JPS6130088A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPS6130088A JPS6130088A JP15235584A JP15235584A JPS6130088A JP S6130088 A JPS6130088 A JP S6130088A JP 15235584 A JP15235584 A JP 15235584A JP 15235584 A JP15235584 A JP 15235584A JP S6130088 A JPS6130088 A JP S6130088A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- output
- semiconductor laser
- light
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 37
- 230000010355 oscillation Effects 0.000 claims abstract description 31
- 238000001514 detection method Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940048921 humira Drugs 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は光の位相、周波数情報を扱う場合に要求され
、広帯域にわたる周波数雑音の低減化を実現する半導体
レーザ装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a semiconductor laser device that is required when handling optical phase and frequency information and that realizes reduction of frequency noise over a wide band.
「従来技術」
光を効率よく通信、精密測定の分野で利用するには、光
の位相、周波数情報を用いることが適切であり、周波数
雑音の少ないコヒーレンスの高い光源が望まれる。半導
体レーザは長寿命、小型、高効率を誇シ、発振周波数が
可変である等の特徴を有し、様々な応用が考えられてい
る。しかしこの半導体レーザは周波数雑音に関して問題
があシ、その改善が不可欠である。"Prior Art" In order to efficiently utilize light in the fields of communication and precision measurement, it is appropriate to use phase and frequency information of light, and a light source with low frequency noise and high coherence is desired. Semiconductor lasers have characteristics such as long life, small size, high efficiency, and variable oscillation frequency, and various applications are being considered. However, this semiconductor laser has problems with frequency noise, and it is essential to improve it.
従来提案された半導体レーザの周波数雑音低減化装置と
しては周波数雑音の低周波成分を抑圧することを目的と
した発振周波数の安定化装置と、高周波成分を抑圧する
ことを目的とした発振スペクトル幅低減化装置とがそれ
ぞれ独立に用いられてきた。しかしこれらを同時に実現
化するよう々発振周波数が高度に安′定化ユさjれ、か
つスペクトル幅の狭い広帯域にわたる周波数雑音低減化
装置は上記応用に対し極めて重要である。Conventionally proposed frequency noise reduction devices for semiconductor lasers include oscillation frequency stabilization devices aimed at suppressing low frequency components of frequency noise, and oscillation spectral width reduction devices aimed at suppressing high frequency components. oxidation devices have been used independently. However, in order to realize these simultaneously, a frequency noise reduction device that has a highly stabilized oscillation frequency and that covers a wide band with a narrow spectrum width is extremely important for the above applications.
従来の周波数安定化装置では、半導体レーザを直接変調
するものであシ、周波数制御信号をロックインアンプか
ら得るものがほとんどであり、i o o )(z程度
以上の帯域においては周波数雑音の抑圧は不可能であり
、発振スペクトル幅も広いまま(1,5μ’m帯I。G
aA5Pレーザでは100 MHz程度)である。10
0 KH2程度以下の帯域において周波数雑音を抑圧す
るためにファブリペロ干渉計を用いた安定化の例がある
が、温度変動に起因する干渉計の共振周波数の変動が存
在し、長期安定度、再現性の点で問題がある。In conventional frequency stabilization devices, the semiconductor laser is directly modulated, and most of the frequency control signals are obtained from a lock-in amplifier. is impossible, and the oscillation spectrum width remains wide (1.5μ'm band I.G
For the aA5P laser, it is about 100 MHz). 10
There is an example of stabilization using a Fabry-Perot interferometer to suppress frequency noise in a band below about 0 KH2, but there are fluctuations in the resonant frequency of the interferometer due to temperature fluctuations, and long-term stability and reproducibility are affected. There is a problem with this.
従来の発振スペクトル幅低減化装置には外部回折格子を
用いた光フィードバック(帰還)が利用され、1.5μ
m帯■nGaA、Pレーザで10’KH2程度を実現し
た報告(Electron I、eft 19 、11
0 +1983)があるが、レーザの劣化、温度による
外部共振器の変動等により、隣接する発振モードへの飛
びが起こるため発振周波数の長期安定度、再現性の点で
問題があった。Conventional oscillation spectrum width reduction devices use optical feedback using an external diffraction grating, and
Report on achieving approximately 10'KH2 with m-band ■nGaA and P lasers (Electron I, ef 19, 11
0 +1983), but there were problems in terms of long-term stability and reproducibility of the oscillation frequency because jumps to adjacent oscillation modes occur due to deterioration of the laser, fluctuations in the external resonator due to temperature, etc.
