JPS61236658A - Manufacture of castable refractories - Google Patents
Manufacture of castable refractoriesInfo
- Publication number
- JPS61236658A JPS61236658A JP7908785A JP7908785A JPS61236658A JP S61236658 A JPS61236658 A JP S61236658A JP 7908785 A JP7908785 A JP 7908785A JP 7908785 A JP7908785 A JP 7908785A JP S61236658 A JPS61236658 A JP S61236658A
- Authority
- JP
- Japan
- Prior art keywords
- alumina cement
- refractory
- water
- amount
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011819 refractory material Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 37
- 239000004568 cement Substances 0.000 claims description 36
- 239000000843 powder Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000000704 physical effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 238000004898 kneading Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000036571 hydration Effects 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- -1 soda carbonate Chemical class 0.000 description 2
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 2
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000221035 Santalaceae Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910001678 gehlenite Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野:
本発明は、超微粉耐火物の添加によシ低ライム化されて
尚強度を示し、且つ高耐火性を有するような、工業用炉
のすぐれた内張りを形成できるキャスタブル耐火物の製
造法に係るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention is directed to an excellent industrial furnace that has low lime by adding ultrafine refractory powder, still exhibits strength, and has high refractory properties. The invention relates to a method for producing castable refractories that can be used to form a lining.
発明の背景・関・連技術:
従来のアルミナセメントを用いたキャスタブル耐火物は
、セメント自体の反応性が高く耐火物中で、たとえばア
ノーサイト(CaO・k120B ・28102 )又
はゲーレナイト(2CaO−kl、、08−5in2)
等の易溶融物を生成して高耐火性が得難く、この傾
向は高強度を得んとしてヒメント量金多く配合し、を耐
大物においては一層顕著ンこめりわれる。Background of the invention/Related technology: Conventional castable refractories using alumina cement have a high reactivity of the cement itself, and in the refractory, for example, anorthite (CaO・k120B・28102) or gehlenite (2CaO-kl, , 08-5in2)
It is difficult to obtain high refractory properties due to the formation of easily meltable materials such as, etc., and this tendency is even more pronounced in heavy-duty materials, where a large amount of gold is added in an attempt to obtain high strength.
この対策として、近年、耐火材の超微粉を添加すること
により、アルミナセメントの配合量ヲ少くし、従来例で
は15〜30 wt4の使用水分量(標準混水t)を要
していたのを、15 wt、4未満の水分量でも施工可
能でbつて、しかも高強度・高耐火性を有するキャスタ
ブル耐火物(特願昭53−21339号、特願昭57−
160569号)が提蕨されている。しかし、これらの
アルミナセメントの配合量減少により低ライム化された
キャスタブル耐火物にも難点があり、製造後、日数が通
過すると経時変化が大きく、施工時のり使時間(加水混
練後の流動性保持時間)及び硬化時間に変動をきたし、
可使時間がない瞬結状態金呈したり、逆に硬化不良を生
じたりして、本来の物性が得られず、さらにこのような
現象はキャスタブル耐火物として施工する条件、特に水
温、気温等により大きな影響を受けることが認められて
いる。この原因はアルミナセメントの配合量が少いため
に、耐火材粉末中の僅かな残存水分によってアルミナセ
メントが全体的に変質するものと考えらル、この傾向は
、従来例にみるアルミナセメントラ10〜20 wt4
ト多く配合した耐火物ではそO変質が部分的にとどま
り、上記の現象が軽微であることからみても妥当と思わ
れる。As a countermeasure for this, in recent years, the amount of alumina cement blended has been reduced by adding ultrafine powder of refractory material, which has reduced the amount of water used (standard mixed water t) from 15 to 30 wt4 in the conventional case. , 15 wt, castable refractories that can be constructed even with a moisture content of less than 4, and have high strength and high fire resistance (Japanese Patent Application No. 53-21339, Japanese Patent Application No. 1987-
No. 160569) has been proposed. However, these castable refractories, which have a lower lime content due to a reduction in the amount of alumina cement blended, also have drawbacks. ) and curing time may vary,
The material may turn into a flash-setting state with no usable life, or conversely cause poor curing, making it impossible to obtain the original physical properties.Furthermore, such phenomena are affected by the conditions of construction as a castable refractory, especially water temperature, air temperature, etc. It is recognized that there will be a significant impact. The cause of this is thought to be that the amount of alumina cement blended is small, and the alumina cement changes in quality as a whole due to the slight residual moisture in the refractory material powder.This tendency is similar to that seen in conventional examples of alumina cement 20wt4
This seems reasonable considering that in the case of a refractory containing a large amount of carbon dioxide, the O deterioration is only partially suppressed, and the above-mentioned phenomenon is slight.
