[go: up one dir, main page]

JPS61218720A - Intake device of engine with supercharger - Google Patents

Intake device of engine with supercharger

Info

Publication number
JPS61218720A
JPS61218720A JP60059998A JP5999885A JPS61218720A JP S61218720 A JPS61218720 A JP S61218720A JP 60059998 A JP60059998 A JP 60059998A JP 5999885 A JP5999885 A JP 5999885A JP S61218720 A JPS61218720 A JP S61218720A
Authority
JP
Japan
Prior art keywords
intake
engine
valve
speed operation
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60059998A
Other languages
Japanese (ja)
Other versions
JPH0568612B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Fumio Hitase
日當瀬 文雄
Kazuhiko Ueda
和彦 上田
Yasuhiro Yuzuriha
楪 泰浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60059998A priority Critical patent/JPS61218720A/en
Publication of JPS61218720A publication Critical patent/JPS61218720A/en
Publication of JPH0568612B2 publication Critical patent/JPH0568612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To prevent an output from decreasing in the time before and after an opening and closing valve is switched, by actuating a supercharge pressure regulating valve to an increasing side of the supercharge pressure in the time before and after the valve, which opens and closes an intake passage for use in high speed operation, is operated, in the case of an engine with a supercharger having intake systems for use in high and low speed operation. CONSTITUTION:An intake passage 17 for use in high speed operation branches from intake passages 12a-d for use in low speed operation, communicating with the first volume chamber 13, and communicates with the second volume chamber 14, and an engine, providing the intake passage 17 for use in high speed operation in every cylinder, arranges in a branch part of the passage 17 an opening and closing valve 19 opened in high speed operation. A control unit 37 opens the opening and closing valve 19 by operating an actuator 20 when the engine is in high speed operation. The control unit 37, outputting a signal of an actuator 31 in the period a little time before the operating period of the actuator 20, closes a waste gate valve 30 of a supercharger 22, and the engine, temporarily increasing the supercharge pressure, compensates a decrease of an output based on a pipe line characteristic in the opening and closing switching period of the opening and closing valve.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気の動的効果により出力の向上を図るよう
にした過給機付エンジンの吸気装置の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an intake system for a supercharged engine that improves output through the dynamic effect of intake air.

(従来技術) 従来から過給機を備えたエンジンの吸気装置において、
吸気開始に伴って生じる圧力波が吸気通路上流側の大気
または容積室への開口端で反射されて吸気ポート方向に
戻されることを利用し、上記反射波が吸気弁の閉弁の寸
前に吸気ボートに達して吸気圧力を高めるようにして、
いわゆる吸気の慣性効果で吸気の充填効率を高めるJ:
うにしたものがある。このような吸気の動的効果を利用
した出力向上技術を用いようとする場合に、吸気経路が
一定であると、吸気通路に生じる圧力波の振動周期と吸
気弁開閉周期とがマツチングして慣性効果が高められる
のは特定速度域に限られる。
(Prior art) Conventionally, in the intake system of an engine equipped with a supercharger,
Utilizing the fact that the pressure wave that occurs with the start of intake is reflected at the open end of the intake passage to the atmosphere or the volume chamber and returned toward the intake port, the reflected wave causes the intake air to flow just before the intake valve closes. so that it reaches the boat and increases the intake pressure,
J: Increasing the filling efficiency of intake air through the so-called inertia effect of intake air:
There's something I've done. When trying to use power improvement technology that utilizes the dynamic effects of intake air, if the intake path is constant, the oscillation cycle of the pressure waves generated in the intake passage and the intake valve opening/closing cycle will not match, resulting in inertia. The effect is only enhanced in a specific speed range.

このため、特開昭56−105621公報に見られるよ
うに、過給機付エンジンの回転数に応じで吸気通路の長
さを変えるようにし、例えば、各気筒別の吸気通路を上
流部で分岐させて長い通路と短い通路とを形成し、これ
らの通路の上流端を吸気容積室等に開口させるとともに
、短い通路に開閉弁を設けて、高速域でこの開閉弁を開
くことにより吸気通路の有効長を短縮するようにし、こ
うして低速域と高速域とでそれぞれ吸気の慣性効果を高
めるようにルだ吸気装置も提案されている。
For this reason, as seen in Japanese Patent Application Laid-Open No. 56-105621, the length of the intake passage is changed depending on the rotation speed of the supercharged engine, for example, the intake passage for each cylinder is branched at the upstream part. The upstream ends of these passages are opened to the intake volume chamber, etc., and an on-off valve is provided in the short passage, and by opening this on-off valve at high speeds, the intake passage can be opened. A radial intake device has also been proposed in which the effective length is shortened, thereby increasing the inertia effect of intake air in both the low speed range and the high speed range.

