[go: up one dir, main page]

JPS6123701A - Raw material powder of powder metallurgy for producing ferrous parts - Google Patents

Raw material powder of powder metallurgy for producing ferrous parts

Info

Publication number
JPS6123701A
JPS6123701A JP59143918A JP14391884A JPS6123701A JP S6123701 A JPS6123701 A JP S6123701A JP 59143918 A JP59143918 A JP 59143918A JP 14391884 A JP14391884 A JP 14391884A JP S6123701 A JPS6123701 A JP S6123701A
Authority
JP
Japan
Prior art keywords
powder
raw material
mesh
particle size
apparent density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59143918A
Other languages
Japanese (ja)
Inventor
Yoji Tozawa
戸沢 洋二
Minoru Ichidate
一伊達 稔
Toshihiko Kubo
敏彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59143918A priority Critical patent/JPS6123701A/en
Publication of JPS6123701A publication Critical patent/JPS6123701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide raw material powder for producing ferrous sintered parts having a excellent compressibility and compartibility by mixing iron powders having different grain sizes and characteristics at a specific ratio. CONSTITUTION:The iron powder A having <=350 mesh grain size and 3.2-6.0g/ cm<3> apparent density, the rion powder B having 60-350 mesh grain size, 2.0- 3.2g/cm<3> apparent density and <=150 micro-Vickers hardness in the average value of hardness and the iron powder C having >=60 mesh grain size are mixed so as to contain the iron powder A at 10-50%, the iron powder C at <=10% and the balance the iron powder B. Such iron powder mixture as a raw material is compacted and sintered by a powder metallurgical method to produce mechanical parts. The raw material of powder metallurgy has the excellent compressibility and compaclibility and the sintered mechanical parts produced from said material have the high-strength characteristics.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、圧縮性と成型性が特に優れた鉄系部品製造
用粉末冶金原料粉に係シ、特に機械部品の製造に適用す
るに好適な鉄系焼結部品製造用原料粉末に関するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to powder metallurgy raw material powder for manufacturing iron-based parts that has particularly excellent compressibility and moldability, and is particularly suitable for application to the manufacturing of mechanical parts. The present invention relates to raw material powder for manufacturing iron-based sintered parts.

〈従来の技術〉 近年、金属及び合金粉末の製造技術や、やこれらを使用
する粉末冶金技術の進歩・・発展には目を見張るものが
あシ、これにともなって粉末冶金製品は様々な分野に広
く進出するようになってきた。
<Conventional technology> In recent years, there has been remarkable progress in manufacturing technology for metal and alloy powders, and in powder metallurgy technology that uses these. It has started to expand widely.

しかしながら、粉末冶金技術によって製造される焼結部
品は、一般的に内部に空隙が多く残っていて密度が低く
、従って溶製材から作成した部品よシも機械的強度が低
いと言う問題点を有しており、特に鉄系の焼結機械部品
ではその傾向が極めて著しかった。
However, sintered parts manufactured using powder metallurgy generally have a low density with many voids remaining inside, and therefore have the problem of having low mechanical strength compared to parts made from melted lumber. This tendency was especially marked for iron-based sintered machine parts.

このようなことから5これまで、焼結材料の適用は強度
をそれほど必要としない中強度部品に限られる傾向にあ
ったが、一段と激しさを増してきた最近の粉末冶金技術
の開発競争を背景として、例t ハ自動車用トランスミ
ッション、エンジン部品及びステアリング部品等、引張
り強度が100〜130 kgf/mi程度にも達する
高強度鉄系焼結部品に対する要望が日増しに高まってき
ている。
For these reasons5, up until now, the application of sintered materials has tended to be limited to medium-strength parts that do not require much strength, but against the backdrop of recent competition in the development of powder metallurgy technology that has become even more intense. As an example, demand for high-strength iron-based sintered parts such as automobile transmissions, engine parts, and steering parts, which have a tensile strength of about 100 to 130 kgf/mi, is increasing day by day.

ところで5一般に、焼結部品の高強度化には。By the way, 5. In general, to increase the strength of sintered parts.

原料粉の粉末特性からみて次に示す4一つの要素が重要
であるとされている。即ち、 一■ 優れた圧縮性(圧粉成型体の高密度化)。
The following four factors are said to be important in terms of the powder characteristics of raw material powder. That is, 1) Excellent compressibility (higher density of compacted powder).

■ 優れた成型性(圧粉成型体の高強度化)。■ Excellent moldability (high strength of compacted compact).

■ 優れた焼結性(焼結による緻密化傾向が高いこと)
、 ■ 粉末素材自体の高強度性。
■ Excellent sinterability (high tendency for densification due to sintering)
, ■ High strength of the powder material itself.

そして、前記0項で示した「圧縮性」を向上させるには
、粉末の見掛は密度を高くし、粉末の粒度構成を適正に
壱÷4選定することのほかに、粉末の硬さを低く抑える
ことが必要である。まだ、前記0項で示した「成型性」
を向上させるには、低見掛は密度の粉末とすることが必
要である。
In order to improve the "compressibility" shown in item 0 above, in addition to increasing the apparent density of the powder and appropriately selecting the particle size structure of the powder by 1/4, the hardness of the powder must be increased. It is necessary to keep it low. Still, the "moldability" shown in item 0 above
To improve this, it is necessary to have a powder with low apparent density.

