[go: up one dir, main page]

JPS613008A - Measurement of width - Google Patents

Measurement of width

Info

Publication number
JPS613008A
JPS613008A JP59122932A JP12293284A JPS613008A JP S613008 A JPS613008 A JP S613008A JP 59122932 A JP59122932 A JP 59122932A JP 12293284 A JP12293284 A JP 12293284A JP S613008 A JPS613008 A JP S613008A
Authority
JP
Japan
Prior art keywords
echo
defect
height
width
scattered wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59122932A
Other languages
Japanese (ja)
Other versions
JPH0338525B2 (en
Inventor
Yukio Ogura
幸夫 小倉
Sadahisa Tomita
禎久 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP59122932A priority Critical patent/JPS613008A/en
Publication of JPS613008A publication Critical patent/JPS613008A/en
Publication of JPH0338525B2 publication Critical patent/JPH0338525B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To facilitate measurement of the width of an object, by obtaining the height of a scattered wave echo at each end of an object for measurement by the use of an ultrasonic beam. CONSTITUTION:When an ultrasonic beam is projected from a probe 4 toward an internal defect 2, there are produced a scattered wave echo 6 at the upper end 5 of the defect 2 and a scattered wave echo 8 at the lowe end 7 of the defect 2. The narrower the width of the defect 2, the smaller the height of the echo 6, and the larger the height of the echo 8. The wider the width of the defect 2, the larger the height of the echo 6, and the smaller the height of the echo 8. Accordingly, various widths for the internal defect 2 of a test specimen 1 are set, and an echo height ratio is obtained from a given formula on the basis of echo heights corresponding to the set defect widths, whereby correlation between echo height ratios and defect widths is obtained. This correlation exists independently of the material of the specimen 1 or the height of the internal defect 2. Accordingly, a defect width is readily obtained from the correlation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は幅寸法の測定方法に係り、特に超音波探傷を用
いた幅寸法の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for measuring a width dimension, and particularly to a method for measuring a width dimension using ultrasonic flaw detection.

〔発明の背景〕[Background of the invention]

一端部から他端部にわたってほぼ一定の幅寸法を有する
被測定対象の当該幅寸法を測定するには計測器を用いた
方法等各種の方法があるが、当該被測定対象が物体中に
内包されるものである場合、すなわち構造体中に内在さ
れる内部欠陥である場合や、管体等を流れる流体中に配
置される物体である場合には、この幅寸法を測定するこ
とは容易でない。
There are various methods such as using a measuring instrument to measure the width of an object that has a substantially constant width from one end to the other. It is not easy to measure this width when the object is an internal defect in a structure, or an object placed in a fluid flowing through a pipe or the like.

例えば、被測定対象が内部欠陥である場合には、その幅
寸法すなわち欠陥幅は一般に当該構造体を切断し、切断
面のマクロ断面、マクロ断面の観察等を介して測定され
ており、結局、破壊検査に頼らざるを得す、下記に列挙
する不具合がある。
For example, when the object to be measured is an internal defect, the width dimension, that is, the defect width, is generally measured by cutting the structure and observing the macro cross section of the cut surface. There are problems listed below that make it necessary to rely on destructive inspection.

(1)現実に使用される製品の測定ができない。(1) It is not possible to measure products that are actually used.

■ 全数検査を実施することができない。■ It is not possible to carry out 100% inspection.

(6)  この欠陥幅の測定作業に多大の労力と時間が
かかる。
(6) It takes a lot of effort and time to measure the defect width.

また、被測定対象が流体中に配置される物体である場合
には、流体が収容される管体等を破壊する作業を要する
ことから、結局、上記した(1)〜(3)の不具合とほ
ぼ同じような不具合がある。
In addition, if the object to be measured is an object placed in a fluid, it is necessary to destroy the pipe body etc. that houses the fluid, which ultimately leads to the above problems (1) to (3). I have almost the same problem.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来技術における実情に鑑みてな
されたもので、その目的は、被測定対象を内包する物体
を破壊することなく、当該被測定対象の幅寸法を容易に
測定することのできる幅寸法の測定方法を提供すること
にある。
The present invention has been made in view of the actual situation in the prior art, and its purpose is to easily measure the width dimension of an object to be measured without destroying the object containing the object. The purpose of the present invention is to provide a method for measuring width dimensions that is possible.