上記のように吸気の動的効果を広い範囲で得るようにす
るためには、その吸気経路をエンジン回転数に応じて選
択する開閉弁等の吸気切換機構を設けて切換作動するよ
うにしている。しかし、上記吸気切換機構の作動の前後
においては、トルクの谷間が形成されて、低速域から高
速域まで滑かなトルク特性を得ることができないもので
ある。
In order to obtain the dynamic effect of the intake air over a wide range as described above, an intake switching mechanism such as an on-off valve that selects the intake path according to the engine speed is installed to switch the intake path. . However, a torque valley is formed before and after the operation of the intake switching mechanism, making it impossible to obtain smooth torque characteristics from a low speed range to a high speed range.

すなわち、例えば、前記開閉弁が閉じている吸気通路の
長い状態では、低速域においてエンジン回転数の上昇に
対し、そのトルクカーブは吸気通路長さとエンジン回転
数がマツチングした時のピーク値を過ぎて徐々に低下し
てから上記開閉弁が開作動し、高速域においても同様に
エンジン回転数の上昇に対してその吸気通路長さとエン
ジン回転数がマツチングするピーク値となるまで徐々に
上昇し、ピーク値を過ぎて徐々に下降するものである。
That is, for example, in a state where the intake passage is long and the on-off valve is closed, as the engine speed increases in the low speed range, the torque curve will exceed the peak value when the intake passage length and engine speed match. After it gradually decreases, the on-off valve opens, and in the high speed range as well, the intake passage length and engine speed match the increase in engine speed, which gradually increases until the peak value is reached. It gradually declines after passing this value.

よって、開閉弁の閉じた状態におけるピーク値から、開
閉弁が開いた状態のピーク値までの間は、両側のトルク
カーブの谷間となって、トルク特性の息つき現象が生起
して切換作動時のトルク、ショックとなる問題を有して
いる。
Therefore, between the peak value when the on-off valve is closed and the peak value when the on-off valve is open, there is a valley between the torque curves on both sides, and a breathing phenomenon occurs in the torque characteristics, which causes a problem during switching operation. It has problems with torque and shock.

(発明の目的) 本発明は上記事情に鑑み、低速域から高速域にまでわた
り、吸気の動的効果を利用して吸気充填効率を高めると
ともに、上記動的効果を拡大するための吸気切換機構の
切換作動時のトルクショックを解消するようにした過給
機付エンジンの吸気装置を提供することを目的とするも
のである。
(Object of the Invention) In view of the above-mentioned circumstances, the present invention provides an intake air switching mechanism for increasing the intake air filling efficiency by utilizing the dynamic effect of intake air and expanding the above-mentioned dynamic effect from a low speed range to a high speed range. It is an object of the present invention to provide an intake system for a supercharged engine that eliminates torque shock during switching operation.

(発明の構成) 本発明の吸気装置は、過給圧制御手段を備えるとともに
、吸気の動的効果をエンジン回転数の変化に対応してマ
ツチングさせるために、複数の経路をエンジン回転数に
応じて選択する吸気切換機構を設け、この吸気切換機構
の作動時に、前記過給圧制御手段を過給圧が上昇するよ
うに作動させる切換制御手段を設けたことを特徴とする
ものである。
(Structure of the Invention) The intake device of the present invention includes boost pressure control means, and in order to match the dynamic effect of intake air in response to changes in engine speed, a plurality of paths are arranged according to the engine speed. The present invention is characterized in that it is provided with an intake switching mechanism that selects the desired intake air, and a switching control means that operates the supercharging pressure control means so that the supercharging pressure increases when the intake switching mechanism is activated.