即ち、「圧縮性」の向上と「成型性」の向上とでは、粉
末の゛見掛は密度”において相反する特性を要求するこ
とになるわけである。
In other words, improving "compressibility" and improving "moldability" require contradictory properties in terms of the "apparent density" of the powder.

第1図は、銅粉の見掛は密度と圧粉体密度並びにラトラ
ー値との関係(但し、圧粉体は5t/cIlの加圧成型
で得た)を示すグラフであるが、第1図からも、 ○ 見掛は密度が小さい程圧縮性は低下し、圧粉成型体
の密度が低くなるが、成型性は向上して強度が高い状態
になる、 Q 見掛は密度が大きい程成型性は低下し、圧粉成型体
の強度が低くなるが、圧縮性は向上して密度の高い状態
になる、 ことがわかり、見掛は密度において圧縮性と成型性とは
相反していることが明らかである。
FIG. 1 is a graph showing the relationship between the apparent density of copper powder, green compact density, and Rattler value (the green compact was obtained by pressure molding at 5t/cIl). From the figure, ○ The smaller the apparent density, the lower the compressibility and the lower the density of the green compact, but the moldability improves and the strength becomes higher. Q: The higher the apparent density, the lower the compaction becomes It was found that the moldability decreases and the strength of the compacted powder body decreases, but the compressibility improves and the density becomes high, and it appears that compressibility and moldability are contradictory in terms of density. That is clear.

通常、見掛は密度の高い粉末は粒子形状が球状であシ1
粒度構成を適正に選定しておけば圧粉成型によって高い
密度の圧粉体が得られると考えられる。また、見掛は密
度の低い粉末は粒子形状が不規則であり、圧粉成型によ
る粉末の充填率は低いが、粉末同士の機械的絡み合いが
あるので圧粉体の強度は高くなると考えられる。
Normally, apparently dense powder has a spherical particle shape.
It is believed that if the particle size structure is appropriately selected, a compacted powder with high density can be obtained by compaction. In addition, powders with apparently low density have irregular particle shapes, and the filling rate of the powder when compacted is low, but it is thought that the mechanical entanglement of the powders increases the strength of the compact.

このように、粉末の見掛は密度、つまり粉末の粒子形状
は5圧縮性と成型性の両者に密接に関っているが、それ
らを同時に満足させることは粒子形状の観点からすると
互に相反する要求となる。
In this way, the appearance of a powder is closely related to its density, and in other words, its particle shape is closely related to both compressibility and moldability, but satisfying both of them at the same time is mutually contradictory from the perspective of particle shape. This is a request to do so.

このため、強度の高い焼結部品の製造に際しては、原料
粉の粒度構成に工夫を凝らしたり(特開昭58−819
03号)、見掛は密度を調整しだシ(特開昭58−58
201号、特開昭、58−81901号)、或いは化学
組成に工夫を凝らしたり(特公昭’58−10962号
)、更には焼鈍による粉末の低硬度化を図ったりしてそ
の圧縮性と成型性の妥協点を見出しているのが現状であ
る。
For this reason, when manufacturing high-strength sintered parts, the particle size structure of the raw material powder must be modified (Japanese Patent Laid-Open No. 58-819
No. 03), and the apparent density was adjusted
201, Japanese Patent Application Publication No. 58-81901), or by devising the chemical composition (Japanese Patent Publication No. 58-10962), or by reducing the hardness of the powder by annealing, to improve its compressibility and moldability. The current situation is to find a compromise between sexes.

〈発明が解決しようとする問題点〉 上述のように、製造工程における切削加工の大幅削減を
期待して粉末冶金による高強度機械部品等の製造を試み
たとしても、製品の強度に大きな影響を及ぼす原料粉末
の「圧縮性」と「成型性」とが相反する特性であるだめ
、十分に満足できる焼結製品を安定して量産することは
極めて困難だったのである。
<Problems to be solved by the invention> As mentioned above, even if attempts are made to manufacture high-strength mechanical parts using powder metallurgy with the hope of significantly reducing cutting work in the manufacturing process, the strength of the product will be significantly affected. Because the "compressibility" and "mouldability" of the raw material powder have contradictory properties, it has been extremely difficult to stably mass-produce fully satisfactory sintered products.

