[go: up one dir, main page]

JPS6130023A - Formation of soi - Google Patents

Formation of soi

Info

Publication number
JPS6130023A
JPS6130023A JP15048984A JP15048984A JPS6130023A JP S6130023 A JPS6130023 A JP S6130023A JP 15048984 A JP15048984 A JP 15048984A JP 15048984 A JP15048984 A JP 15048984A JP S6130023 A JPS6130023 A JP S6130023A
Authority
JP
Japan
Prior art keywords
film
single crystal
heating
thin film
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15048984A
Other languages
Japanese (ja)
Inventor
Yasuo Ono
泰夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15048984A priority Critical patent/JPS6130023A/en
Publication of JPS6130023A publication Critical patent/JPS6130023A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain SOI by covering a part of Si thin film surface with a film which is more easily evaporated than Si and single crystallizing it around the exposed region of Si through the heating within a short period of time. CONSTITUTION:A poly-Si or amorphous Si thin film 6, SiO2 thin film 7 (more difficult to evaporate than Si) are stacked on a quartz substrate 5. It is then irradiated with the laser beam, the Si 6 is melted and heating is suspended. Heat of film 6 does not escape to the substrate 5, convection is not generated at the surface of substrate due to the heating within a short period of time, Si is partly vaporated at the surface of an aperture 10 getting vaporization heat, it is cooled more effectively and quicker than the circumference. Thereby, Si single crystal region is obtained around the aperture 10. In the case of heating by laser beam, use of SiO2 film in the thickness of about 850Angstrom is effective. According to this structure, the SOI single crystal can be formed at the desired region regardless of the underlayer structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は絶縁層上の半導体膜を一担加熱し・溶融させ単
結晶化させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of heating and melting a semiconductor film on an insulating layer to form a single crystal.

(従来技術とその間勉点) 従来、絶縁膜上の多結晶またはアモルファス半導体薄膜
を加熱、溶融させ固唸らせることにより単結晶または単
結晶に近い粒径の大きな結晶(SOI : 8emic
onductor On工n5ulator ) f得
るための方法としているいろ検討がなされている。
(Prior art and learning points) Conventionally, a polycrystalline or amorphous semiconductor thin film on an insulating film is heated, melted, and stirred to produce a single crystal or a crystal with a large grain size close to a single crystal (SOI: 8emic).
A number of studies have been conducted on methods for obtaining onductor, on-engine, and 5ulator) f.

一般的には電子ビーム、レーザビーム、フラッシュラン
プ、ストリップヒータ等を用いて基板の一部を短時間に
加熱し溶融させ、熱が基板中に伝導  ・したり、熱発
光による輻射によって逃けることによシ冷却し、凝固さ
せるのであるが種々の方法がある。
Generally, a part of the substrate is heated and melted using an electron beam, laser beam, flash lamp, strip heater, etc. in a short period of time, and the heat is conducted into the substrate or escapes by radiation due to thermoluminescence. There are various methods for cooling and solidifying the material.

一つは上記半導体膜を単結晶基板に接触する場所(シー
ド)設け、このシードから凝固させることにより基板と
連続した単結晶を成長させる方法(シーディングエピタ
キシャル成長法)がある。
One is a method (seeding epitaxial growth method) in which the semiconductor film is provided at a location (seed) in contact with a single crystal substrate, and a single crystal continuous with the substrate is grown by solidifying from this seed.

また加熱ビームの形状に細工をし、加熱溶融した部分と
固体部分の界面(固液界面)後部がビーム進向方向に向
って凸となるようにして、ビームスキャン初期に発生し
た微小な結晶粒の結晶性を常に拡大するように伝播させ
ることにより大きな単結晶を得る方法(整形ビーム法)
がある。
In addition, the shape of the heating beam was modified so that the rear part of the interface between the heated and molten part and the solid part (solid-liquid interface) was convex in the direction of the beam movement, so that the minute crystal grains generated at the beginning of the beam scan could be removed. A method to obtain a large single crystal by propagating the crystallinity of the crystal in a constantly expanding manner (shaped beam method)
There is.

また上記半導体薄膜の下部の形状に細工をして基板への
熱の逃は道を制御することにより所望の位置で凝固時に
最初に発生した結晶粒の性質をその近傍にまで引き延ば
す方法(ヒートシンク法)がある。
Another method is to modify the shape of the lower part of the semiconductor thin film to control the path of heat escape to the substrate, thereby extending the properties of the crystal grains initially generated during solidification at a desired position (heat sink method). ).