この発明の第1の目的は高い周波数まで雑音を抑圧する
ことができる半導体レーザ装置を提供することにある。A first object of the present invention is to provide a semiconductor laser device that can suppress noise up to high frequencies.
この発明の第2の目的は光フィードバックを用いず電気
的なフィードバック制御を用いるだけで周波数の安定化
と発振スペクトル幅の低減化とを同時に実現し、周波数
雑音を広帯域にわたって低減化し、しかも発振周波数の
再現性が保障され、精密計測用光源として通信用の周波
数基準レーザなど−としての応用が可能な半導体レーザ
装置を提供することにある。The second object of this invention is to simultaneously stabilize the frequency and reduce the oscillation spectrum width by using electrical feedback control without using optical feedback, to reduce frequency noise over a wide band, and to reduce the oscillation frequency. It is an object of the present invention to provide a semiconductor laser device that guarantees reproducibility and can be applied as a light source for precision measurement, a frequency reference laser for communications, and the like.
「問題点を解決するための手段」
この発明によれば半導体レーザよりの光を外部変調器に
おいて発振器の出力で周波数変調し、その変調出力光を
周波数基準に通し、その通過光を電気信号に変換し、そ
の電気信号を位相検波器において、上記発振器の出力に
より位相検波する。"Means for Solving the Problem" According to the present invention, light from a semiconductor laser is frequency-modulated by the output of an oscillator in an external modulator, the modulated output light is passed through a frequency reference, and the passed light is converted into an electrical signal. The electrical signal is then phase-detected in a phase detector using the output of the oscillator.
この検波出力により上記半導体レーザの発振周波数が周
波数基準の周波数になるように帰還制御する。このよう
に外部変調を用いることにより高い周波数まで変調する
ことができ、このため高い周波数の雑音も抑圧すること
ができる。Feedback control is performed using this detection output so that the oscillation frequency of the semiconductor laser becomes the frequency reference frequency. By using external modulation in this way, it is possible to modulate up to a high frequency, and therefore high frequency noise can also be suppressed.
半導体レーザの出力光を分岐し、その分岐光を周波数二
次基準に通し、そのiM通過光電気信号に変換し、その
電気信号と基準周波数と対応した直流信号との差を差動
増幅器で検出し、その検出出力により半導体レーザを帰
還制御して上記差動増幅器の二つの入力が等しくなるよ
うにする。このように電気的制御により発振スペクトル
幅を狭くすることができる。The output light of the semiconductor laser is branched, the branched light is passed through a frequency secondary reference, the iM passing light is converted into an electrical signal, and the difference between the electrical signal and the DC signal corresponding to the reference frequency is detected by a differential amplifier. Then, the semiconductor laser is feedback-controlled by the detection output so that the two inputs of the differential amplifier become equal. In this way, the oscillation spectrum width can be narrowed by electrical control.
半導体レーザ11からの出力光はハーフミラ12で2分
され、その一方は外部変調器13で発振器14の発振出
力により周波数変調され、その変調出力光は周波数基準
(気体セル)15に入射される。周波数基準15を通過
した光は受光器16で電気信号に変換されて位相検波器
17へ供給される。発振器14の発振出力は移相回路1
8を通じて位相検波器17へも供給され、この発振出力
により位相検波器17で受光器16の出力を位相検波す
る。その検波出力はフィードバック(帰還)回路19を
通じて半導体レーザ11へ帰還される。The output light from the semiconductor laser 11 is divided into two by a half mirror 12, one of which is frequency-modulated by an external modulator 13 using the oscillation output of an oscillator 14, and the modulated output light is input to a frequency reference (gas cell) 15. The light that has passed through the frequency reference 15 is converted into an electrical signal by the optical receiver 16 and supplied to the phase detector 17 . The oscillation output of the oscillator 14 is transmitted to the phase shift circuit 1
8 to the phase detector 17, and the phase detector 17 detects the phase of the output of the photoreceptor 16 using this oscillation output. The detected output is fed back to the semiconductor laser 11 through a feedback circuit 19.