〈問題点を解決するだめの手段〉 本発明者等は、上述のような問題点を解消して、特に高
強度が必要である機械部品の製造に適用して好適な、圧
縮性と成型性が共に優れた鉄系部品製造用粉末冶金原料
粉を提供すべく、先に述べたような粉末の見掛は密度、
即ち粉末の圧縮性及び成型性に密接な関係を有する粒子
形状に着目して研究を行ったところ、 [鉄系焼結部品用原料粉末を5粒子の機械的絡み合い(
成形性向上)を重視する立場に立って不規則形状粉を主
体にするとともに、これに充填性(圧縮性)向上のだめ
の球状粉を混入し、かつ、上記不規則形状粉を相対的に
粗な粒子で、そして球状粉を相対的に微細な粒子で構成
して、その粒度分布を粒子形状によって変えてやれば、
圧粉成型に際して、不規則形状粗粒が機械的に絡み合っ
て形成される骨格構造が強固に維持されつつ、その骨格
構造の隙間に微細球状粒が円滑に侵入し充填されるので
、成形性及び圧縮性ともに極めて優れた圧粉成型体が得
られ、高強度の焼結体を安定して製造できるようになる
」 との知見を得だのである。
<Means to Solve the Problems> The present inventors have solved the above-mentioned problems and have developed a method with compressibility and moldability that is suitable for the manufacture of mechanical parts that particularly require high strength. In order to provide a raw material powder for powder metallurgy for manufacturing iron-based parts that has both excellent properties, the appearance of the powder as described above is
In other words, we conducted research focusing on the particle shape, which has a close relationship with the compressibility and moldability of the powder.
From the viewpoint of placing emphasis on improving moldability, we mainly use irregularly shaped powder, and we also mix spherical powder to improve filling properties (compressibility), and make the irregularly shaped powder relatively coarse. If the spherical powder is made up of relatively fine particles and the particle size distribution is changed depending on the particle shape,
During powder compaction, the skeletal structure formed by mechanically intertwining irregularly shaped coarse particles is maintained firmly, while the fine spherical particles smoothly enter and fill the gaps in the skeletal structure, improving formability and We obtained the knowledge that a compacted powder body with extremely excellent compressibility can be obtained, and that a high-strength sintered body can be stably manufactured.''

この発明は、上記知見に基づいてなされたものであり、 粉末冶金によって鉄系焼結部品を製造するだめの原料粉
末を、 A粉末:粒度が一3’50メツシュで、かつ見掛は密度
が3.2〜6.o&/dの粉末5B粉末二粒度が060
〜■350メツシュで、かつ見掛は密度が2.0〜3.
2111cr&の粉末5C粉末二粒度が+60メツシュ
の粉末、の混合粉で構成するとともに、前記A粉末の重
量割合を10〜50%とし、しかも前記C粉末の重量割
合を10%未満に抑えることにより、粉末の圧縮性と成
型性を安定して向上せしめた点、に特徴を有するもので
ある。
This invention was made based on the above knowledge, and the raw material powder for manufacturing iron-based sintered parts by powder metallurgy is A powder: particle size of 13'50 mesh and apparent density. 3.2-6. o&/d powder 5B powder 2 particle size is 060
~ ■ 350 mesh, and the apparent density is 2.0 to 3.
2111 cr & powder 5C powder 2 Powder with a particle size of +60 mesh Powder is composed of a mixed powder, and the weight proportion of the A powder is 10 to 50%, and the weight proportion of the C powder is suppressed to less than 10%, It is characterized by stably improving the compressibility and moldability of the powder.

この発明で対象となる粉末は、成分組成上からすると、
鉄系焼結部品の製造が可能なものであればその種類が問
われるものではなく、プレミックス粉(焼結によって目
的の成分組成となるように各種成分の粉末を混合したも
ので、例えば鉄系機械部品用であれば、低合金鋼粉にN
1粉、 Cu粉或いはFe粉等の金属粉を適宜混合した
ものが使用される)或いはプレアロイ粉(予め目的の成
分組成を有する粉末)のいずれもが採用され得る。
From the component composition, the powder targeted by this invention is as follows:
As long as it is possible to manufacture iron-based sintered parts, the type does not matter; premixed powder (a mixture of powders of various components so as to achieve the desired composition through sintering; for example, iron-based sintered parts) For system machine parts, N is added to low-alloy steel powder.
1 powder, an appropriate mixture of metal powder such as Cu powder or Fe powder), or pre-alloyed powder (powder having a desired component composition in advance) may be employed.

次いで、この発明において、粉末の粒度、見掛は密度、
及び配合割合を前記の如くに数値限定した理由について
説明する。
Next, in this invention, the particle size of the powder, the apparent density,
The reason why the blending ratio is numerically limited as described above will be explained.

(a)粉末の粒度、及び見掛は密度 この発明は、前述したように、粒度並びに粒子   ′
1形状の異なる粉末を混合することで、不規則形状の粗
粒が形成する骨格構造の橙械的絡み合いを維持させなが
ら、その隙間に微粉を効率良(充填させることを骨子と
しており、そのだめ、微粉側に充填性の良好な球状粉(
即ち見掛は密度の大きい粉末)を選定し、粗粒側に成型
性の良好な不規則形状粗粒 ている。
(a) Particle size and apparent density of powder As described above, this invention is applicable to particle size and apparent density.
By mixing powders of different shapes, the aim is to maintain the mechanical intertwining of the skeletal structure formed by irregularly shaped coarse particles while efficiently filling the gaps with fine powder. , Spherical powder with good filling properties on the fine powder side (
That is, a powder with apparently large density is selected, and irregularly shaped coarse particles with good moldability are selected on the coarse particle side.