しかし、シーディングエピタキシャル法ではシードとい
う余分な面積を要し、またLSI用のトランジスタを作
る場合には単結晶の必要なゲート部分とシードとの距離
がある程度必要で大きな単結晶を作る必要があり、現実
には良質の単結晶をゲート部分に作ることはむずかしい
However, the seeding epitaxial method requires an extra area called a seed, and when making LSI transistors, a certain distance between the gate part of the single crystal and the seed is required, making it necessary to make a large single crystal. In reality, it is difficult to make a high-quality single crystal for the gate part.

整形ビーム法は、異なるビーム走行間での単結晶間に連
続性がなく、必ず粒界が入り、単結晶領域は常にビーム
走行したストライプ状にしかできないので、任意の所に
トランジスタを作るというようなLSIへの応用には不
都合である。
With the shaped beam method, there is no continuity between the single crystals between different beam paths, grain boundaries are always present, and the single crystal region can only be formed into stripes where the beam travels. This is inconvenient for application to large scale integrated circuits.

ヒートシンク法は余分な面積を喪さず、かつ下地にヒー
トシンク部を設けることにより任意の場所に単結晶が作
れるという長所はあるものの、下地構造に依存するとい
う欠点があり、多層にデバイスを作るような場合には単
結晶を作る場所に制限を受けたり、あるいは眉間にバッ
ファ層を設ける必要があったりして、製造工程が複雑に
なるなどの欠点があった。
Although the heat sink method has the advantage of not wasting excess area and can create a single crystal in any location by providing a heat sink part on the base, it has the disadvantage that it depends on the base structure, and it is difficult to make devices in multiple layers. In such cases, there are limitations on where the single crystal can be made, or it is necessary to provide a buffer layer between the eyebrows, complicating the manufacturing process.

第1図は従来のヒートシンク法によるSOI形成のため
の試料断面図である。熱伝導度の高いシリコン基板1の
上に、電気的に絶縁性の8 io、膜2を付着し、その
一部を薄くして熱の逃けやすいヒートシンク4を設け、
その上に多結晶あるいは非晶質のシリコン薄膜3e成長
させる。光ビーム等によりヒートシンク4及びその周囲
のシリコン薄膜3を加熱溶融しそのあと加熱源を除去す
るとヒートシンク4から多くの熱が基板1に逃けるため
にヒートシンク4の中心部の直上のシリコン薄膜3から
凝固し始め、順にその周囲が冷えて凝固するため、始め
に凝固した結晶粒を核としてエピタキシャル成長するた
め少くともヒートシンク4より大きな単結晶が成長でき
る。
FIG. 1 is a cross-sectional view of a sample for SOI formation by a conventional heat sink method. An electrically insulating 8 iodine film 2 is attached on a silicon substrate 1 having high thermal conductivity, and a heat sink 4 is provided by making a part of the film thinner so that heat can easily escape.
A polycrystalline or amorphous silicon thin film 3e is grown thereon. When the heat sink 4 and the silicon thin film 3 around it are heated and melted by a light beam or the like, and then the heating source is removed, a lot of heat escapes from the heat sink 4 to the substrate 1, so that the silicon thin film 3 directly above the center of the heat sink 4 escapes. Since it begins to solidify and the surrounding area cools and solidifies, epitaxial growth occurs using the initially solidified crystal grains as nuclei, so that at least a single crystal larger than the heat sink 4 can grow.

この方法は前にも述べたように、ヒートシンク部4のよ
うに、あらかじめ定められた場所に単結晶を作ることが
できるという長所はあるが、ヒートシンクは熱の逃けが
良くなくてにならないので、下地にデバイスが作られて
いると熱伝導が悪くなるため、選択的にヒートシンクを
形成できなくなり単結晶は成長しない。
As mentioned before, this method has the advantage of being able to form a single crystal in a predetermined location like the heat sink part 4, but the heat sink must have good heat dissipation. If a device is fabricated on the base, heat conduction will be poor, making it impossible to selectively form a heat sink, and a single crystal will not grow.

(発明の目的) 本発明の目的は上記のような欠点を除去し、下地構造に
無関係で、かつ任意の場所に単結晶半導体膜を形成でき
る方法を提供することである。
(Objective of the Invention) An object of the present invention is to provide a method that eliminates the above-mentioned drawbacks and can form a single crystal semiconductor film at any location regardless of the underlying structure.