(発明の効果) 本発明によれば、吸気切換機構の作動によって吸気め動
的効果をエンジン回転数の広い範囲で有効に利用し、低
速域から高速域まで高い充填効率を得て、出力性能の向
上を図ることができるものである。
(Effects of the Invention) According to the present invention, by operating the intake air switching mechanism, the dynamic effect of the intake air is effectively utilized over a wide range of engine speeds, high charging efficiency is obtained from low speed range to high speed range, and output performance is improved. It is possible to improve this.

また、上記吸気切換機構の切換作動時に発生するトルク
の谷間に対応して、その切換作動時には過給圧制御手段
によって過給圧を高くするように制御することにより、
過給圧の上昇によって充填効率が増大してトルクの谷間
を埋めるように作用し、切換作動時のトルクショックが
解消でき、低速域から高速域まで滑かな1〜ルク特性が
得られるものである。
Furthermore, in response to the torque valley that occurs when the intake switching mechanism switches, the supercharging pressure control means controls the boost pressure to be high during the switching operation.
The charging efficiency increases due to the increase in boost pressure, which acts to fill the torque gap, eliminates torque shock during switching operation, and provides smooth 1 to 1 torque characteristics from low speed range to high speed range. .

(実施例) 以下、図面により本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図はこの実施例の吸気装置を備えたエンジンの断面
正面図、第2図は概略平面図である。
FIG. 1 is a sectional front view of an engine equipped with an intake system of this embodiment, and FIG. 2 is a schematic plan view.

この実施例のエンジンは4気筒4サイクルエンジンであ
って、シリンダブロック2およびシリンダヘッド3から
なるエンジン本体1に、4つの気筒4a〜4dが形成さ
れている。この各気筒4a〜4dにはそれぞれピストン
5の上方に燃焼室6が形成され、この燃焼室6に吸気ボ
ート7および排気ボート8が開口し、これらのボート7
.8に動弁機構11によって所定のタイミングで開閉す
る吸気弁9および排気弁10が装備されている。
The engine of this embodiment is a four-cylinder four-cycle engine, and an engine body 1 consisting of a cylinder block 2 and a cylinder head 3 has four cylinders 4a to 4d formed therein. A combustion chamber 6 is formed above the piston 5 in each of the cylinders 4a to 4d, and an intake boat 7 and an exhaust boat 8 open into the combustion chamber 6.
.. 8 is equipped with an intake valve 9 and an exhaust valve 10 which are opened and closed at predetermined timing by a valve operating mechanism 11.

上記各気筒4a〜4dの各吸気ボート7には、互いに独
立した気筒別の独立吸気通路12a〜12dが連通して
いる。これらの独立吸気通路12a〜12dの上流端は
、ある程度の容量を有する第1容積室13に接続されて
おり、また、各独立吸気通路12a〜12dの途中箇所
にはこれらの独立吸気通路128〜12dを相互に連通
ずる第2容積室14が接続されている。これによって、
各気筒4a〜4dと容積室13.14を連通する長短2
つの吸気経路を形成しでいる。
Each intake boat 7 of each of the cylinders 4a to 4d is communicated with independent intake passages 12a to 12d for each cylinder, which are independent from each other. The upstream ends of these independent intake passages 12a to 12d are connected to the first volume chamber 13 having a certain capacity, and these independent intake passages 128 to 128 are connected to the middle of each of the independent intake passages 12a to 12d. A second volume chamber 14 is connected to communicate the two volumes 12d with each other. by this,
Long and short 2 connecting each cylinder 4a to 4d and volume chamber 13.14
It forms two intake paths.

この実施例では吸気系をコンパクトに構成するため、吸
気系に介装したタンク15を仕切壁16で分割すること
により、このタンク15内に第1容積室13と第2容積
室14とを区画形成し、第2容積至14の下端に各独立
吸気通路12a〜12dの途中箇所からの分岐した連通
孔17を開口させるとともに、この連通孔17よりも上
流側で各独立吸気通路12a〜12dを湾曲させて、そ
の上流端を第1容積室13の側方に開口させている。な
お、上記各独立吸気通路12a〜12dの上流側湾曲部
分は、タンク15の第2容積至14の壁部を利用して一
体に形成されている。
In this embodiment, in order to configure the intake system compactly, a tank 15 installed in the intake system is divided by a partition wall 16, thereby dividing the tank 15 into a first volume chamber 13 and a second volume chamber 14. A communication hole 17 branched from a midway point of each independent intake passage 12a to 12d is opened at the lower end of the second volume connecting hole 14, and each independent intake passage 12a to 12d is opened on the upstream side of this communication hole 17. It is curved so that its upstream end opens to the side of the first volume chamber 13 . The upstream curved portions of each of the independent intake passages 12a to 12d are integrally formed using the wall of the second volume to 14 of the tank 15.