また、アルミナセメントの水和による影響を防ぐために
耐火材粉末と別包装とし、加水混練時に始めてアルミナ
セメントをミキサー中に投入することも行なわれている
が、アルミナセメントが耐火材粉末中に均一に分散し難
く、施工体り硬化又は得られる物性に部分偏差を生ずる
ことが避けられなかった。Additionally, in order to prevent the effects of hydration on the alumina cement, the alumina cement is packaged separately from the refractory material powder, and the alumina cement is first introduced into the mixer during hydration and kneading. It is difficult to disperse, and it is inevitable that the applied product will harden or that local deviations will occur in the obtained physical properties.
発明の目的:
本発明は斯かる現況に鑑み、アルミナセメントの配合量
を少量としながら、耐火材中の含水分による影t#全回
避し、しかもすぐれた使用時の特性と硬化体の物性とが
得られるキャスタブル耐火物を提案せんとしてなされた
もので、超微粉耐火材粉末の使用とアルミナセメントの
段階配合とにより、均一な可使時間及び硬化特性を有し
、所望の物性と保全することができる汎用性に富むキャ
スタブル耐火物の製造が法の提供を目的としている。Purpose of the invention: In view of the current situation, the present invention completely avoids the effects of water content in refractory materials by reducing the amount of alumina cement blended, and also achieves excellent properties during use and physical properties of the cured product. This was made with the aim of proposing a castable refractory that can be obtained, and by using ultrafine refractory powder and stepwise blending of alumina cement, it has a uniform pot life and hardening characteristics, and maintains the desired physical properties. The purpose of the method is to manufacture castable refractories that are highly versatile.
発明の構成・実施例:
以下、本発明方法の構成を種種の実施例に基づき説明す
る。Structure and Examples of the Invention: Hereinafter, the structure of the method of the present invention will be explained based on various examples.
本発明のキャスタブル耐火物の製造方法による場合には
、アルミナセメントの配合量が多いときでも均一な硬化
調整や部分偏差のない物性値金得る効果が認めらルるが
、特に顕著な効果が昭められるのは超微粉耐火材粉末金
倉む低ライムキャスタブル耐火物に適用した場合である
。In the case of the method for producing castable refractories of the present invention, even when a large amount of alumina cement is mixed, it is possible to achieve uniform hardening control and to obtain physical property values with no local deviations. This method is applicable to low-lime castable refractories containing ultrafine refractory powder.
次に、本発明に好適な組成原料を挙げると、耐火性骨材
としては酸化物に限らず非酸化物であってもよい。一般
には電気溶融又は高温で焼結させたアルミナ、ボーキサ
イト、ムライト、ジルコニア、ジルコン、シリカ、炭化
ケイ素、コージェライト、ピッチ、黒鉛等天然に産出す
る鉱吻、檀製された原料又は合成された原料群の1種又
は2種以上を任意に選択することができる。Next, to list composition raw materials suitable for the present invention, the refractory aggregate is not limited to oxides, but may be non-oxides. Generally, electrically fused or high temperature sintered alumina, bauxite, mullite, zirconia, zircon, silica, silicon carbide, cordierite, pitch, graphite, etc. are naturally occurring ores, sandalwood raw materials, or synthetic raw materials. One or more types of the group can be arbitrarily selected.
超微粉耐火材粉末としては粒径5〜0.01μのアルミ
ナ、酸化クロム、ジルコン、ジルコニア、シリカ又はチ
タン等の群から選ばれる1種又は2種以上を1〜20
*t、チ添加する。As the ultrafine refractory powder, one or more selected from the group of alumina, chromium oxide, zircon, zirconia, silica, titanium, etc. with a particle size of 5 to 0.01μ are used.
*Add t and t.