この場合、微粒側と粗粒側との境界をどの粒度に選んで
も相応の効果が得られるが、通常の粉末冶金原料粉末に
おいて圧縮性と成形性のバランス上好ましいとされ、か
つ粉末冶金業界の通例となっている「350メツシュ」
を、この発明においても粒度の境界とし、−350メツ
シュの側(即ち、350メツシュの篩を通過する側)を
微粒側とし、これに対する+350メツシュの側(即ち
、350メツシュの篩上に残った側)を粗粒側としだ。
In this case, the appropriate effect can be obtained no matter what particle size is selected for the boundary between the fine grain side and the coarse grain side, but it is said that it is preferable in terms of the balance between compressibility and formability in ordinary powder metallurgy raw material powder, and The customary “350 mesh”
is also defined as the grain size boundary in this invention, and the -350 mesh side (i.e., the side that passes through the 350 mesh sieve) is defined as the fine grain side, and the +350 mesh side (i.e., the side that remains on the 350 mesh sieve) is defined as the fine grain side. side) as the coarse grain side.

もちろん、上記粒度を境界として微粒側と粗粒側に粉末
を分ければ、この発明の粉末においても圧縮性と成形性
のバランスが最良となることは言うまでもない。
Of course, it goes without saying that if the powder is divided into fine particles and coarse particles using the above particle size as a boundary, the powder of the present invention will have the best balance between compressibility and moldability.

また、粗粒側であっても、+60メツシュの粒度のもの
は圧縮性、成型性、焼結性等のいずれにも悪影響を及ば
ずので、やはり粉冶金業界の通例に従って60メツシュ
以上の粗粒を不良分とした。
In addition, even on the coarse grain side, those with a grain size of +60 mesh do not have a negative effect on compressibility, moldability, sinterability, etc., so in accordance with the customary practice in the powder metallurgy industry, coarse grains with a mesh of 60 mesh or more was considered defective.

さて、繰り返すことになるが、この発明の鉄系焼結部品
製造用原料粉末は1粒度並びに粒子形状の異なる粉末を
混合することで高圧縮性と高成型性を両立させたもので
ある。そしてこの場合、当然のことながら、粉末構成要
素としての球状微粉は高圧縮性を有していることが必要
であり、また不規則形状粉の方は高成形性を有している
ことが要求される。
Now, to repeat, the raw material powder for manufacturing iron-based sintered parts of the present invention achieves both high compressibility and high moldability by mixing powders with different particle sizes and particle shapes. In this case, of course, the spherical fine powder as a powder component must have high compressibility, and the irregularly shaped powder must have high moldability. be done.

ところで、本発明者等は、高強度機械部品として十分な
特性を備えた焼結材を得るには、5t/c11tの加圧
成型で得られる圧粉体密度が6.61//cr&以上程
度となる圧縮性と、同じ<5t/dの加圧成型で得られ
る圧粉体のラトラー値が1.0%以以下塵となる成型性
とを兼備した原料粉末を使用する必要があることを確認
i〜でいる。
By the way, the present inventors have found that in order to obtain a sintered material with sufficient characteristics as a high-strength mechanical part, the compact density obtained by pressure molding of 5t/c11t should be approximately 6.61//cr& or more. It is necessary to use a raw material powder that has both compressibility such that the powder compact obtained by pressure molding at <5 t/d has a Rattler value of 1.0% or less or less. Check i~.

従って、このような観点から、粒度が一350メツシュ
である微粒側の見掛は密度の下限を3,211/cr&
と定めて所望の球形状粉の集まり−となるようにし、一
方、粒度が060〜■350メツシュ(060〜■35
0メツシュ)である粗粒側(なお5粒度が+60メツシ
ュのものは不良分であり。
Therefore, from this point of view, the apparent lower limit of the density of the fine grain side with a grain size of 1350 mesh is 3,211/cr&
The particle size is determined to be a desired collection of spherical powder, while the particle size is set to 060 to
0 mesh) on the coarse grain side (5 grain size +60 mesh) is a defective part.

後述するようにその混入量を極力抑えて見掛は密度への
影響を実質的に除いたので、この分を除いた粗粒を対象
とした)の見掛は密度の上限を3.111/cr/Iと
定めて所望の不規則形状粉の集まシとなるようにした。
As will be described later, we suppressed the amount of contamination as much as possible and virtually eliminated its influence on the apparent density. cr/I was determined to obtain a desired collection of irregularly shaped powder.

即ち、先に示した第1図からも、粉末の見掛は密度が3
.2.!i’/cff1以上になると圧粉体密度が66
g/cut以上となり、また粉末の見掛は密度が3.1
g/cd以下でラトラー値:]、0以下を達成できるこ
とが明らかである。
In other words, from Figure 1 shown above, the apparent density of the powder is 3.
.. 2. ! When i'/cff1 or more, the compact density becomes 66
g/cut or more, and the apparent density of the powder is 3.1.
It is clear that the Rattler value: ], 0 or less can be achieved at g/cd or less.