上記第2容積室14と各独立吸気通路12a〜12dと
の間の連通孔17には、吸気経路を切換える開閉弁19
(吸気切換機構)がそれぞれ設けられている。この各開
閉弁19は回動シャフト19aに一体に連接され、該回
動シャフト19aの端部に切換制御手段21の第1アク
チユエータ20(第2図には図示省略)が接続されて各
気筒のものが連係して開閉作動される。この開閉弁1つ
は基本的には、高負荷域においてエンジン回転数が設定
値未満の低速域では閉じられ、エンジン回転数が設定値
以上の高速域で開くように制御される。
The communication hole 17 between the second volume chamber 14 and each independent intake passage 12a to 12d is provided with an on-off valve 19 for switching the intake path.
(intake switching mechanism) is provided respectively. Each of the on-off valves 19 is integrally connected to a rotating shaft 19a, and a first actuator 20 (not shown in FIG. 2) of a switching control means 21 is connected to an end of the rotating shaft 19a. Things work together to open and close. Basically, this opening/closing valve is controlled to be closed in a low speed range where the engine speed is less than a set value in a high load range, and opened in a high speed range where the engine speed is higher than the set value.

また、上記第1容積室13の一端部には上流側の吸気導
入通路26が接続されており、この吸気、導入通路26
にはスロットル弁27が配設され、その上流端はターボ
過給機22のブロア22aに接続され、図示しないエア
フローメータ等を介してエアクリーナに接続される。上
記ターボ過給機22のタービン22bに対しては排気ボ
ート8に連通された排気マニホールド23が接続され、
排気ガスの導入によってタービン22bを介してブロア
22aを回転駆動するものである。
Further, an upstream intake air introduction passage 26 is connected to one end of the first volume chamber 13.
A throttle valve 27 is disposed at the throttle valve 27, the upstream end of which is connected to the blower 22a of the turbocharger 22, and connected to an air cleaner via an air flow meter (not shown) or the like. An exhaust manifold 23 communicating with the exhaust boat 8 is connected to the turbine 22b of the turbocharger 22,
The blower 22a is driven to rotate through the turbine 22b by introducing exhaust gas.

さらに、上記ターボ過給機20には過給圧制御手段24
(第2図には図示省略)が設置され、この過給圧制御手
段24は排気バイパス通路23aを開閉するウェストゲ
ートバルブ30と、このウェストゲートバルブ30を作
動する第2アクチユエータ31とによって構成されてい
る。なお、前記各独立吸気通路12a〜12dの下流端
近傍には、燃料通路28に接続された燃料噴射弁29が
配設されている。
Further, the turbocharger 20 has a boost pressure control means 24.
(not shown in FIG. 2) is installed, and this supercharging pressure control means 24 is composed of a waste gate valve 30 that opens and closes the exhaust bypass passage 23a, and a second actuator 31 that operates this waste gate valve 30. ing. A fuel injection valve 29 connected to the fuel passage 28 is disposed near the downstream end of each of the independent intake passages 12a to 12d.

前記切換制御手段21における開閉弁19を作動する第
1アクチユエータ20にはエンジンコントロールユニッ
ト37 (ECU)からの制御制御信号が出力されてそ
の作動がエンジン回転数に応じて制御される。また、過
給圧制御手段24の第2アクチユエータ31に対しても
エンジンコントロールユニット37からの制御信号が出
力されてその作動が制御され、過給圧が設定圧に調整さ
れる。上記エンジンコントロールユニット37には回転
数センサー38、圧力センサー39によるエンジン回転
数および過給圧(吸気圧力)の検出信号が入力される。
A control signal from an engine control unit 37 (ECU) is output to the first actuator 20 that operates the on-off valve 19 in the switching control means 21, and its operation is controlled in accordance with the engine speed. Further, a control signal from the engine control unit 37 is also output to the second actuator 31 of the boost pressure control means 24 to control its operation, and the boost pressure is adjusted to the set pressure. Detection signals of the engine rotation speed and supercharging pressure (intake pressure) from a rotation speed sensor 38 and a pressure sensor 39 are input to the engine control unit 37 .