解こう剤は超微粉耐火材粉末の分散性を図り、キャスタ
ブル耐火物の流動性を向上させる定め、たとえばトリポ
リリン酸ソーダ、ヘキサメタリフ酸ソーダ、ウルトラポ
リリン酸ソーダ、酸性へキサメタリン酸ソーダ、ホウ酸
ソーダ、炭酸ソーダ等の無機塩、並びにクエン酸ソーダ
、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソ
ーダ等の有機塩の群から選ばれる1種又は2種以上を、
耐火材料に付し、外掛けで0,01〜o、awt、*添
加する0
また、硬化時間調整剤、粘性調整剤或は必要に応じて各
種の7デイパー、金属粉末等を添加してもよい。Peptizers are used to improve the dispersibility of ultrafine refractory powder and improve the fluidity of castable refractories, such as sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, acidic sodium hexametaphosphate, sodium borate, One or more selected from the group of inorganic salts such as soda carbonate, and organic salts such as sodium citrate, sodium tartrate, sodium polyacrylate, and sodium sulfonate,
Add to the fireproof material and add 0.01~o, awt, *0 on the outside.Additionally, curing time regulators, viscosity regulators, or various 7-dayers, metal powders, etc. may be added as necessary. good.
そして、アルミナセメントは1〜g zt4の範囲が好
ましく、キャスタブル耐火物の使途に応じ、施工性及び
得んとする物性面より最適と思われる配合量を策定する
。この配合量が決定されたらそのアルミナセメント量の
25〜90 wt、%を耐火材料と予め充分に混合し、
残りの10〜75Wt$は耐火材料と接触しないように
付帯させ、加水混練時に混合する。この加水混練時に添
加するアルミナセメントの分量が1Ovrt4 未満で
は硬化調整が充分に行なえず、又、75wt8% 金超
すとアルミナセメントの均一な混合が不可能となり所期
の物性値が得らnない。The alumina cement is preferably in the range of 1 to 4 g zt4, and a blending amount that is considered optimal in terms of workability and desired physical properties is determined depending on the use of the castable refractory. Once this blending amount is determined, 25 to 90 wt% of the amount of alumina cement is thoroughly mixed with the refractory material in advance.
The remaining 10 to 75 Wt$ is attached so as not to come into contact with the refractory material, and is mixed during water addition and kneading. If the amount of alumina cement added during this water-mixing is less than 1 Ovrt4, sufficient curing cannot be achieved, and if it exceeds 75wt8% gold, uniform mixing of the alumina cement becomes impossible and desired physical properties cannot be obtained.
耐火材料と接触しないように付帯させる手段としては特
に限定されないが、たとえば、特願昭59−19646
9号に示されるような水に浴げるポリビニールアルコー
ルよりなる袋に包納するとか、コンテナーバッグ中に耐
火材料ケ充填すると共に小型の袋に入れたアルミナセメ
ントも包納し、コンテナーバッグの開封と同時に耐火材
料と小袋中にあったアルミナ−セメントとが混合しつつ
排出さルる方法とか、アルミナセメントの吸湿が抑止で
きる状態であ几ば適宜手段をとることができるのは本発
明の有利な点である。There are no particular limitations on the means for attaching the material so that it does not come into contact with the fireproof material, but for example, Japanese Patent Application No. 59-19646
The container bag can be packed in a polyvinyl alcohol bag that can be soaked in water as shown in No. 9, or the container bag can be filled with fireproof material and alumina cement in a small bag. According to the present invention, it is possible to take appropriate measures such as a method in which the fireproof material and alumina cement in the sachet are mixed and discharged as soon as the bag is opened, or other appropriate measures can be taken as long as moisture absorption of the alumina cement is suppressed. This is an advantageous point.
実施例:
第1表に示すような配合組成となるようにして、本発明
方法によりキャスタブル耐火物を製造した。耐火材料t
iび添加物、並びに混線時の混水量(/J11水分)は
一定とし、Nα2〜5は本発明例であり、アルミナセメ
ントについては最初からの混合量をアルミナセメント所
要鐘の25〜gOwt、q6(Na2は83 wt、%
、隘3は66 wt4、隘4は50 wt、%、Na。Example: Castable refractories were manufactured by the method of the present invention using the blending composition shown in Table 1. Fireproof material
The additives and amount of mixed water (/J11 water) at the time of crosstalk are constant, Nα2~5 is an example of the present invention, and for alumina cement, the amount of mixture from the beginning is 25~gOwt, q6 of the required amount of alumina cement. (Na2 is 83 wt,%
, 66 wt4 for column 3 and 50 wt, %, Na for column 4.