(発明の構成) 本発明は絶縁層上の半導体薄膜を加熱し浴融させ、固ま
らせて前記半導体薄膜を単結晶化させるSOI形成方法
において、前記半導体表面の一部を前記半導体より蒸発
しにくい膜で覆い、次に短時間の加熱処理を行なりて前
記半導体膜の露出部分を中心として単結晶化させること
を特徴とする。
(Structure of the Invention) The present invention provides an SOI forming method in which a semiconductor thin film on an insulating layer is heated and melted in a bath, solidified, and the semiconductor thin film is made into a single crystal. It is characterized in that it is covered with a film and then subjected to a short heat treatment to form a single crystal around the exposed portion of the semiconductor film.

(実施例) 以下本発明を実施例に基づき、図を用いて説明する。説
明には半導体としては通常用いられるシリコンを例とし
て用いる。
(Example) The present invention will be described below based on an example and with reference to the drawings. In the explanation, silicon, which is commonly used as a semiconductor, will be used as an example.

第2図は本発明による試料の断面構造である。FIG. 2 shows a cross-sectional structure of a sample according to the present invention.

ここで5は石英基板であるが熱伝導の悪いもので、下地
の構造に無関係に熱の逃けの悪いものであれば例えば表
面に絶縁膜を形成した半導体基板でもよい。6は単結晶
化されるべき多結晶あるいは非晶質シリコン膜で、膜厚
Fi0.5μmていどである。
Here, reference numeral 5 is a quartz substrate, but it has poor thermal conductivity, and it may be a semiconductor substrate with an insulating film formed on the surface, for example, as long as it has poor heat dissipation regardless of the underlying structure. 6 is a polycrystalline or amorphous silicon film to be made into a single crystal, and the film thickness Fi is about 0.5 μm.

7はシリコン膜6の蒸発を防止するシリコンより蒸発し
にくい膜で、8i0.またはSi、N、である。
7 is a film that is less likely to evaporate than silicon, which prevents the evaporation of the silicon film 6, and 8i0. Or Si, N.

シリコンの蒸発さえ防止できればよいので膜厚はランプ
アニールを用いて短時間加熱し、シリコン膜6を溶融さ
せて加熱を止める。アニール条件はAr レーザならば
例えば出力5W、  ビーム径40μmである。シリコ
ン膜6の熱は、ひとつには、シリコン膜6を伝って横方
向に、もう一つは輻射によりて逃ける。しかし石英基板
5の万へは石英の熱伝導が悪いため逃けない。また試料
の表面からは外部が空気などの気体又は真空であるため
熱伝導度は低くまた加熱が非常に短時間であるため対流
も起らず、一般には熱は逃けない。しかし、シリコン膜
6d溶融するので開口部10の表面ではシリコンの一部
が蒸発し気化熱を奪い、効率良く冷却する。そのため周
囲より早く冷却する。これにより第1図で説明したヒー
トシンク法と同様の原理により開口部10を中心とした
シリコンの単結晶領域が得られることになる。
Since it is only necessary to prevent evaporation of silicon, the film thickness is increased by heating for a short time using lamp annealing, melting the silicon film 6, and then stopping the heating. For an Ar laser, the annealing conditions are, for example, an output of 5 W and a beam diameter of 40 μm. The heat of the silicon film 6 escapes in one direction in the lateral direction through the silicon film 6 and in the other direction by radiation. However, the heat cannot escape from the quartz substrate 5 because the heat conduction of quartz is poor. Furthermore, since the outside of the sample is a gas such as air or a vacuum, the thermal conductivity is low, and since heating is very short, convection does not occur, and heat generally does not escape. However, since the silicon film 6d is melted, a portion of the silicon evaporates on the surface of the opening 10, absorbs the heat of vaporization, and is efficiently cooled. Therefore, it cools down faster than the surrounding area. As a result, a silicon single crystal region centered around the opening 10 can be obtained using the same principle as the heat sink method explained in FIG.

この方法ではレーザビームによる加熱等の場合、7を反
射防止膜たとえは厚さ850AのS10.膜とすること
により周囲の温=+上け、さらに効率良く開口部10か
ら冷却させることができる。
In this method, when heating with a laser beam, etc., 7 is replaced with an antireflection film, for example, S10 with a thickness of 850A. By using a film, the surrounding temperature can be increased by +, and cooling can be more efficiently performed through the opening 10.

以上の説明では半導体膜6としてシリコン、蒸発防止膜
7としてSin、から8isN4、を用いたが、半導体
膜6の融点付近での蒸発のしやすさの関係さえ満足すれ
はどのような物質でも良いことは明らかである。
In the above explanation, silicon is used as the semiconductor film 6, and Sin to 8isN4 is used as the evaporation prevention film 7, but any material may be used as long as it satisfies the relationship of ease of evaporation near the melting point of the semiconductor film 6. That is clear.