上記切換制御手段21による開閉弁19の開閉は、エン
ジン回転数の設定値において行うものであって、この設
定値未満の低速域で開閉弁19を閉じ、設定値以上の高
速域で開閉弁19を開くものである。また、ウェストゲ
ートバルブ30は、そのリフト量を小さくすると排気バ
イパス量が低減して過給圧が上昇するものであって、過
給圧が所定の値となるようにそのリフト凶が調整制御さ
れるものである。この過給圧制御は、基本的には過給圧
の上限を一定の値に規制するものであるが、前記開閉弁
19の切換作動域近傍においては、過給圧を上昇するよ
うに制御する。なお、上記のようなエンジン回転数に応
じた開閉弁19の開閉作動は、少なくとも出力が要求さ
れる高負荷時において行なわれるようにすればよく、低
負荷時にはエンジン回転数に関係なく開閉弁を開状態も
しくは開状態に保つようにしてもよい。
The opening/closing of the on-off valve 19 by the switching control means 21 is performed at a set value of the engine rotation speed, the on-off valve 19 is closed in a low speed range below this set value, and the on-off valve 19 is closed in a high speed range above the set value. It opens. Furthermore, when the lift amount of the wastegate valve 30 is reduced, the exhaust bypass amount is reduced and the supercharging pressure increases, and the lift is adjusted and controlled so that the supercharging pressure becomes a predetermined value. It is something that This supercharging pressure control basically regulates the upper limit of the supercharging pressure to a constant value, but in the vicinity of the switching operation range of the on-off valve 19, the supercharging pressure is controlled to increase. . Note that the opening/closing operation of the on-off valve 19 according to the engine speed as described above may be performed at least during high loads where output is required, and the on-off valve 19 may be opened and closed at low loads regardless of the engine speed. It may be kept in the open state or in the open state.

上記実施例の装置において、エンジン回転数が設定値未
満の低回転域にある時には、開閉弁19は閉じて各独立
吸気通路12a〜12dと第2容積室14との連通が遮
断されているため、各気筒4a〜4dが各独立吸気通路
12a〜12dの全長にわたる比較的長い通路を介して
第1容積室13に接続される。
In the device of the above embodiment, when the engine speed is in a low speed range below the set value, the on-off valve 19 is closed and the communication between each independent intake passage 12a to 12d and the second volume chamber 14 is cut off. , each of the cylinders 4a to 4d is connected to the first volume chamber 13 via a relatively long passage extending over the entire length of each independent intake passage 12a to 12d.

従って、各気筒4a〜4dの吸気行程で生じる圧力波が
各独立吸気通路128〜12dを通して第1容積室13
に伝播され、第1容積至13で各気筒4a〜4dに反射
されて、各独立吸気通路12a〜12dに吸気圧力振動
が生じる。このため、各気筒4a〜4dと第1容積室1
3との間の独立吸気通路12a〜12d内に生じる吸気
系の固有撮動の周期と吸気弁開閉周期とがマツチングす
るような低速側の回転域で、各気筒4a〜4dに作用す
る圧力が吸気行程終期に高められ、充填効率が向上する
Therefore, pressure waves generated during the intake stroke of each cylinder 4a to 4d pass through each independent intake passage 128 to 12d to the first volume chamber 13.
The pressure is propagated to the first volume 13 and reflected to each cylinder 4a to 4d, causing intake pressure vibration in each independent intake passage 12a to 12d. For this reason, each cylinder 4a to 4d and the first volume chamber 1
The pressure acting on each cylinder 4a to 4d is low in the rotational speed range in which the cycle of the intake system's unique movement occurring in the independent intake passages 12a to 12d between the cylinders 3 and 3 matches the intake valve opening/closing cycle. It is increased at the end of the intake stroke, improving charging efficiency.