これらは半導体レーザ11の発振周波数を絶対的な周波
数にロックする周波数安定化部21を構成している。These constitute a frequency stabilizing section 21 that locks the oscillation frequency of the semiconductor laser 11 to an absolute frequency.
ハーフミラ12で分岐された能力の光は周波数二次基準
(ファブリペロ干渉計)22に入力され、周波数二次基
準22を通った光は受光器23で電気信号に変換される
。その電気信号は差動増幅器24に入力され、端子25
からの基準信号との差が検出され、その検出出力はフィ
ードバック(帰還)回路26を通じて半導体レーザ11
に帰還される。この部分は絶対周波数に安定化された半
導体レーザ11の高周波雑音の抑圧を行い、発振スペク
トル幅の低減化を実現する発振スペクトル幅低減化部2
7を構成している。The light branched by the half mirror 12 is input to a frequency secondary reference (Fabry-Perot interferometer) 22, and the light passing through the frequency secondary reference 22 is converted into an electrical signal by a light receiver 23. The electrical signal is input to the differential amplifier 24, and the terminal 25
The difference from the reference signal from the semiconductor laser 11 is detected, and the detected output is sent to the semiconductor laser 11 through a feedback circuit
will be returned to. This part is an oscillation spectrum width reduction section 2 that suppresses high frequency noise of the semiconductor laser 11 stabilized at an absolute frequency and realizes reduction of the oscillation spectrum width.
7.
差動増幅器24の出力はフィードバック回路28を通じ
て周波数二次基準22にも供給され、この部分で周波数
二次基準(ファブリペロ干渉計)22を安定化する周波
数基準安定化部29が構成されるO
第1図中で信号の流れを示す実線は電気信号、波線は光
信号を表わしている。半導体レーザ11の周波数制御に
は温度と電流とが利用できるが、ここでは例として半導
体レーザ11を1/100°C程度に安定化した恒温槽
に入れ、注入電流の制御を行うものとする。The output of the differential amplifier 24 is also supplied to the frequency secondary reference 22 through a feedback circuit 28, and this part constitutes a frequency reference stabilizing section 29 that stabilizes the frequency secondary reference (Fabry-Perot interferometer) 22. In Figure 1, solid lines showing the flow of signals represent electrical signals, and wavy lines represent optical signals. Temperature and current can be used to control the frequency of the semiconductor laser 11, but here, as an example, it is assumed that the semiconductor laser 11 is placed in a constant temperature bath stabilized at about 1/100°C and the injection current is controlled.
外部変調器13で周波数変調されたレーザ光31は周波
数基準15を通して検波され、その出力は位相検波器1
7で移相回路18からの参照信号32と比較することに
より抽出される。外部変調器13には例えば−辺0.3
鶴の正方形断面を持つ長き4傭のLiNbO3のバルク
結晶を発振器14の周波数fmを持つ発振出力で駆動し
て入力光を位相変調するものを用いる。この時15μm
の光に対し、発振器14から位相をπだけずらす電圧(
50vpp程度)を出力させて外部変調器13に与える
と、最大周波数偏移πfm/2の周波数変調光31が得
られる。The laser beam 31 frequency-modulated by the external modulator 13 is detected through the frequency reference 15, and its output is sent to the phase detector 1.
7, the signal is extracted by comparing it with the reference signal 32 from the phase shift circuit 18. For example, the external modulator 13 has a negative side of 0.3.
A long LiNbO3 bulk crystal having a square cross section is driven by an oscillation output having a frequency fm from an oscillator 14 to phase modulate the input light. At this time 15 μm
A voltage (
50 vpp) and applied to the external modulator 13, frequency modulated light 31 with a maximum frequency shift of πfm/2 is obtained.
