生の有無を観察し、孔食・子きま腐食試験
では24時間浸漬試験後の質量減の単位面積、単位時間
当りの値をg/d−hr単位で求め、また上記HIC試
験では試験後の外側材における傷発生の有無を超音波探
傷法により観察した。これらの結果を第3表に合せて示
した。なお。Jig used: 4-point bending jig, additional pressure crab, tensile stress equivalent to 0.21 proof stress, solution used = 10 atm H, S and 10 atm CO, H, S
The pitting and crevice corrosion tests were conducted under the following conditions: 204 NaC6 solution saturated with and CO, solution temperature = 150°C, test time = 336 hours, and the test piece dimensions - Width: 20mm x Thickness: 2w *X length: 40 tone, solution used: 104 FeC1,6H,0 test source degree = 3
The HIC test was conducted under the conditions of 0°C and test time = 24 hours, and the HIC test was as follows: Test piece dimensions - Width: 25 mm x Thickness: 10 sm x Length: 10
0 tone, solution used: NACE bath (an aqueous solution of 0,5-linked acetic acid + 54 sodium chloride saturated with H and S), solution temperature: 25°C, test time: 96 hours, conducted under the following conditions, and in the above SCC test The presence or absence of cracks in the inner material was observed, and in the pitting and crevice corrosion test, the mass loss per unit area and unit time after the 24-hour immersion test was determined in g/d-hr. In the HIC test, the presence or absence of flaws on the outer material after the test was observed using ultrasonic flaw detection. These results are also shown in Table 3. In addition.
溶接クラツド鋼管の機械的性質は外側材によってきまる
ので、第3表(二は外側材の機械的性質を併記した。Since the mechanical properties of welded clad steel pipes are determined by the outer material, Table 3 (2) also lists the mechanical properties of the outer material.
第3表に示される結果から、本発明溶接クラツド鋼管1
〜12においては、いずれも製管時の溶接ままの状態で
、特に外側材によって高強度および高靭性が確保され、
かつ外側材は優れた耐HIC性を示し、さらに内側材(
:は炭化物の粒界析出が全く見られないので、優れた耐
SCC性を示すととも(二、優れた耐孔食・すきま腐食
性を示すのに対して、従来溶接クラツド鋼管においては
、高度および高靭性を示すものの、溶接時に内側材炭化
物が粒界析出するのを避けることができないので耐SC
C性の劣ったものになっていることが明らかである。From the results shown in Table 3, welded clad steel pipe 1 of the present invention
In 12 to 12, high strength and toughness are ensured especially by the outer material in the welded state during pipe manufacturing,
Moreover, the outer material shows excellent HIC resistance, and the inner material (
: Since no grain boundary precipitation of carbides is observed, it exhibits excellent SCC resistance (2) It also exhibits excellent pitting corrosion and crevice corrosion resistance, whereas conventional welded clad steel pipes have a high Although it exhibits high toughness, it cannot avoid grain boundary precipitation of inner material carbide during welding, so it is resistant to SC.
It is clear that the C properties are inferior.
上記のように、この発明の溶接クラツド鋼管は、高強度
および高靭性を有し、かつ耐SCC性および耐HIC性
に優れているばかりでなく、耐孔食・すきま腐食性にも
優れているので、これらの特性が要求される各種のライ
ンパイプ、特にH,S −COm −CL″″環境下に
さらされる石油や天然ガス輸送用のラインパイプとして
、また特に海水中に敷設されるこの種のラインパイプと
して利用した場合、優れた性能編著しく長期に亘って発
揮することができる。As mentioned above, the welded clad steel pipe of the present invention not only has high strength and toughness, and is excellent in SCC resistance and HIC resistance, but also in pitting corrosion and crevice corrosion resistance. Therefore, various line pipes that require these characteristics, especially line pipes for oil and natural gas transportation that are exposed to H,S -COm -CL'' environments, and especially line pipes of this type installed in seawater. When used as a line pipe, it can exhibit excellent performance over a long period of time.
Claims (2)
Ni:27〜45%、Cr:18〜25%、Cu:0.
3〜3%、N:0.05〜0.3%、Mo:2〜5%お
よびW:2%以下のうちの1種または2種、 を含有し、残りがFeと不可避不純物からなる組成を有
し、かつ、 Cr(%)+3Mo(%)+1.5W(%)+16N(
%)≧33%、2%≦Mo(%)+1/2W(%)≦5
%、の組成条件を満足する高合金鋼で構成され、一方外
側材が、 C:0.05〜0.2%、Si:0.01〜0.5%、
Mn:0.8〜2%、P:0.015%以下、S:0.