〔発明の概要〕[Summary of the invention]

この目的を達吸するために、本発明は超音波探傷を用い
た非破壊検査に着目し、内部欠陥等の被測定対象の一端
部と他端部を含む方向に超音波ビームを投射して該一端
部における第1の散乱波エコーと該他端部における第2
の散乱波エコーとを生じさせ、第1の散乱波エコーのエ
コー高さと第2の散乱波エコーのエコー高さとの比を求
め、この比を評価指標として被測定対象の幅寸法を測定
する構成にしである。
In order to achieve this objective, the present invention focuses on nondestructive testing using ultrasonic flaw detection, and projects an ultrasonic beam in a direction that includes one end and the other end of an object to be measured, such as an internal defect. A first scattered wave echo at the one end and a second scattered wave echo at the other end.
A configuration in which a scattered wave echo is generated, a ratio between an echo height of the first scattered wave echo and an echo height of a second scattered wave echo is determined, and the width dimension of the object to be measured is measured using this ratio as an evaluation index. It's Nishide.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の幅寸法の測定方法の一実施例を第1図〜
第7図に基づいて説明する。
An example of the width measurement method of the present invention is shown in Figs.
This will be explained based on FIG.

第1図〜第6図は実際の測定作業に先立っておこなねれ
る準備作業を例示する説明図である。第1図において、
1は試験体で、例えば板厚Tが50+1llKの材質5
0キロ高張力鋼からなっている。
FIGS. 1 to 6 are explanatory diagrams illustrating preparatory work that can be performed prior to actual measurement work. In Figure 1,
1 is a test specimen, for example, material 5 with a plate thickness T of 50+1llK.
Made of 0kg high tensile strength steel.

2はこの試験体1に形成した被測定対象、すなわち内部
欠陥で、探傷面6からの距離lが例えば25mの位置に
あり、欠陥高さ8が10mになっている。なお、tは内
部欠陥2の幅寸法つまり欠陥幅で、当該欠陥幅の方向が
探傷面乙に平行となるようにこの内部欠陥2を形成しで
ある。4は超音波ビームを内部欠陥2に投射する探触子
で、探傷面3上に配置され、該探傷面6に対して例えば
垂直に超音波を入射させるようになっており、公知の図
示しないオツシロスコープやパルス反射式Aスフーブ表
示型超音波探傷器などの表示手段、およびマイクロコン
ピュータ等の演算手段に接続されている。
Reference numeral 2 denotes an object to be measured, that is, an internal defect formed on this test piece 1, and the distance l from the flaw detection surface 6 is, for example, 25 m, and the defect height 8 is 10 m. Note that t is the width dimension of the internal defect 2, that is, the defect width, and the internal defect 2 is formed so that the direction of the defect width is parallel to the testing surface B. Reference numeral 4 denotes a probe for projecting an ultrasonic beam onto the internal defect 2, which is disposed on the flaw detection surface 3 and is configured to make the ultrasonic wave incident perpendicularly to the flaw detection surface 6, using a known probe (not shown). It is connected to a display means such as an oscilloscope or a pulse reflection A-Shub display type ultrasonic flaw detector, and to a calculation means such as a microcomputer.

そして、この第1図の状態において例えば5MHz の
周波数で探触子4から内部欠陥2に向って超音波ビーム
を投射すると、第2図に示すように、内部欠陥2の第1
の端部例えば上端部5における第1の散乱波エフ−6と
、第2の端部例えば下端部7における第2の散乱波エフ
−8とが生じる。
In the state shown in FIG. 1, when an ultrasonic beam is projected from the probe 4 toward the internal defect 2 at a frequency of, for example, 5 MHz, as shown in FIG.
A first scattered wave F-6 is generated at an end, for example, the upper end 5, and a second scattered wave F-8 is generated at a second end, for example, the lower end 7.

このようにして得られる第1の散乱波エコー6と第2の
散乱波エコー8とに注目すると、内部欠陥2の欠陥a!
tが狭いほど上端部5における第1の散乱波エフ−6の
エコー高さhlが小さくなり、下端部7における第2の
散乱波エコー8のエコー高さhlが大きくなる関係があ
り、逆に、欠陥幅tが広くなると第1の散乱波エフ−6
のエフ−高さhlが大きくなり、第2の散乱波エコー8
のエコー高さh2が小さくなる関係にある。
If we pay attention to the first scattered wave echo 6 and the second scattered wave echo 8 obtained in this way, we can see that the defect a! of the internal defect 2 is a!
There is a relationship that the narrower t, the smaller the echo height hl of the first scattered wave F-6 at the upper end 5, and the larger the echo height hl of the second scattered wave echo 8 at the lower end 7; , as the defect width t increases, the first scattered wave F-6
The f-height hl of becomes larger, and the second scattered wave echo 8
The relationship is such that the echo height h2 becomes smaller.