(発明の効果) 本発明の方法により、下地の構造に無関係に、任意の場
所にSOI単結晶の形成が可能となる。
(Effects of the Invention) According to the method of the present invention, an SOI single crystal can be formed at any location regardless of the underlying structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートシンク法によるSOI形成のため
の試料断面図で、1はシリコン基板、2はSiO,,3
td多結晶シリコン、4はヒートシンクである。 第2図は本発明の方法による8UI形成のための試料断
面図で、5は石英基板、6Fi多結晶シリコン、7は蒸
発防止膜である8iU、または81.N、、10は開口
部である。 第1図 第2図 n
Figure 1 is a cross-sectional view of a sample for SOI formation using the conventional heat sink method, where 1 is a silicon substrate, 2 is a SiO substrate, 3
td polycrystalline silicon, 4 is a heat sink. FIG. 2 is a cross-sectional view of a sample for forming 8UI by the method of the present invention, where 5 is a quartz substrate, 6Fi polycrystalline silicon, 7 is an evaporation prevention film 8iU, or 81. N, , 10 are openings. Figure 1 Figure 2 n

Claims (1)

【特許請求の範囲】[Claims] 絶縁層上の半導体薄膜を加熱し溶融させ、固まらせて前
記半導体薄膜を単結晶化させるSOI形成方法において
、前記半導体表面の一部を前記半導体より蒸発しにくい
膜で覆い、次に短時間の加熱処理を行なって前記半導体
膜の露出部分を中心として単結晶化させることを特徴と
するSOI形成方法。
In an SOI formation method in which a semiconductor thin film on an insulating layer is heated, melted, and solidified to make the semiconductor thin film into a single crystal, a part of the semiconductor surface is covered with a film that is less likely to evaporate than the semiconductor, and then a short period of time is applied. A method for forming an SOI, comprising performing a heat treatment to form a single crystal around an exposed portion of the semiconductor film.
JP15048984A 1984-07-21 1984-07-21 Formation of soi Pending JPS6130023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15048984A JPS6130023A (en) 1984-07-21 1984-07-21 Formation of soi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15048984A JPS6130023A (en) 1984-07-21 1984-07-21 Formation of soi

Publications (1)

Publication Number Publication Date
JPS6130023A true JPS6130023A (en) 1986-02-12

Family

ID=15497985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15048984A Pending JPS6130023A (en) 1984-07-21 1984-07-21 Formation of soi

Country Status (1)

Country Link
JP (1) JPS6130023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479331B1 (en) 1993-06-30 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814524A (en) * 1981-07-17 1983-01-27 Fujitsu Ltd Manufacturing method of semiconductor device
JPS58184720A (en) * 1982-04-23 1983-10-28 Nec Corp Manufacture of semiconductor film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814524A (en) * 1981-07-17 1983-01-27 Fujitsu Ltd Manufacturing method of semiconductor device
JPS58184720A (en) * 1982-04-23 1983-10-28 Nec Corp Manufacture of semiconductor film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479331B1 (en) 1993-06-30 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device

Similar Documents

Publication Publication Date Title
JPH0454370B2 (en)
JPS5861622A (en) Manufacture of single crystal thin film
JPS5939790A (en) Production of single crystal
JPS61244020A (en) Oriented monocrystalline silicon film with restricted defecton insulation support
US6664152B2 (en) Method for crystallizing silicon film and thin film transistor and fabricating method using the same
Giust et al. Comparison of excimer laser recrystallized prepatterned and unpatterned silicon films on SiO2
JPS6130023A (en) Formation of soi
JPH0450746B2 (en)
JP2709591B2 (en) Method for manufacturing recrystallized semiconductor thin film
JPS6130024A (en) Formation of soi
JPS621220A (en) Method for producing oriented silicon single crystal film with localized defects on an insulating support
JPS6147627A (en) Manufacture of semiconductor device
JPS5939791A (en) Production of single crystal
JPS6130022A (en) Formation of soi
JPS58184720A (en) Manufacture of semiconductor film
JPS59147425A (en) Formation of semiconductor crystal film
JPS6163018A (en) Manufacture of semiconductor thin film crystal layer
JP2745055B2 (en) Method for manufacturing single crystal semiconductor thin film
JPH0354819A (en) Manufacture of soi substrate
JPH02188499A (en) Manufacturing method of polycrystalline silicon film with large grain size
JPH0775223B2 (en) Method for manufacturing semiconductor single crystal layer
JPS63265464A (en) Manufacture of semiconductor device
JPH0449250B2 (en)
JPH01264215A (en) Manufacture of semiconductor device
JPS5919311A (en) Manufacturing method of semiconductor device