5は33 wt、チ とし、加水混練時の混合量を10
〜75wt、チ(隘2は17ギt、チ、隘3は34 w
t、係、隘4は5o wt、%、1載5は67wt、チ
)としたものである。なお、Na1は従来法によるもの
でアルミナセメントはその全量を最初から混合したもの
であり、座6〜8は比較例で加水混練時のアルミナセメ
ントの混合量を10wt、%未満又は75wt、優を超
える量としたものでめる。5 is 33 wt, and the amount of water mixed during kneading with water is 10
~75wt, Chi (17gt for 2nd, 34w for 3rd place)
t, weight, weight 4 is 5o wt, %, 1 weight 5 is 67wt, chi). In addition, Na1 is obtained by the conventional method, and the alumina cement is mixed in its entirety from the beginning, and seats 6 to 8 are comparative examples in which the amount of alumina cement mixed at the time of mixing with water is less than 10 wt, % or 75 wt, excellent. The amount exceeds the limit.
これらの谷側により製造さルたキャスタブル耐火物の硬
化特性及び硬化体の物性は第2表に示すと計りで、本発
明例の凰2〜5は製造直後と長期保存後との特性又は物
性の差は殆んど見らルず、安定性が非常にすぐれている
ことが明らかである。本発明方法に似た比較例1東6〜
8がこれに次ぎ、従来例のl1lalは長期保存により
硬化特性及び硬化体の物性は著しく劣化し、施工困難が
免れない。The curing characteristics of the castable refractories manufactured by these methods and the physical properties of the cured products are shown in Table 2. Examples 2 to 5 of the present invention have the characteristics or physical properties immediately after manufacture and after long-term storage. Almost no difference was observed, and it is clear that the stability is extremely excellent. Comparative Example 1 East 6 similar to the method of the present invention
No. 8 is second to this, and the conventional l1lal exhibits significant deterioration in hardening characteristics and physical properties of the cured product due to long-term storage, and is inevitably difficult to construct.
発明の作用・効果:
以上のごとき本発明方法により得らルるキャスタブル耐
火物は、その使用に際して、先づ加水混練により屏こう
剤が作用し、超微粉耐火物はK −ラリゼイション金起
して反撥し合うようになり、キャスタブル耐火物は流動
性と示すようになる。Effects and Effects of the Invention: When using the castable refractory obtained by the method of the present invention as described above, a thickening agent is first applied by adding water and kneading, and the ultrafine powder refractory is subjected to K-rarization. They begin to repel each other, and the castable refractory becomes fluid.
次いで、加水混練時に添加し、を経時変化の殆んどない
アルミナセメントから溶出したCa++イオンが屏こう
剤を中和させ、超微粉耐火物の凝集固化が始まる。この
超微粉の凝集固化によシキャスタプル耐火物は脱枠可能
強度に達する。さらに、最初から混合してろって経時変
化している25〜90 wt。Next, Ca++ ions added during kneading with water and eluted from the alumina cement, which shows almost no change over time, neutralize the plastering agent, and coagulation and solidification of the ultrafine refractory begins. By coagulating and solidifying this ultrafine powder, the caster pull refractory reaches a strength that allows it to be removed from the frame. Furthermore, 25 to 90 wt changes over time since it has been mixed from the beginning.
チ以上のアルミナセメントも含めて、添加したアルミナ
セメントは徐徐に水利反応を起こし、水分を含んでいる
状態での強度が増大していく。その結果、得られるキャ
スタブル耐火物の構造体は経時変化していないアルミナ
セメントを使用したときと同様の物性を有するようにな
るのである。Added alumina cement, including alumina cement of 100% or higher, gradually undergoes a water utilization reaction, increasing its strength when it contains water. As a result, the resulting castable refractory structure has physical properties similar to those obtained when using alumina cement that has not changed over time.
アルミナセメント全量と耐火材料とを一括混合して保存
していた場合には、アルミナセメント粒子の表面が、耐
火材料中の残存水分のため活性を失ってJ? t) 、
Ca”+イオンの溶出が非常に遅く、硬化時間が遅延す
る。また耐火材料中の残存水分が格段に多いとき、たと
えば天然原料を使用した場合等は、アルミナセメントの
1部が水和反応を生じてしまって2す、互に接している
耐火材料粉末と偽凝集現象を惹起し、加水混練すると可
塑性状態を示し全く解こうしなくなる。If the entire amount of alumina cement and refractory material are mixed together and stored, the surface of the alumina cement particles may lose activity due to residual moisture in the refractory material. t),
The elution of Ca"+ ions is very slow, and the curing time is delayed. Also, when the residual moisture in the refractory material is extremely large, for example when natural raw materials are used, a part of the alumina cement may undergo a hydration reaction. If this occurs, a false agglomeration phenomenon occurs with the refractory material powders that are in contact with each other, and when mixed with water, they exhibit a plastic state and do not dissolve at all.