一方、前記エンジン回転数が設定値以上の高回転域にあ
るときには、開閉弁19が開いて各独立吸気通路128
〜12dと第2容積室14とが連通孔17によって連通
され、各気筒4a〜4dが第2容積室14との間の各独
立吸気通路12a〜12dによる比較的短い通路長さを
介して第2容積室14に接続される。このとき、吸気は
第1容積室13から独立吸気通路12a〜12dによっ
て供給されるとともに、他の気筒の独立吸気通路12a
〜12dからこれと連通ずる第2容積室14を介してそ
の独立吸気通路12a〜12dによって供給されるもの
である。
On the other hand, when the engine speed is in a high speed range equal to or higher than the set value, the on-off valve 19 opens and each independent intake passage 128
12d and the second volume chamber 14 are communicated through the communication hole 17, and each cylinder 4a to 4d is connected to the second volume chamber 14 through a relatively short passage length of each independent intake passage 12a to 12d. It is connected to a two-volume chamber 14. At this time, intake air is supplied from the first volume chamber 13 through the independent intake passages 12a to 12d, and the intake air is supplied from the independent intake passages 12a to 12d of the other cylinders.
12d through the second volume chamber 14 which communicates with the second volume chamber 14, and is supplied by the independent intake passages 12a to 12d.

この状態では、吸気行程で生じる圧力波が前記第2容積
室14で反射されて、この圧力波および反射波の伝播に
供される通路長さが短くなることにより、高速域で吸気
慣性効果が高められるとともに、この運転域では他の気
筒から伝播される圧力波も有効に作用して充填効率が向
上する。
In this state, the pressure waves generated during the intake stroke are reflected by the second volume chamber 14, and the length of the passage through which the pressure waves and reflected waves propagate becomes shorter, thereby reducing the intake inertia effect in the high-speed range. At the same time, in this operating range, pressure waves propagated from other cylinders also act effectively, improving charging efficiency.

第3図はエンジン回転数とトルクとの関係を示すもので
あって、曲線Aは開閉弁19を閉じた状態における全開
ラインであり、曲線Bは開閉弁19を開いた状態におけ
る全開ラインであり、この両回線Aと8が交差する点に
相当するエンジン回転数Noが、前記第1アクチユエー
タ20を作動して開閉弁19を開閉する設定[N oで
あり、第6図に示すようにこの設定回転数Noより低速
側で開閉弁19を閉じて高速側で開くものであり、全回
転域の吸気充填効率を高めて出力の向上を因るものであ
る。
FIG. 3 shows the relationship between engine speed and torque, where curve A is the fully open line when the on-off valve 19 is closed, and curve B is the fully open line when the on-off valve 19 is open. , the engine rotational speed No. corresponding to the point where both lines A and 8 intersect is the setting [No. The opening/closing valve 19 is closed at a speed lower than the set rotation speed No. and opened at a higher speed, thereby increasing the intake air filling efficiency over the entire rotation range and improving the output.

第3図において、上記設定回転数Noの近傍における両
トルク曲線A、Bの交差部分においては、低回転側の曲
線Aのピーク点aから高回転側の曲線Bのピーク点すに
対して、トルク値が低下しているものであって、この部
分に略3角形状の谷間部分■が形成されている。
In FIG. 3, at the intersection of both torque curves A and B in the vicinity of the set rotation speed No., from the peak point a of the curve A on the low rotation side to the peak point of the curve B on the high rotation side, The torque value is lowered, and a substantially triangular valley portion (2) is formed in this portion.

そして、上記トルクの谷間部分■を補うように過給圧制
御手段24によって過給圧を第4図に示すように、上限
規制圧(破線)に対して上記a点からb点にかけて山形
特性■に上昇させるものである。すなわち、エンジンコ
ントロールユニット37はエンジン回転数をみて、開閉
弁19を切換作動させる状態にあるとぎには、検出して
いる過給圧が上記第4図の特性に対して高いか低いかを
判定し、それに応じて過給圧制御手段24にウェストゲ
ートバルブ30のリフト量を増減する制御信号を出力す
るものである。なお、過給圧を上昇させる特性■は、上
記のような山形のほか、各種特性で行うようにしてもよ
いが、急激な増減は避けるようにする。
Then, as shown in FIG. 4, the supercharging pressure is adjusted by the supercharging pressure control means 24 to compensate for the valley part (■) of the torque, as shown in FIG. It is intended to raise the That is, the engine control unit 37 monitors the engine speed and determines whether the detected supercharging pressure is high or low with respect to the characteristics shown in FIG. Accordingly, a control signal is output to the boost pressure control means 24 to increase or decrease the lift amount of the waste gate valve 30. Note that the characteristic (2) for increasing the supercharging pressure may be implemented with various characteristics in addition to the above-mentioned chevron shape, but sudden increases and decreases should be avoided.