周波数基準15には絶対的々周波数を持ち急峻な特性を
有するものが望ましく、yuとして気体の吸収線を用い
るものとする。この気体としては15μm帯ではNH3
,CO2,H2O、HCN 、 CH8Cノ等、13帯
ではCH4,NH3,H2O、HF等、0.8 p m
帯ではH2O、Rb 、 C5等がある。位相検波器1
7にはロックインアンプ、バランスドミキサ等が使用で
きる。It is desirable that the frequency reference 15 has an absolute frequency and a steep characteristic, and a gas absorption line is used as yu. This gas is NH3 in the 15 μm band.
, CO2, H2O, HCN, CH8C, etc., CH4, NH3, H2O, HF, etc. in band 13, 0.8 p m
In the band, there are H2O, Rb, C5, etc. Phase detector 1
7 can be used with a lock-in amplifier, balanced mixer, etc.
このようにして位相検波器17の出力として誤差信号3
3が得られ、この誤差信号と周波数の関係、すなわち周
波数弁別特性は第2図Aに示すような周波数基準15の
透過特性を周波数で一次微分した第2図Bの特性で与え
られる。第2図Aの透過特性は基準周波数f。が最小で
、これよシ周波数が高ぐなρても低くなっても透過光強
度が大になる。誤差信号33は基準周波数f。よシ低く
なると負となシ、高くなると正になる。誤差信号33は
゛ フィードバック回路19を通して半導体レーザ11
の注入電流に加えられ、その発振周波数が周波数基準1
50基準周波数f0になるように制御される。In this way, the error signal 3 is output as the output of the phase detector 17.
3 is obtained, and the relationship between this error signal and the frequency, that is, the frequency discrimination characteristic is given by the characteristic shown in FIG. 2B, which is obtained by firstly differentiating the transmission characteristic of the frequency reference 15 shown in FIG. 2A with respect to frequency. The transmission characteristic in FIG. 2A is at the reference frequency f. is the minimum, and even if the frequency is high or low, the transmitted light intensity will be large. The error signal 33 has a reference frequency f. When it goes low, it becomes negative, and when it goes up, it becomes positive. The error signal 33 is transmitted to the semiconductor laser 11 through the feedback circuit 19.
is added to the injected current, and its oscillation frequency is frequency reference 1
50 reference frequency f0.
周波数安定化部21で絶対周波数安定化が達成されたレ
ーザに対し、発振スペクトル幅低減化部27では高周波
雑音の低減化を行う。ここでは−例としてファブリペロ
干渉計の透過特性を周波数二次基準22として用い、フ
ィードバック制御を行う。第3図Aに示すようにファブ
リペロ干渉計22の透過光強度−周波数特性は共振周波
数で最大となる。その最大周波数よシずれ、直線性の優
れた透過特性の傾斜部に基準周波数f。を位置させ周波
数弁別特性として使用する。差動増幅器24の出力34
.35を基準周波数f。でゼロ、これよシ高くなると正
の信号を出力し、低くなると負の信号を出力し、しかも
直線的に変化するものとすることができる。つまシ周波
数基準点f。は弁別特性の中央とし、基準差動入力端子
25に加える電圧で決定する。この周波数基準点f。と
レーザ光の周波数差は差動増幅器24から得られる誤差
信号34.35としてフィードバック回路26.28に
入力される。フィードバック回路26は誤差信号34の
高周波成分を半導体レーザ11の注入電流にフィードバ
ックし、レーザの高周波雑音の低減化、スペクトル幅の
低減化を実現する。For the laser whose absolute frequency has been stabilized by the frequency stabilization unit 21, the oscillation spectrum width reduction unit 27 reduces high frequency noise. Here, as an example, the transmission characteristics of a Fabry-Perot interferometer are used as the frequency secondary reference 22 to perform feedback control. As shown in FIG. 3A, the transmitted light intensity-frequency characteristic of the Fabry-Perot interferometer 22 is maximized at the resonance frequency. There is a reference frequency f at the slope part of the transmission characteristic with excellent linearity, which deviates from its maximum frequency. is located and used as a frequency discrimination characteristic. Output 34 of differential amplifier 24
.. 35 is the reference frequency f. It is possible to output a positive signal when the value is zero, and output a positive signal when it becomes higher than this, and a negative signal when it becomes lower, and change linearly. Tsumashi frequency reference point f. is the center of the discrimination characteristic and is determined by the voltage applied to the reference differential input terminal 25. This frequency reference point f. The frequency difference between the laser beam and the laser beam is inputted to the feedback circuit 26.28 as an error signal 34.35 obtained from the differential amplifier 24. The feedback circuit 26 feeds back the high frequency component of the error signal 34 to the injected current of the semiconductor laser 11, thereby realizing reduction in high frequency noise and spectrum width of the laser.