また1粒度が一350メツシュである微粒側の見掛は密
度の上限を6.oE/cwtと定めだのは、現在知られ
ている技術では見掛は密度が6. o g lcr&を
越える鉄系金属粉末の製造が不可能だからであり、一方
、見掛は密度が2.09/cr&未満の鉄系金属粉末は
極めて流動性が悪く、金型等への充填時に円滑な流下が
なされなくなることから5060〜■350メツシュで
ある粗粒側の見掛は密度の下限をz、og/dと定めた
Also, the apparent upper limit of the density of the fine grain side, which has a grain size of 1350 mesh, is 6. The reason why oE/cwt is defined is that with currently known technology, the apparent density is 6. This is because it is impossible to produce iron-based metal powder that exceeds o g lcr&.On the other hand, iron-based metal powder with an apparent density of less than 2.09/cr& has extremely poor fluidity, and when filled into molds, etc. Since smooth flow would not be achieved, the lower limit of the apparent density on the coarse grain side, which is 5060 to 350 mesh, was set as z, og/d.

(b)  各粒度の粉末の配合割合 鉄系焼結部品製造用原料粉末における一350メツシュ
の微粒粉末(見掛は密度:3.zll/Clft以上の
球状粉)配合割合が10重量−未満であると所望の圧粉
体密度(即ち、6.6Elcr&程度以上)を確保でき
ず、一方、50重量%を越えて配合した場合には目的と
する低いラトラー値(即ち。
(b) Blending ratio of powder of each particle size The blending ratio of 1350 mesh fine powder (apparently spherical powder with density: 3.zll/Clft or more) in the raw material powder for manufacturing iron-based sintered parts is less than 10% by weight. If it is present, the desired green compact density (i.e., about 6.6 Elcr& or higher) cannot be secured, while if it is blended in excess of 50% by weight, the desired low Rattler value (i.e.,

1.0チ程度以下)を達成することができないことから
、前記微粒球状粉の配合割合を10〜50重量%と定め
た。
Since it was not possible to achieve a particle size of about 1.0 cm or less), the blending ratio of the fine spherical powder was set at 10 to 50% by weight.

第2図は、鉄系焼結部品製造用原料粉末における一35
0メツシュの微粒球状粉末(見掛は密度3、aglCr
!以上)配合割合と、圧粉体密度並びにラトラー値との
関係(但し、圧粉体は5t/cfflの加圧成型で得だ
)を示したグラフである。
Figure 2 shows 135% of the raw material powder for producing iron-based sintered parts.
0 mesh fine spherical powder (apparent density 3, aglCr
! This is a graph showing the relationship between the blending ratio (above), green compact density, and Rattler value (however, compact powder compacting is advantageous when pressure molded at 5t/cffl).

第2図からも、微粒球状粉末の配合量が少ない場合は、
ラトラー値は向上するけれども圧粉体密度が不足して圧
縮性の低下を来たし、また、微粒球状粉末の配合量が多
過ぎる場合は、圧粉体密度は向上するけれどもラトラー
値が悪化して成型性の低下を招くことがわかる。これは
5微粒球状粉末が少な過ぎる場合は5粗粒不規則形状粉
の形成する骨格構造の絡み合いは十分であるけれども微
粉粒がその隙間を埋めるのに十分でなく、一方、微細球
状粉が多過ぎる場合は、充填性は向上するけれども粗粒
不規則形状物が形成する骨格構造の機械的絡み合いが破
壊される傾向となるだめである。
From Figure 2, if the amount of fine spherical powder blended is small,
Although the Rattler value improves, the green compact density is insufficient, resulting in a decrease in compressibility.Also, if the amount of fine spherical powder blended is too large, the green compact density improves, but the Rattler value deteriorates, making it difficult to form. It can be seen that this leads to a decline in sexual performance. This means that if there are too few fine spherical powders, the intertwining of the skeleton structure formed by the coarse irregularly shaped powders is sufficient, but the fine powder particles are not sufficient to fill the gaps; If it is too large, the mechanical intertwining of the skeletal structure formed by the coarse particles and irregular shapes tends to be destroyed, although the filling properties are improved.

また、この発明の鉄系焼結部品製造用原料粉末において
は、60メツシュの篩を通過しない粗粒の含有割合を1
0重量%未満に制限しているが5これは、−1−60メ
ツシュの粗粒が圧縮性、成型性。
In addition, in the raw material powder for manufacturing iron-based sintered parts of the present invention, the content of coarse particles that do not pass through a 60 mesh sieve is reduced to 1
Although the content is limited to less than 0% by weight, the -1-60 mesh coarse particles are compressible and moldable.

焼結性のいずれにも悪影響を及ぼすだめであり、その含
有割合を10重量%未満とすることで前記不都合がほぼ
抑えられることが確認されだからである。
This is because it has been confirmed that the above-mentioned disadvantages can be almost suppressed by making the content less than 10% by weight, since it does not have an adverse effect on the sinterability.

なお、鉄系焼結部品製造用粉末の製造方法によって粉末
の粒子形状や見掛は密度が影響されるのは当然であるが
、この発明の粉末はどの方法によって製造されたもので
も良く、粒度と見掛は密度との関係がこの発明の条件を
満たしてさえおれば十分である。だだ、油アトマイズ法
を使用すれば。
It should be noted that it is natural that the particle shape and appearance of the powder are affected by the density depending on the method of manufacturing the powder for manufacturing iron-based sintered parts, but the powder of this invention may be manufactured by any method, and the particle size It is sufficient that the relationship between the appearance and the density satisfies the conditions of this invention. Well, if you use the oil atomization method.