そして、上記特性のように切換作動域近傍において、過
給圧を上昇させるためのウェストゲートバルブ30のリ
フト量は第5図に示すように、定圧制御特性(破線)に
対してリフト量を低減する特性■によって排気バイパス
量を減少させてブロア22aの回転数を増大して過給圧
を前記特性Hのように高くするものである。
As shown in the above characteristics, near the switching operation range, the lift amount of the wastegate valve 30 to increase the boost pressure is reduced compared to the constant pressure control characteristics (broken line), as shown in FIG. According to the characteristic (2), the amount of exhaust bypass is decreased and the rotational speed of the blower 22a is increased to increase the supercharging pressure as shown in the characteristic (H).

なお、上記実施例においてはターボ過給機の例を示して
いるが、その他の過給機も使用可能である。また、過給
機による過給と自然吸気とを併用するようにしてもよい
In addition, although the above-mentioned embodiment shows an example of a turbo supercharger, other superchargers can also be used. Further, supercharging by a supercharger and natural intake may be used together.

また、吸気の動的効果を得るための複数の吸気経路とし
ては、上記実施例のような吸気通路の長さの変更と他気
筒の吸気通路との連通の切換えを行うようにしたものの
ほか、吸気通路面積の変更もしくは吸気容積室の容積変
更等の種々の吸気動的特性の変更構造もしくはそれらの
組合せ構造による複数の吸気経路が採用可能であり、こ
れに対応して開閉弁等の吸気切換機構を設置し、切換制
御手段によってエンジン回転数に応じて切換作動するも
のである。また、吸気の動的効果を得るための吸気経路
の上流端は、吸気容積室もしくは大気開口部に連通ずる
ものである。
In addition to the plurality of intake passages for obtaining the dynamic effect of intake air, in addition to the one in which the length of the intake passage is changed and the communication with the intake passages of other cylinders is switched as in the above embodiment, It is possible to adopt a plurality of intake paths by changing various intake dynamic characteristics such as changing the intake passage area or changing the volume of the intake volume chamber, or a combination structure thereof. A mechanism is installed, and a switching control means switches according to the engine speed. Further, the upstream end of the intake path for obtaining the dynamic effect of intake air communicates with the intake volume chamber or the atmospheric opening.

さらに、過給圧制御手段24としては、上記のようなタ
ーボ過給機22に対するウェストゲートバルブ30によ
るもののほか、吸気をリリーフするもの等が使用でき、
他の形式の過給機においては吸気リリーフ、回転数コン
トロール等のそれぞれの形式に対応した過給圧制御手段
が適宜採用可能である。
Furthermore, as the supercharging pressure control means 24, in addition to the waste gate valve 30 for the turbo supercharger 22 as described above, a means for relieving intake air can be used.
In other types of superchargers, supercharging pressure control means corresponding to each type, such as intake air relief and rotational speed control, can be adopted as appropriate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における吸気装置を備えたエ
ンジンの断面正面図、 第2図はその概略平面図、 第3図は開閉弁の開閉状態に対応するエンジン回転数と
トルクとの関係を示す特性図、第4図はエンジン回転数
に対する過給圧の制御特性を示す特性図、 第5図はエンジン回転数に対するウェストゲートバルブ
のリフト量の制御特性を示す特性図、第6図はエンジン
回転数に対する開閉弁の開閉作動を示す説明図である。 1・・・・・・エンジン本体   4a〜4d・・・・
・・気筒12a〜12d・・・・・・独立吸気通路13
・・・・・・第1容積室   14・・・・・・第2容
積室19・・・・・・開閉弁(吸気切換機構)20・・
・・・・第1アクチユエータ 21・・・・・・切換制御手段 22・・・・・・ターボ過給機
FIG. 1 is a cross-sectional front view of an engine equipped with an intake system according to an embodiment of the present invention, FIG. 2 is a schematic plan view thereof, and FIG. A characteristic diagram showing the relationship, Figure 4 is a characteristic diagram showing the control characteristics of supercharging pressure with respect to engine speed, Figure 5 is a characteristic diagram showing the control characteristics of wastegate valve lift amount with respect to engine speed, and Figure 6 FIG. 2 is an explanatory diagram showing the opening/closing operation of the on-off valve with respect to the engine speed. 1...Engine body 4a-4d...
...Cylinder 12a to 12d...Independent intake passage 13
...First volume chamber 14...Second volume chamber 19...Opening/closing valve (intake switching mechanism) 20...
...First actuator 21...Switching control means 22...Turbo supercharger