したがって、試験体1における内部欠陥2の欠陥幅tを
各種の値に設定し、これらの欠陥幅tに対応するエコー
高さhI + ’!2をそれぞれ求めるとともに、当該
hI、h2  に基づいて次の式、By (d B )
 −20lop 10 (−”)ニヨってエコー高さの
比Hr をマイクロフンピユータ等の演算手段により演
算すると、第6図に例示するエコー高さの比Hr  と
欠陥幅tとの相関関係が得られる。このような相関関係
は例えば図示しないマイクロコンビエータ等の記憶部に
記憶させておく。
Therefore, the defect width t of the internal defect 2 in the test specimen 1 is set to various values, and the echo height hI + '! corresponding to these defect widths t is set. 2, and based on the hI and h2, the following formula, By (d B )
-20lop 10 (-”) When the echo height ratio Hr is calculated using a calculation means such as a microcomputer, the correlation between the echo height ratio Hr and the defect width t illustrated in FIG. 6 can be obtained. Such a correlation is stored in a storage unit such as a micro combinator (not shown), for example.

なお、上述の相関関係は上記した材質、板厚T等を有す
る試験体1の内部欠陥2におけるものであるが、この第
6図に示す相関関係とほぼ同等の相関関係が試験体1の
材質、板厚T1内部欠陥2までの距離11内部欠陥2の
欠陥高さ8、周波数などにほとんど影響されることなく
成立する。つまり、第3図に示す1つの相関関係を得る
ことにより、試験体1の材質や内部欠陥2の欠陥高さ8
等を種々変えて上述のようなエコー高さAI + h2
を得る作業を要することなく、以下に述べる実際の測定
作業に入ることができる。
The above-mentioned correlation is for internal defect 2 of test specimen 1 having the above-mentioned material, plate thickness T, etc., but almost the same correlation as shown in FIG. 6 is for the material of specimen 1. , the plate thickness T1, the distance to the internal defect 2, 11, the defect height of the internal defect 2, 8, and the frequency. In other words, by obtaining one correlation shown in FIG.
etc., to obtain the echo height AI + h2 as described above.
You can start the actual measurement work described below without having to go through the work of obtaining .

第4図〜第7図は実際の測定作業を例示する説明図であ
る。上述のように、第3図に例示するエコー高さの比H
r と欠陥幅tとの相関関係をあらかじめ設定した状態
において、第4F1!Jに示すように、被測定対象であ
る内部欠陥2が内包される可能性のある構造体9の探傷
面6に探触子4を配置し、超音波ビーム10を投射する
。この場合、構造体9に内部欠陥2が存在するときは、
第5図に示すように図示しないオツシロスコープ等の表
示手段において、構造体9の底面によって反射するエコ
ー(エコー高さE)の他に、内部欠陥2による散乱波エ
コーが得られる。またこのとき、超音波ビーム10の方
向と内部欠陥2の上端部5と下端部7とを含む方向とが
一致しているときは、上述したように内部欠陥2の上端
部5における第1の散乱波エコー6と下端部7における
第2の散乱波エコー8との双方が得られるが、今仮に第
4図に例示するように一致していないとすると、第5図
に示すように構造体9の底面によって反射するエコーの
他には1つのエコーのみが得られる。
FIGS. 4 to 7 are explanatory diagrams illustrating actual measurement work. As mentioned above, the echo height ratio H illustrated in FIG.
With the correlation between r and defect width t set in advance, the fourth F1! As shown in J, the probe 4 is placed on the flaw detection surface 6 of the structure 9 that may contain the internal defect 2 to be measured, and the ultrasonic beam 10 is projected. In this case, when the internal defect 2 exists in the structure 9,
As shown in FIG. 5, in a display means such as an oscilloscope (not shown), in addition to the echo reflected by the bottom surface of the structure 9 (echo height E), scattered wave echoes due to the internal defect 2 are obtained. At this time, when the direction of the ultrasonic beam 10 and the direction including the upper end 5 and lower end 7 of the internal defect 2 match, the first Both the scattered wave echo 6 and the second scattered wave echo 8 at the lower end 7 are obtained, but if it is assumed that they do not match as illustrated in FIG. 4, the structure as shown in FIG. Besides the echo reflected by the bottom surface of 9, only one echo is obtained.