一定の製造条件にて、この発明の条件を満たす粒子構成
の粉末を一括して製造することができるので好ましい。
This is preferable because powder having a particle structure that satisfies the conditions of the present invention can be produced all at once under certain production conditions.

以上のように、この発明においては粉末の成分。As mentioned above, in this invention, powder components are used.

製造法、由来等については何ら限定されるものではない
が、更に有利な効果を得るためには粉末自身の硬さをで
きるだけ軟かくすることが好ましい。
There are no restrictions on the manufacturing method, origin, etc., but in order to obtain more advantageous effects, it is preferable to make the hardness of the powder itself as soft as possible.

第3図は、粉末の硬さと圧粉体密度並びにラトラー値と
の関係を示すグラフであるが、第3図からは5粉末の硬
さも圧縮性や成型性に影響し、粉末の硬さが小さい程両
者がともに良好な結果となることが明白で、また望まし
くはマイクロビッカース硬さ150以下とするのが理想
的であることもわかる。
Figure 3 is a graph showing the relationship between powder hardness, green compact density, and Rattler value.From Figure 3, it can be seen that the hardness of 5 powders also affects compressibility and moldability. It is clear that the smaller the micro-Vickers hardness, the better the results for both, and it is also clear that it is ideal to have a micro Vickers hardness of 150 or less.

もちろん、粉末の硬さは粒子毎に異なった値を示すのが
通例であシ、まだ微細粉の硬さ測定にも限界があること
を考慮すれば、特に060〜■350メツンユの粗粒粉
末を、硬さの平均値がマイクロビッカース硬さ150以
下となるように設定するのが現実的である。
Of course, the hardness of powder usually shows different values for each particle, and considering that there is still a limit to the hardness measurement of fine powder, especially coarse grain powder of 060 to 350 mm. It is practical to set so that the average value of hardness is 150 or less in terms of micro Vickers hardness.

更に、この発明の粉末は粒径と見掛は密度との条件を規
制したものであるが、先に述べた油アトマイズ法を除い
ては、単一の製造法による前記条件を満たす粉末の製造
は困難な場合が多い。例えば、還元粉や水アトマイズ粉
等は粒径全般にわたって粒子形状が不規則であり、見掛
は密度が小さく 、 +350メツシュの籾粒だけでは
な(−350メツシュの微粒も、その見掛は密度が3.
1g/i以下となるのが普通である。首だ、ガスアトマ
イズ粉であれば5粒度の全般にわたって粒子形状が球状
化しており、+350メツシュの粗粒及び−350メツ
シュの微粒ともに見掛は密度が3.2g/cd以−Fと
なる。
Furthermore, although the powder of the present invention has regulated conditions regarding particle size and apparent density, it is not possible to produce powder that satisfies the above conditions by a single manufacturing method, except for the oil atomization method mentioned above. is often difficult. For example, reduced powder, water atomized powder, etc. have irregular particle shapes over the entire particle size, and their apparent density is small. 3.
It is normal that it is 1 g/i or less. In the case of gas atomized powder, the particle shape is spherical over all 5 particle sizes, and both the +350 mesh coarse particles and -350 mesh fine particles have an apparent density of 3.2 g/cd or more -F.

このような場合は、粗粒不規則形状粉と微粒球状粉とを
混合して本発明の条件を満たすようにする必要があるが
、粗粒不規則形状粉として平均粒径が44μ超で見掛は
密度2.0〜3、2g/cm3.211/crlの粉末
を、まだ微粒球状粉として平均粒径が44μ以下で見掛
は密度32〜6.0g/cntの金属粉末を選定するの
が良い。
In such a case, it is necessary to mix the coarse irregularly shaped powder and the fine spherical powder to meet the conditions of the present invention. Select a powder with a density of 2.0 to 3.2g/cm3.211/crl, or a metal powder with an average particle size of 44μ or less and an apparent density of 32 to 6.0g/cnt as fine spherical powder. is good.

以上述べたように、この発明では粒度350メツシュ、
即ち粒径44μで粗粒と微粒を区別しているが、粗粒不
規則形状粉と微粒球状粉とを混合して本発明の条件を満
たすようにする場合、粗粒不規則形状粉としては、06
0〜■350メツシュで見掛は密度2.0〜3.2.i
?/ciとするよりも。
As mentioned above, in this invention, the particle size is 350 mesh,
That is, coarse particles and fine particles are distinguished by the particle size of 44μ, but when coarse irregularly shaped powder and fine spherical powder are mixed to meet the conditions of the present invention, the coarse irregularly shaped powder is: 06
0~■350 mesh and the apparent density is 2.0~3.2. i
? /ci rather than.

粗粒と微粒の両方を含んで平均粒度が060〜■350
メツシュ(44〜246μ)であって、かつ見掛は密度
が20〜s、2g/airの粉末を選定するのが良く、
同様に、微粒球状粉としては、平均粒径が44μ以下(
−3!50メツシュ)で見掛は密度が32〜6.0g1
cr!の粉末を選定するのが自   :然である。
The average particle size is 060 to ■350, including both coarse and fine particles.
It is better to select a powder with a mesh size (44 to 246μ) and an apparent density of 20 to 2g/air.
Similarly, fine spherical powder has an average particle size of 44μ or less (
-3!50 mesh) and the apparent density is 32 to 6.0g1
CR! It is natural to select a powder of

次に、この発明を実施例により比較例と対比しながら説
明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

〈実施例〉 まず、焼結体が第1表に示されるような化学成分組成と
なる粉末であって、かつ第2表に示される如き粒度構成
と見掛は密度に調整した粉末P1〜P19を用意した。
<Example> First, powders P1 to P19 were prepared in which the sintered bodies were powders having a chemical composition as shown in Table 1, and the particle size structure and apparent density were adjusted to be as shown in Table 2. prepared.