Claims (1)

【特許請求の範囲】[Claims] (1)過給機を備えるとともに過給圧制御手段を備え、
1気筒と吸気容積室もしくは大気開口部とを連通する吸
気経路を複数設け、これら複数の吸気経路をエンジン回
転数に応じて選択する吸気切換機構を設けた過給機付エ
ンジンの吸気装置において、上記吸気切換機構の作動時
に、前記過給圧制御手段を過給圧が上昇するように作動
させる切換制御手段を設けたことを特徴とする過給機付
エンジンの吸気装置。
(1) Equipped with a supercharger and supercharging pressure control means,
In an intake system for a supercharged engine that is provided with a plurality of intake passages that communicate one cylinder with an intake volume chamber or an atmospheric opening, and is provided with an intake switching mechanism that selects the plurality of intake passages according to the engine speed, An intake system for a supercharged engine, comprising a switching control means for operating the supercharging pressure control means so that the supercharging pressure increases when the intake switching mechanism is activated.
JP60059998A 1985-03-25 1985-03-25 Intake device of engine with supercharger Granted JPS61218720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059998A JPS61218720A (en) 1985-03-25 1985-03-25 Intake device of engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059998A JPS61218720A (en) 1985-03-25 1985-03-25 Intake device of engine with supercharger

Publications (2)

Publication Number Publication Date
JPS61218720A true JPS61218720A (en) 1986-09-29
JPH0568612B2 JPH0568612B2 (en) 1993-09-29

Family

ID=13129342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059998A Granted JPS61218720A (en) 1985-03-25 1985-03-25 Intake device of engine with supercharger

Country Status (1)

Country Link
JP (1) JPS61218720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081370A3 (en) * 1999-09-03 2001-10-10 Honda Giken Kogyo Kabushiki Kaisha Intake and exhaust control systems for engine
EP2503124A1 (en) * 2011-03-23 2012-09-26 MAHLE International GmbH Combustion engine, fresh air system and associated operating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081370A3 (en) * 1999-09-03 2001-10-10 Honda Giken Kogyo Kabushiki Kaisha Intake and exhaust control systems for engine
US6378471B1 (en) 1999-09-03 2002-04-30 Honda Giken Kogyo Kabushiki Kaisha Intake and exhaust control systems for engine
US6772588B2 (en) 1999-09-03 2004-08-10 Honda Giken Kogyo Kabushiki Kaisha Intake and exhaust control systems for engine
EP2503124A1 (en) * 2011-03-23 2012-09-26 MAHLE International GmbH Combustion engine, fresh air system and associated operating method

Also Published As

Publication number Publication date
JPH0568612B2 (en) 1993-09-29

Similar Documents

Publication Publication Date Title
JPS61116021A (en) Engine intake-air device
JPS6263127A (en) Suction device for engine
JPS61218720A (en) Intake device of engine with supercharger
JPH0452377B2 (en)
JP2784775B2 (en) Intake structure of supercharged engine
JPS6233412B2 (en)
JPS61218719A (en) Intake device of engine with supercharger
JPS61218721A (en) Intake device of engine
JP2673426B2 (en) Engine with mechanical supercharger
JPH04194318A (en) Suction device for engine
JPS61218722A (en) Intake device of engine
JPH041300Y2 (en)
JPH0654093B2 (en) Exhaust turbocharged engine
JPH0340214B2 (en)
JP2530677B2 (en) Engine with mechanical supercharger
JPS61201819A (en) Air intake device for engine
JPH0517378B2 (en)
JPH0577845B2 (en)
JPS61252830A (en) Intake device of multicylinder engine
JPS63140824A (en) Supercharging pressure controller for engine with supercharger
JPH01305152A (en) Engine control device incorporated with exhaust turbo-supercharger
JPS6155317A (en) Exhauster of multi-cylinder engine with supercharger
JPS61294126A (en) Intake device of diesel engine with turbosupercharger
JPH0517377B2 (en)
JPH0214527B2 (en)