ファブリペロ干渉計の透過特性には温度変動による周波
数変動が存在するため、干渉計の安定化が不可欠である
。このためファブリペロ干渉計には共振器長を制御でき
るようにPZT駆動部を有するものを用い、温度補償を
実現するために周波数基準安定化部29を用いる。すな
わちフィードバック回路28から出力される誤差信号3
5の低周波成分をファブリペロ干渉計22のPZT駆動
部に加え、共振器長制御を行う。これにより周波数基準
15の吸収線が有する絶対的な周波数に安定化されたレ
ーザ光によってファブリペロ干渉計22の透過特性が固
定されたことになシ、ファプリペロ干渉計22を周波数
二次基準として使用することが可能となる。Since the transmission characteristics of a Fabry-Perot interferometer include frequency fluctuations due to temperature fluctuations, it is essential to stabilize the interferometer. For this reason, a Fabry-Perot interferometer having a PZT driving section is used to control the resonator length, and a frequency reference stabilizing section 29 is used to realize temperature compensation. That is, the error signal 3 output from the feedback circuit 28
5 is applied to the PZT drive section of the Fabry-Perot interferometer 22 to control the resonator length. As a result, the transmission characteristics of the Fabry-Perot interferometer 22 are fixed by the laser beam stabilized to the absolute frequency of the absorption line of the frequency reference 15, and the Fabry-Perot interferometer 22 is used as a secondary frequency reference. becomes possible.
この発明の動作を得る手順を以下に示す。半導体レーザ
11の発振周波数を絶対的な周波数を有する原子、分子
の吸収線にロックすることにより周波数安定化を実現す
る。この周波数安定化半導体レーザの出力光を用い、周
波数二次基準となるファブリペロ干渉計22を安定化す
る。このファブリペロ干渉計22から得られる半導体レ
ーザの高周波雑音を利用し、半導体レーザ11の周波数
雑音抑圧帯域を拡大し、発振スペクトル幅の低減化を実
現する。The procedure for obtaining the operation of this invention is shown below. Frequency stabilization is achieved by locking the oscillation frequency of the semiconductor laser 11 to the absorption line of atoms and molecules having an absolute frequency. The output light of this frequency-stabilized semiconductor laser is used to stabilize the Fabry-Perot interferometer 22, which serves as a secondary frequency reference. By utilizing the high frequency noise of the semiconductor laser obtained from the Fabry-Perot interferometer 22, the frequency noise suppression band of the semiconductor laser 11 is expanded and the oscillation spectrum width is reduced.
周波数安定化部21のみを用い、かつ比較的高い周波数
も検波できるように位相検波器17に例えばバランスド
ミキサを用いて外部変調器13を用いているため変調周
波数を数100 MH2程度以上と高くすることができ
、これにより発振周波数を原子、分子の吸収線にロック
し、100MH2程度までの周波数雑音の低減化が行え
る。なおこのように高い周波数まで雑音を抑圧できるた
め、発振スペクトル幅を狭くすることができる。Only the frequency stabilizing section 21 is used, and since the phase detector 17 uses, for example, a balanced mixer and the external modulator 13 is used so that relatively high frequencies can also be detected, the modulation frequency is as high as several 100 MH2 or more. As a result, the oscillation frequency can be locked to the absorption line of atoms and molecules, and frequency noise can be reduced to about 100 MH2. Note that since noise can be suppressed up to such high frequencies, the oscillation spectrum width can be narrowed.