なお、粉末P14及びPI3は粒度構成が適正でない場
合の比較例であり、粉末P16〜P19は見掛は密度が
適正でない場合の比較例である。
Note that powders P14 and PI3 are comparative examples in which the particle size structure is not appropriate, and powders P16 to P19 are comparative examples in which the apparent density is not appropriate.

これらの各粉末について、圧粉体密度と圧粉体のラトラ
ー値を測定し、得られた結果も第2表に併せて示しだ。
For each of these powders, the green compact density and the Rattler value of the green compact were measured, and the obtained results are also shown in Table 2.

第2表に示される結果からも明らかなように。As is clear from the results shown in Table 2.

本発明鋼粉P1〜P9は、粒度構成と見掛は密度が適切
に調整されており、圧粉体密度661!/d以上、ラト
ラー値1.0以下となって5圧縮性並びに成型性ともに
良好な結果が得られていることがわかる。一方、比較鋼
粉P14及びPI3は、見掛は密度の調整はP1〜P3
と同一であるが、粒度構成が調整されておらず、PI3
は圧縮性不良に、P ’15は成型性不良になっている
In the steel powders P1 to P9 of the present invention, the particle size structure and apparent density are appropriately adjusted, and the green compact density is 661! /d or more, and the Rattler value was 1.0 or less, indicating that good results were obtained in both compressibility and moldability. On the other hand, for comparative steel powders P14 and PI3, the apparent density adjustment is P1 to P3.
, but the particle size structure is not adjusted and PI3
P'15 has poor compressibility, and P'15 has poor moldability.

まだ、比較例P16〜P]9については、粒度構成は調
整されているが見掛は密度は調整されておらず、P]7
及びP’18は圧縮性不良、P2O及びPI3け成型性
不良となっている。
Regarding Comparative Examples P16 to P]9, the particle size structure has been adjusted, but the apparent density has not been adjusted, and P]7
and P'18 had poor compressibility, and P2O and PI3 had poor moldability.

本発明鋼粉PLO−P13については、粒度構成と見掛
は密度はほぼ同一に調整されていて、粗粒粉たる060
〜■350メツシュ粉の硬さのみが相違しているが、粉
末の硬さが大きくなると、粒度構成や見掛は密度がとも
に調整されていたとしても圧縮性及び成型性とも不利に
なる結果となっている。従って、より有利な粉末特性を
得るためには、粉末の硬さをできるだけ小さく(望まし
くはマイクロビッカース硬さ1.50以下)するのが良
い。
Regarding the steel powder PLO-P13 of the present invention, the particle size structure and apparent density are adjusted to be almost the same, and the coarse powder 060
~ ■ The only difference is the hardness of the 350 mesh powder, but as the hardness of the powder increases, even if the particle size structure and apparent density are adjusted, both compressibility and moldability will be disadvantageous. It has become. Therefore, in order to obtain more advantageous powder properties, the hardness of the powder should be made as small as possible (preferably micro-Vickers hardness of 1.50 or less).

〈総括的な効果〉 上述のように、この発明によれば、圧縮性と成型性が共
に優れた鉄系部品製造用粉末冶金原料粉を安定・確実に
得ることができ、鉄系高強度機械部品の工業的規模での
量産が可能に力るなど、産業上極めて有用な効果がもた
らされるのである。
<Overall Effects> As described above, according to the present invention, it is possible to stably and reliably obtain powder metallurgy raw material powder for manufacturing iron-based parts that has excellent compressibility and moldability, and it is possible to obtain iron-based high-strength machinery. This brings about extremely useful effects industrially, such as making it possible to mass produce parts on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、銅粉の見掛は密度と圧粉体密度並びにラトラ
ー値との関係を示すグラフ、 第2図は、−350メツシュの微粒球状粉末の配合割合
と圧粉体密度並びにラトラー値との関係を示すグラフ、 第3図は、粉末の硬さと圧粉体密度並びにラトラー値と
の関係を示すグラフである。 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 ほか1名□」 一350メン/二廊久#lIl珠 粉末/l、f!ン(MHv)
Figure 1 is a graph showing the relationship between the apparent density of copper powder, green compact density, and Rattler value. Figure 2 is a graph showing the relationship between -350 mesh fine spherical powder, green compact density, and Rattler value. Figure 3 is a graph showing the relationship between powder hardness, green compact density, and Rattler value. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and 1 other person (MHv)

Claims (3)