このような場合は、第6図に示すように、探触子4とし
て探傷面ろに対して超音波ビーム10が斜角に入射する
ものを用い、この探触子4を探傷面3上を移動させる。
In such a case, as shown in FIG. 6, use a probe 4 that allows the ultrasonic beam 10 to enter the flaw detection surface at an oblique angle, and move the probe 4 over the flaw detection surface 3. move it.

そして、第7図に示すように、図示しないオツシロスフ
ーブ等の表示手段によって内部欠陥2の上端部5におけ
る第1の散乱波エフ−6(エコー高さ7s+)と下端部
7における第2の散乱波エコー8(エコー高さA2)と
が得られたとき、探触子4から投射される超音波ビーム
10の方向と内部欠陥2の上端部5と下端部7とを含む
方向とが一致し、このとき得られるhI+hzに基づき
、図示しないマイクロコンピュータ等の演算手段によっ
て、上述したエコー高さの比Hrを求める演算、すなわ
ち、 hI Hr (d B ) −201o110 (−7g)を
おこなう。
Then, as shown in FIG. 7, the first scattered wave F-6 (echo height 7s+) at the upper end 5 of the internal defect 2 and the second scattered wave at the lower end 7 are displayed by a display means such as an Otsushiroshoob (not shown). When echo 8 (echo height A2) is obtained, the direction of the ultrasonic beam 10 projected from the probe 4 and the direction including the upper end 5 and lower end 7 of the internal defect 2 match, Based on hI+hz obtained at this time, a calculation means such as a microcomputer (not shown) performs the calculation for determining the echo height ratio Hr, that is, hI Hr (d B ) -201o110 (-7g).

なお、構造体9の内部欠陥2が前述した第1図に示すよ
うなものである場合は、第4図に示す状態に相応する内
部欠陥2の存在確認作業時に、直ちに第7図に示すよう
なエコー高さhI 、 A2が得られることから、斜角
に入射する探触子4を用いることなく、上述のHr を
演算することができる。
In addition, if the internal defect 2 of the structure 9 is as shown in FIG. Since the echo height hI, A2 can be obtained, the above-mentioned Hr can be calculated without using the probe 4 which is incident at an oblique angle.

このようにして得られたHr が例えば5(dB)であ
ったとすれば、#!3図に例示する相関関係から内部欠
陥2の欠陥fatは20μm と求められる。
If the Hr obtained in this way is, for example, 5 (dB), then #! From the correlation illustrated in FIG. 3, the defect fat of the internal defect 2 is determined to be 20 μm.

上記のようにして測定をおこなう実施例にあっては、構
造体9を何ら破壊することなく、構造体9に内包される
内部欠陥2の欠陥litを容易に、かつ、正確に測定す
ることができる。
In the embodiment in which the measurement is performed as described above, it is possible to easily and accurately measure the defect lit of the internal defect 2 included in the structure 9 without destroying the structure 9 in any way. can.

なお、上記実施例では、構造体9に内在する内部欠陥2
の欠陥幅tを測定する例を示したが、流体中に配置され
た物体の幅寸法もほぼ同様にして管体等を破壊すること
なく測定することができる。
In addition, in the above embodiment, the internal defect 2 inherent in the structure 9
Although the example of measuring the defect width t of a fluid is shown, the width dimension of an object placed in a fluid can be measured in substantially the same manner without destroying the tube body or the like.

〔考案の効果〕[Effect of idea]

以上述べたように、本発明の幅寸法の測定方法は、超音
波探傷を用い、被測定対象の第1の端部、第2の端部に
おける散乱波エコーのエコー高さをそれぞれ求め、これ
らのエコー高さの比を評価指標とした構成にしであるこ
とから、被測定対象を内包する物体を破壊することなく
、当該被測定対象の幅寸法を容易に測定することができ
、従来に比べて下記に列挙する効果を奏する。
As described above, the width measurement method of the present invention uses ultrasonic flaw detection to determine the echo heights of scattered wave echoes at the first end and second end of the object to be measured. Since the configuration uses the ratio of the echo heights of This produces the effects listed below.

(1)現実に使用される製品の測定が可能である。(1) It is possible to measure products that are actually used.

■ 全数検査を実施することができる。■ 100% inspection can be carried out.