「発明の効果」
以上説明したようにこの発明によれば外部変調器を用い
たため高い周波数まで変調することができ、高い周波数
まで雑音を抑圧することができる。"Effects of the Invention" As explained above, according to the present invention, since an external modulator is used, it is possible to modulate up to a high frequency, and it is possible to suppress noise up to a high frequency.
また電気信号を用いたフィードバック制御だけを利用し
、広帯域にわたる周波数雑音の抑圧およびスペクトル幅
の低減化を同時に実現できる。さらにレーザの発振周波
数を原子あるいは分子の吸収線ヘロツクすることから、
再現性、長期安定性にも優れ、周波数基準レーザとして
使用できる。従ってオフセットロックCI EEE、J
、 QuantumEIectron。Moreover, by using only feedback control using electrical signals, it is possible to simultaneously suppress frequency noise over a wide band and reduce the spectral width. Furthermore, by adjusting the laser oscillation frequency to the absorption line of atoms or molecules,
It has excellent reproducibility and long-term stability, and can be used as a frequency reference laser. Therefore offset lock CI EEE, J
, QuantumEIectron.
QE−17,1100(1981))の技術を応用する
ことにより、所望の周?&数においてコヒーレンスのよ
い光源を得ることができる。特に光ファイバの最小損失
波長域である1、5μm帯での応用は通信用光源として
コヒーレンス向上による最低受信レベルを低くすること
が可能となるだけでなく、光ファイバを用いた様々なセ
ンサ(IEEE。By applying the technology of QE-17, 1100 (1981)), the desired rotation speed can be achieved. & A light source with good coherence can be obtained. In particular, application in the 1.5 μm band, which is the minimum loss wavelength range of optical fibers, not only makes it possible to lower the minimum reception level by improving coherence as a communication light source, but also enables various sensors using optical fibers (IEEE .
J 、Quantum Electron、QE−18
e 626(1982))やジャイロスコープ(Pr0
C,5PIE、157.131(1978))等に利用
すれば単体の半導体レーザを用いる場合と比較し、飛躍
的な精度の向上刃!期待できるという利点がある。J, Quantum Electron, QE-18
e 626 (1982)) and gyroscope (Pr0
C, 5PIE, 157.131 (1978)) etc., the accuracy is dramatically improved compared to using a single semiconductor laser! It has the advantage of being predictable.
第1図はこの発明の半導体レーザ装置の一実施例を示す
ブロック図、第2図は周波数基準とする原子、分子の吸
収線とこれによる周波数弁551J特性の例を示す図、
第3図は周波数二次基準とするファブリペロ干渉計の透
過特性とこれによる周波数弁別特性の例を示す図である
。
11;半導体レーザ、12:ノ・−フミラ、13:外部
変調器、14:発振器、15:周波数基準(気体セル)
、16,23:受光器、17二位相検波器、18:移相
器、19 、26 、28:フィードバック回路、22
:周波数二次基準(ファブリペロ干渉計L24:差動増
申品器、25:基準差動入力端子。
特許出願人 日本電信電話公社
代 理 人 草 野 卓オ 1 図
第2図
オ 3 図FIG. 1 is a block diagram showing an embodiment of the semiconductor laser device of the present invention, and FIG. 2 is a diagram showing an example of absorption lines of atoms and molecules used as frequency standards and characteristics of the frequency valve 551J based on the absorption lines.