また、アルミナセメントの全量を、耐火材料と接触しな
いように付帯し、加水混練時に混合する方法は、炉前作
業の発塵防止の面から許容されることが困難で、通例は
粉末投入と同時に加水されるためアルミナセメントが耐
火材料粉末中に均一に混合・分散されることは望めない
。Additionally, the method of adding the entire amount of alumina cement to the refractory material so that it does not come into contact with the refractory material and mixing it when adding water is difficult to accept from the perspective of preventing dust generation during work in front of the furnace. Since water is added, alumina cement cannot be expected to be uniformly mixed and dispersed in the refractory material powder.
その点、1部のアルミナセメントを加水混練時に混合す
る本発明方法は、そのときに均一に混合・分散されなく
ても、硬化開始の起爆剤的作用全期待できるので上配っ
ごとき支障は排除され、硬化体の強度は耐火材料と充分
に混合・分散している最初からのアルミナセメントが水
和し発現することができるので所期の物性が確保できる
のである。On this point, the method of the present invention, in which a part of alumina cement is mixed during kneading with water, can be expected to act as a priming agent for the start of hardening even if it is not mixed and dispersed uniformly at that time, eliminating the problem of over-mixing. The strength of the hardened product is achieved by the hydration of the alumina cement that has been sufficiently mixed and dispersed with the refractory material from the beginning, thereby ensuring the desired physical properties.
Claims (1)
メント混合量のうち、その25〜90wt.%以上は予
め耐火材粉末と充分に混合・分散させておき、残りの1
0〜75wt、%以下のアルミナセメントは耐火材料粉
末と接触させることなく、加水混練時に混合することが
できるように付帯させておくことを特徴とするキャスタ
ブル耐火物の製造方法。When obtaining a castable refractory, 25 to 90 wt. % or more should be thoroughly mixed and dispersed with the refractory material powder in advance, and the remaining 1.
A method for producing a castable refractory, characterized in that alumina cement of 0 to 75 wt.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7908785A JPH0228540B2 (en) | 1985-04-11 | 1985-04-11 | KYASUTABURUTAIKABUTSUNOSEIZOHOHO |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7908785A JPH0228540B2 (en) | 1985-04-11 | 1985-04-11 | KYASUTABURUTAIKABUTSUNOSEIZOHOHO |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS61236658A true JPS61236658A (en) | 1986-10-21 |
| JPH0228540B2 JPH0228540B2 (en) | 1990-06-25 |
Family
ID=13680097
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7908785A Expired - Lifetime JPH0228540B2 (en) | 1985-04-11 | 1985-04-11 | KYASUTABURUTAIKABUTSUNOSEIZOHOHO |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0228540B2 (en) |
-
1985
- 1985-04-11 JP JP7908785A patent/JPH0228540B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0228540B2 (en) | 1990-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6505011B2 (en) | Fireproof product and use of the product | |
| EP3237356B1 (en) | Use of refractory products | |
| US3942990A (en) | Method for producing foamed ceramics | |
| JPS6042274A (en) | Manufacture of zirconia refractories | |
| JPS6060972A (en) | Refractories and low temperature baking method | |
| US4346177A (en) | Pulverulent compositions and refractory article obtained with said composition | |
| US4107255A (en) | Manufacture of improved fused cast refractory | |
| GB2047676A (en) | Sulphur containing refractory | |
| JPS61236658A (en) | Manufacture of castable refractories | |
| JPH09301780A (en) | Lightweight monolithic refractory | |
| US3752682A (en) | Zircon-pyrophyllite unfired refractory bricks and method for the manufacture of the same | |
| US8011419B2 (en) | Material used to combat thermal expansion related defects in the metal casting process | |
| US2345211A (en) | Investment composition | |
| KR930012259B1 (en) | Method of manufacturing casting sand | |
| JPS6120511B2 (en) | ||
| JP2788063B2 (en) | Erasable mold core containing self-hardening ceramic material and method for producing the same | |
| JPS6065778A (en) | Porous slag | |
| JP2604820B2 (en) | Refractory material | |
| JPH03177366A (en) | Raw material for cementless monolithic refractory and production of cementless monolithic refractory using the same raw material | |
| JP2676227B2 (en) | Carbon containing refractories | |
| JPH03141151A (en) | Production of porous refractory for gas blowing | |
| US2247585A (en) | Investment composition | |
| JPS6051673A (en) | Manufacture of castable refractories | |
| JPS6065770A (en) | Manufacture of castable refractories | |
| JP4598328B2 (en) | Method of kneading irregular refractories |