【特許請求の範囲】[Claims] (1)A粉末:粒度が−350メッシュで、かつ見掛け
密度が3.2〜6.0g/cm^3の粉末、B粉末:粒
度が■60〜■350メッシュ で、かつ見掛け密度が2.0〜3、2g/cm^3の粉
末、 C粉末:粒度が+60メッシュの粉末、 の混合粉末から成る鉄系部品製造用粉末冶金原料粉であ
つて、前記A粉末の重量割合を10〜50%にするとと
もに、前記C粉末の重量割合を10%未満に抑えたこと
を特徴とする鉄系焼結部品製造用原料粉末。
(1) Powder A: Powder with a particle size of -350 mesh and an apparent density of 3.2 to 6.0 g/cm^3, Powder B: Powder with a particle size of 60 to 350 mesh and an apparent density of 2. Powder metallurgy raw material powder for manufacturing iron-based parts consisting of a mixed powder of 0 to 3.2 g/cm^3 powder, C powder: powder with particle size of +60 mesh, and the weight ratio of the A powder is 10 to 50. %, and the weight ratio of the C powder is suppressed to less than 10%.
(2)前記B粉末の粒子硬さの平均値が、マイクロビッ
カース硬さで150以下である、特許請求の範囲第1項
に記載の鉄系焼結部品製造用原料粉末。
(2) The raw material powder for manufacturing iron-based sintered parts according to claim 1, wherein the B powder has an average particle hardness of 150 or less in terms of micro-Vickers hardness.
(3)前記A粉末の平均粒子径が44μ以下であり、か
つ前記B粉末の平均粒子径が44μ超である、特許請求
の範囲第1項又は第2項に記載の鉄系焼結部品製造用原
料粉末。
(3) Production of iron-based sintered parts according to claim 1 or 2, wherein the average particle size of the A powder is 44 μm or less, and the average particle size of the B powder is more than 44 μm. Raw material powder for use.
JP59143918A 1984-07-11 1984-07-11 Raw material powder of powder metallurgy for producing ferrous parts Pending JPS6123701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143918A JPS6123701A (en) 1984-07-11 1984-07-11 Raw material powder of powder metallurgy for producing ferrous parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143918A JPS6123701A (en) 1984-07-11 1984-07-11 Raw material powder of powder metallurgy for producing ferrous parts

Publications (1)

Publication Number Publication Date
JPS6123701A true JPS6123701A (en) 1986-02-01

Family

ID=15350123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143918A Pending JPS6123701A (en) 1984-07-11 1984-07-11 Raw material powder of powder metallurgy for producing ferrous parts

Country Status (1)

Country Link
JP (1) JPS6123701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165701A (en) * 1987-09-30 1989-06-29 Kawasaki Steel Corp Mixture and manufacture of iron base powder for powder metallurgy
US6638335B2 (en) 2001-04-20 2003-10-28 Kawasaki Steel Corporation Highly compressible iron powder
CN103600061A (en) * 2013-10-10 2014-02-26 铜陵新创流体科技有限公司 Powder metallurgical plunger pump blank and manufacture method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165701A (en) * 1987-09-30 1989-06-29 Kawasaki Steel Corp Mixture and manufacture of iron base powder for powder metallurgy
US6638335B2 (en) 2001-04-20 2003-10-28 Kawasaki Steel Corporation Highly compressible iron powder
USRE45647E1 (en) 2001-04-20 2015-08-11 Jfe Steel Corporation Highly compressible iron powder
CN103600061A (en) * 2013-10-10 2014-02-26 铜陵新创流体科技有限公司 Powder metallurgical plunger pump blank and manufacture method thereof
CN103600061B (en) * 2013-10-10 2015-09-02 铜陵新创流体科技有限公司 A kind of powder metallurgy plunger displacement pump blank and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5108531B2 (en) Iron-based composite powder
KR20110099336A (en) A method for producing a composition comprising a diffusion alloyed iron or iron based powder, a diffusion alloy powder, a diffusion alloyed powder, and a compacted and sintered part produced from the composition
JPH0432122B2 (en)
US4123265A (en) Method of producing ferrous sintered alloy of improved wear resistance
WO2005102564A1 (en) Mixed powder for powder metallurgy
JPS6123701A (en) Raw material powder of powder metallurgy for producing ferrous parts
JP2008524447A (en) Diffusion bonded nickel-copper powder metallurgy powder
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
CA2495697A1 (en) Method of preparing iron-based components by compaction with elevated pressures
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
EP0157750B1 (en) Material for the powder metallurgical manufacture of soft magnetic components
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS6123702A (en) Raw material powder of powder metallurgy for producing ferrous parts
JPH075921B2 (en) Method for producing composite alloy steel powder with excellent compressibility
CA1100788A (en) Iron-phosphorus powder for manufacture of soft magnetic components
JPH0375621B2 (en)
JPH01290704A (en) Kneaded matter of magnetic powder for sintering
JPH0213001B2 (en)
JP4198226B2 (en) High strength sintered body
JP2004149819A (en) Ferrous sintered body for valve seat
JPH0159322B2 (en)
JPH01290703A (en) Kneaded matter of low-alloy steel powder for sintering
CN120536825A (en) Low-cost high-strength low-copper high-manganese non-magnetic steel and preparation method thereof
JPH0247202A (en) Steel powder for heat and wear resistant sintered alloy
JPH07138602A (en) Low alloy steel powder for powder metallurgy