FIG. 3 is a diagram showing an example of a transmission characteristic of a Fabry-Perot interferometer using a secondary frequency reference and a frequency discrimination characteristic based on the transmission characteristic. 11: Semiconductor laser, 12: Humira, 13: External modulator, 14: Oscillator, 15: Frequency reference (gas cell)
, 16, 23: Photoreceiver, 17 Two-phase detector, 18: Phase shifter, 19, 26, 28: Feedback circuit, 22
: Frequency secondary reference (Fabry-Perot interferometer L24: Differential amplifier, 25: Reference differential input terminal. Patent applicant: Nippon Telegraph and Telephone Public Corporation Representative: Takuo Kusano 1 Figure 2 Figure 3
Claims (2)
される外部変調器と、その外部変調器に発振出力を供給
して上記半導体レーザの出力光を周波数変調する発振器
と、上記外部変調器からの変調された光を通過させる周
波数基準と、その周波数基準を透過した光を受光して電
気信号に変換する受光器と、その受光器の出力を、上記
発振器の出力を参照信号として位相検波する位相検波器
と、その位相検波器の検波出力により上記半導体レーザ
の発振周波数を上記周波数基準の周波数に一致するよう
に制御する第1フィードバック回路とを有する半導体レ
ーザ装置。(1) A semiconductor laser, an external modulator into which the output light of the semiconductor laser is incident, an oscillator that supplies oscillation output to the external modulator to frequency modulate the output light of the semiconductor laser, and the external modulator A frequency standard that allows modulated light to pass through, a photoreceiver that receives the light that has passed through the frequency standard and converts it into an electrical signal, and phase detection of the output of the photoreceiver using the output of the oscillator as a reference signal. and a first feedback circuit that controls the oscillation frequency of the semiconductor laser to match the frequency of the frequency reference based on the detected output of the phase detector.
、その分岐された出力光を通過させる周波数二次基準と
、その周波数二次基準を通過した光を受光して電気信号
に変換する受光器と、その受光器からの信号と、基準周
波数に対応する電圧とを差動増幅する差動増幅器と、そ
の差動増幅器からの出力により上記半導体レーザの発振
周波数を制御して上記差動増幅器の両入力が一致するよ
うにする第2のフィードバック回路とを有する特許請求
の範囲第1項記載の半導体レーザ装置。(2) Branching means for branching the output light of the semiconductor laser, a frequency secondary reference for passing the branched output light, and a light receiving unit for receiving the light that has passed through the frequency secondary reference and converting it into an electrical signal. a differential amplifier that differentially amplifies a signal from the photoreceiver and a voltage corresponding to a reference frequency; and a differential amplifier that controls the oscillation frequency of the semiconductor laser using the output from the differential amplifier. 2. The semiconductor laser device according to claim 1, further comprising a second feedback circuit for making both inputs coincide with each other.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15235584A JPS6130088A (en) | 1984-07-23 | 1984-07-23 | Semiconductor laser device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15235584A JPS6130088A (en) | 1984-07-23 | 1984-07-23 | Semiconductor laser device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6130088A true JPS6130088A (en) | 1986-02-12 |
| JPH0139668B2 JPH0139668B2 (en) | 1989-08-22 |
Family
ID=15538729
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP15235584A Granted JPS6130088A (en) | 1984-07-23 | 1984-07-23 | Semiconductor laser device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6130088A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62171174A (en) * | 1986-01-24 | 1987-07-28 | Yokogawa Electric Corp | Semiconductor laser wavelength stabilization device |
| JPS637687A (en) * | 1986-06-27 | 1988-01-13 | Yokogawa Electric Corp | Semiconductor laser wavelength stabilizer |
| JPS63110315A (en) * | 1986-10-27 | 1988-05-14 | Sutorongu Hoorudo Internatl Japan Kk | Construction work of fiber concrete |
| JPS63137494A (en) * | 1986-11-28 | 1988-06-09 | Fujitsu Ltd | Semiconductor laser frequency stabilization device |
| JPH0296388A (en) * | 1988-09-30 | 1990-04-09 | Kiyoji Uehara | Wavelength stabilized light source |
| JPH02214801A (en) * | 1989-02-16 | 1990-08-27 | Hikari Keisoku Gijutsu Kaihatsu Kk | Light absorption cell |
| JPH02216880A (en) * | 1989-02-16 | 1990-08-29 | Hikari Keisoku Gijutsu Kaihatsu Kk | Optical frequency stabilizer |
| JPH02292885A (en) * | 1989-05-01 | 1990-12-04 | Nippon Telegr & Teleph Corp <Ntt> | Oscillation wavelength stabilized semiconductor laser device |