002%以下、 Ca:0.0005〜0.02%、 を含有し、残りがFeと不可避不純物からなる組成(以
上重量%)を有する低合金鋼で構成されたことを特徴と
する溶接ままで優れた耐食性を有する高強度高靭性溶接
クラッド鋼管。(1) The inner material is C: 0.02% or less, Si: 1% or less, Mn: 2% or less, P: 0.03% or less, S: 0.005% or less, sol. Al: 0.3% or less,
Ni: 27-45%, Cr: 18-25%, Cu: 0.
3 to 3%, N: 0.05 to 0.3%, Mo: 2 to 5%, and W: 2% or less, and the remainder is Fe and unavoidable impurities. and Cr(%)+3Mo(%)+1.5W(%)+16N(
%)≧33%, 2%≦Mo(%)+1/2W(%)≦5
%, while the outer material is C: 0.05-0.2%, Si: 0.01-0.5%,
Mn: 0.8-2%, P: 0.015% or less, S: 0.
0.002% or less, Ca: 0.0005 to 0.02%, and the remainder is Fe and unavoidable impurities (weight %). High strength, high toughness welded clad steel pipe with excellent corrosion resistance.
Ni:27〜45%、Cr:18〜25%、Cu:0.
3〜3%、N:0.05〜0.3%、Mo:2〜5%お
よびW:2%以下のうちの1種または2種、 を含有し、残りがFeと不可避不純物からなる組成を有
し、かつ、 Cr(%)+3Mo(%)+1.5W(%)+16N(
%)≧33%、2%≦Mo(%)+1/2W(%)≦5
%、の組成条件を満足する高合金鋼で構成され、一方外
側材が、 C:0.05〜0.2%、Si:0.01〜0.5%、
Mn:0.8〜2%、P:0.015%以下、S:0.
002%以下、 Ca:0.0005〜0.02%、 を含有し、さらに、 Cu:0.05〜0.5%、Ni:0.05〜0.5%
、Cr:0.05〜0.5%、Mo:0.05〜0.5
%、Nb:0.01〜0.1%、V:0.01〜0.1
%、Ti:0.005〜0.05%、 B:0.0005〜0.008%、 のうちの1種または2種以上、 を含有し、残りがFeと不可避不純物からなる組成(以
上重量%)を有する低合金鋼で構成されたことを特徴と
する溶接ままで優れた耐食性を有する高強度高靭性溶接
クラッド鋼管。(2) The inner material is C: 0.02% or less, Si: 1% or less, Mn: 2% or less, P: 0.03% or less, S: 0.005% or less, sol. Al: 0.3% or less,
Ni: 27-45%, Cr: 18-25%, Cu: 0.
3 to 3%, N: 0.05 to 0.3%, Mo: 2 to 5%, and W: 2% or less, and the remainder is Fe and unavoidable impurities. and Cr(%)+3Mo(%)+1.5W(%)+16N(
%)≧33%, 2%≦Mo(%)+1/2W(%)≦5
%, while the outer material is C: 0.05-0.2%, Si: 0.01-0.5%,
Mn: 0.8-2%, P: 0.015% or less, S: 0.
002% or less, Ca: 0.0005-0.02%, and further contains Cu: 0.05-0.5%, Ni: 0.05-0.5%
, Cr: 0.05-0.5%, Mo: 0.05-0.5
%, Nb: 0.01-0.1%, V: 0.01-0.1
%, Ti: 0.005 to 0.05%, B: 0.0005 to 0.008%, and the remainder is Fe and unavoidable impurities. %), a high-strength, high-toughness welded clad steel pipe having excellent corrosion resistance in an as-welded state, characterized in that it is constructed of low-alloy steel with a low alloy steel.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4229685A JPS61201759A (en) | 1985-03-04 | 1985-03-04 | High-strength, high-toughness welded clad steel pipes for line pipes |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4229685A JPS61201759A (en) | 1985-03-04 | 1985-03-04 | High-strength, high-toughness welded clad steel pipes for line pipes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS61201759A true JPS61201759A (en) | 1986-09-06 |
Family
ID=12632072
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4229685A Pending JPS61201759A (en) | 1985-03-04 | 1985-03-04 | High-strength, high-toughness welded clad steel pipes for line pipes |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS61201759A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0570892A (en) * | 1991-09-18 | 1993-03-23 | Mitsubishi Heavy Ind Ltd | High temperature corrosion resisting alloy for soda recovery boiler |
| JPH0570891A (en) * | 1991-09-18 | 1993-03-23 | Mitsubishi Heavy Ind Ltd | High temperature corrosion resisting alloy for soda recovery boiler |
| US5429690A (en) * | 1988-03-26 | 1995-07-04 | Heubner; Ulrich | Method of precipitation-hardening a nickel alloy |
| EP2256220A4 (en) * | 2008-03-25 | 2012-02-08 | Sumitomo Metal Ind | ALLOY ON NICKEL BASE |
| US8858875B2 (en) | 2009-09-18 | 2014-10-14 | Nippon Steel & Sumitomo Metal Corporation | Nickel based alloy material |
| US20190219218A1 (en) * | 2016-06-30 | 2019-07-18 | Jfe Steel Corporation | Electric-resistance-welded stainless clad steel pipe or tube and method of producing same |
-
1985
- 1985-03-04 JP JP4229685A patent/JPS61201759A/en active Pending
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5429690A (en) * | 1988-03-26 | 1995-07-04 | Heubner; Ulrich | Method of precipitation-hardening a nickel alloy |
| JPH0570892A (en) * | 1991-09-18 | 1993-03-23 | Mitsubishi Heavy Ind Ltd | High temperature corrosion resisting alloy for soda recovery boiler |
| JPH0570891A (en) * | 1991-09-18 | 1993-03-23 | Mitsubishi Heavy Ind Ltd | High temperature corrosion resisting alloy for soda recovery boiler |
| EP2256220A4 (en) * | 2008-03-25 | 2012-02-08 | Sumitomo Metal Ind | ALLOY ON NICKEL BASE |
| US8501086B2 (en) | 2008-03-25 | 2013-08-06 | Nippon Steel & Sumitomo Metal Corporation | Nickel based alloy |
| US8858875B2 (en) | 2009-09-18 | 2014-10-14 | Nippon Steel & Sumitomo Metal Corporation | Nickel based alloy material |
| US20190219218A1 (en) * | 2016-06-30 | 2019-07-18 | Jfe Steel Corporation | Electric-resistance-welded stainless clad steel pipe or tube and method of producing same |
| US10724670B2 (en) * | 2016-06-30 | 2020-07-28 | Jfe Steel Corporation | Method of producing electric-resistance-welded stainless clad steel pipe or tube |
| US10844993B2 (en) | 2016-06-30 | 2020-11-24 | Jfe Steel Corporation | Electric-resistance-welded stainless clad steel pipe or tube |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104611624B (en) | Austenite stainless steel | |
| CA2233338C (en) | Welded high-strength steel structure with excellent corrosion resistance | |
| KR102520119B1 (en) | Welded structure and its manufacturing method | |
| CN101512032B (en) | Martensitic stainless steel for welded structure | |
| SE454360B (en) | ALLOY FOR DEEP DRILLING AND USE OF THIS FOR FOOD AND ROWS FOR DEEP DRILLING | |
| WO2019189871A1 (en) | Two-phase stainless-clad steel sheet and production method thereof | |
| JP3608743B2 (en) | Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking | |
| CN113631732A (en) | Duplex stainless steel welded joint and method of making the same | |
| JPS61201759A (en) | High-strength, high-toughness welded clad steel pipes for line pipes | |
| US3574002A (en) | Stainless steel having improved corrosion and fatigue resistance | |
| JP3620319B2 (en) | Martensitic stainless steel with excellent corrosion resistance and weldability | |
| JPS6199660A (en) | High strength welded steel pipe for line pipe | |
| JPH09302446A (en) | Duplex stainless steel | |
| JPS6199661A (en) | High-strength, high-toughness welded clad steel pipes for line pipes | |
| EP1070763A1 (en) | HIGH Cr STEEL PIPE FOR LINE PIPE | |
| JPH06100935A (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent toughness and stress corrosion cracking resistance | |
| JPS61104054A (en) | High-strength, high-toughness welded clad steel pipes for line pipes | |
| JPS6363610B2 (en) | ||
| JPS6363609B2 (en) | ||
| JP3713833B2 (en) | Ferritic stainless steel for engine exhaust members with excellent heat resistance, workability, and weld corrosion resistance | |
| JPS6289809A (en) | Manufacture of steel for pressure vessel having superior resistance to hydrogen induced cracking | |
| JPS6199657A (en) | High-strength, high-toughness welded clad steel pipes for line pipes | |
| JP2672429B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance | |
| JP3250263B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
| JP2575250B2 (en) | Line pipe with excellent corrosion resistance and weldability |