| WO2009117101A1 (en) * | 2008-03-18 | 2009-09-24 | Alcatel-Lucent Usa Inc. | Self-calibrating integrated photonic circuit and method of control thereof |
| JP2019145782A (en) * | 2017-12-12 | 2019-08-29 | コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ | Emitter of monochromatic optical signal |
-
1984
- 1984-07-23 JP JP15235584A patent/JPS6130088A/en active Granted
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62171174A (en) * | 1986-01-24 | 1987-07-28 | Yokogawa Electric Corp | Semiconductor laser wavelength stabilization device |
| JPS637687A (en) * | 1986-06-27 | 1988-01-13 | Yokogawa Electric Corp | Semiconductor laser wavelength stabilizer |
| JPS63110315A (en) * | 1986-10-27 | 1988-05-14 | Sutorongu Hoorudo Internatl Japan Kk | Construction work of fiber concrete |
| JPS63137494A (en) * | 1986-11-28 | 1988-06-09 | Fujitsu Ltd | Semiconductor laser frequency stabilization device |
| JPH0296388A (en) * | 1988-09-30 | 1990-04-09 | Kiyoji Uehara | Wavelength stabilized light source |
| JPH02214801A (en) * | 1989-02-16 | 1990-08-27 | Hikari Keisoku Gijutsu Kaihatsu Kk | Light absorption cell |
| JPH02216880A (en) * | 1989-02-16 | 1990-08-29 | Hikari Keisoku Gijutsu Kaihatsu Kk | Optical frequency stabilizer |
| JPH02292885A (en) * | 1989-05-01 | 1990-12-04 | Nippon Telegr & Teleph Corp <Ntt> | Oscillation wavelength stabilized semiconductor laser device |
| WO2009117101A1 (en) * | 2008-03-18 | 2009-09-24 | Alcatel-Lucent Usa Inc. | Self-calibrating integrated photonic circuit and method of control thereof |
| US7688872B2 (en) | 2008-03-18 | 2010-03-30 | Alcatel-Lucent Usa Inc. | Self-Calibrating integrated photonic circuit and method of control thereof |
| JP2019145782A (en) * | 2017-12-12 | 2019-08-29 | コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ | Emitter of monochromatic optical signal |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0139668B2 (en) | 1989-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5687261A (en) | Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same | |
| US6580532B1 (en) | Opto-electronic techniques for reducing phase noise in a carrier signal by carrier supression | |
| US5777778A (en) | Multi-Loop opto-electronic microwave oscillator with a wide tuning range | |
| Helmcke et al. | Dye laser spectrometer for ultrahigh spectral resolution: design and performance | |
| US5243610A (en) | Optical fiber dispersion-compensating device | |
| US20040208643A1 (en) | Coherent optical receivers | |
| KR100309909B1 (en) | Frequency stabilization method of semiconductor laser and its device | |
| CN106025786A (en) | Photoelectric oscillator and frequency stabilization method thereof | |
| JPH05275786A (en) | Optical signal source which is frequency-locked with in-fiber lattice resonator | |
| Bohlouli-Zanjani et al. | Optical transfer cavity stabilization using current-modulated injection-locked diode lasers | |
| CN112751621A (en) | Optical fiber microwave frequency transmission system based on laser frequency deviation locking | |
| CN111048969A (en) | A Frequency Doubled Photoelectric Oscillator Based on Stimulated Brillouin Scattering Effect | |
| JPS6130088A (en) | Semiconductor laser device | |
| CN114865445A (en) | Frequency-tunable ultra-stable laser generation method and laser system based on modulation sideband frequency locking | |
| Yanagawa et al. | Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 Å with an external frequency modulator | |
| US7379672B2 (en) | Photonic RF distribution system | |
| EP0585758B1 (en) | Optical wavelength converter | |
| Day | Frequency-stabilized solid state lasers for coherent optical communications | |
| Liu et al. | Electro-optical phase-locked loop for hybrid integrated external cavity laser | |
| US6359913B1 (en) | Stabilization of injection locking of CW lasers | |
| US3747004A (en) | Injection-locked laser stabilizer | |
| CN113900065B (en) | A microwave signal generation method based on a photoelectric oscillation loop and a microwave signal source | |
| CN113471806B (en) | Multi-feedback laser stepping frequency sweep driving device and method | |
| JP3891361B2 (en) | Frequency synthesizer | |
| CN119602069B (en) | Device and method for stabilizing arbitrary detuning frequency of laser |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EXPY | Cancellation because of completion of term |