(6)測定作業の工数を最少に抑制することができる。(6) The number of steps required for measurement work can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の幅寸法の測定方法の一実施例
を示す説明図で、特に第1図〜第6図は実際の測定作業
に先立っておこなわれる準備作業を例示しており、第1
図は探触子を試験体に配置した状態を示す要部断面図、
第2図は超音波ビームを投射した状態を示す要部断面図
、第6図は超音波ビームの投射によって得られるエコー
高さの比と欠陥幅の関係を示す説明図、第4図〜第7図
は実際の測定作業を例示しており、第4図は探触子を内
部欠陥を内包する構造体に配置した状態を示す要部断面
図、第5図は第4図に示す状態において得られる散乱波
エコーを示す波形図、第6図は超音波ビームを内部欠陥
の上端部と下端部を含む方向に投射させた状態を示す要
部断面図、第7図は第6図に示す状態において得られる
散乱波エコーを示す波形図である。 1・・・試験体、2・・・内部欠陥(被測定対象)、3
・・・探傷面、4・・・探触子、5・・・上端部(第1
の端部)、6・・・第1の散乱波エコー、7・・・下端
部(第2の端部)、8・・・第2の散乱波エコー、9・
・・構造体、10・・・超音波ビーム。 第1図      第2区 見3区 欠陥幅t (ILm) 第4区 −−−−−−−−−−j71−14 鬼6図 ’111 第5図 宅7図 時 間
Figures 1 to 7 are explanatory diagrams showing one embodiment of the width dimension measuring method of the present invention, and in particular, Figures 1 to 6 illustrate preparatory work performed prior to the actual measurement work. 1st
The figure is a cross-sectional view of the main part showing the state in which the probe is placed on the test specimen.
Fig. 2 is a sectional view of the main part showing the state in which the ultrasonic beam is projected, Fig. 6 is an explanatory diagram showing the relationship between the echo height ratio and the defect width obtained by the projection of the ultrasonic beam, and Figs. Figure 7 shows an example of actual measurement work, Figure 4 is a sectional view of the main part showing the state in which the probe is placed in a structure containing an internal defect, and Figure 5 is a cross-sectional view of the main part in the state shown in Figure 4. A waveform diagram showing the obtained scattered wave echo, Fig. 6 is a cross-sectional view of the main part showing the state in which the ultrasonic beam is projected in a direction including the upper and lower ends of the internal defect, and Fig. 7 is shown in Fig. 6. FIG. 3 is a waveform diagram showing scattered wave echoes obtained in the state. 1... Test specimen, 2... Internal defect (object to be measured), 3
...Flaw detection surface, 4...Probe, 5...Top end (first
), 6... first scattered wave echo, 7... lower end (second end), 8... second scattered wave echo, 9...
...Structure, 10...Ultrasonic beam. Fig. 1 Section 2 Section 3 Defect width t (ILm) Section 4 ------------------------j71-14 Oni 6 Fig. '111 Fig. 5 House 7 Time

Claims (1)

【特許請求の範囲】[Claims] 一端部から他端部にわたってほぼ一定の幅寸法を有する
被測定対象の当該幅寸法を測定する方法において、上記
被測定対象の上記一端部と上記他端部を含む方向に超音
波ビームを投射して上記一端部における第1の散乱波エ
コーと上記他端部における第2の散乱波エコーとを生じ
させ、該第1の散乱波エコーのエコー高さと該第2の散
乱波エコーのエコー高さとの比を求め、この比を評価指
標として上記幅寸法を測定することを特徴とする幅寸法
の測定方法。
In a method for measuring the width dimension of an object to be measured which has a substantially constant width dimension from one end to the other end, an ultrasonic beam is projected in a direction including the one end and the other end of the object to be measured. to generate a first scattered wave echo at the one end and a second scattered wave echo at the other end, and an echo height of the first scattered wave echo and an echo height of the second scattered wave echo. A method for measuring a width dimension, characterized in that the width dimension is measured using the ratio as an evaluation index.
JP59122932A 1984-06-16 1984-06-16 Measurement of width Granted JPS613008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122932A JPS613008A (en) 1984-06-16 1984-06-16 Measurement of width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122932A JPS613008A (en) 1984-06-16 1984-06-16 Measurement of width

Publications (2)

Publication Number Publication Date
JPS613008A true JPS613008A (en) 1986-01-09
JPH0338525B2 JPH0338525B2 (en) 1991-06-11

Family

ID=14848175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122932A Granted JPS613008A (en) 1984-06-16 1984-06-16 Measurement of width

Country Status (1)

Country Link
JP (1) JPS613008A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258355B2 (en) 2004-02-13 2007-08-21 Honda Motor Co., Ltd. Vehicular rear suspension system
JP2007263668A (en) * 2006-03-28 2007-10-11 Sekisui Chem Co Ltd Inspection method for buried pipes
CN106197331A (en) * 2015-05-07 2016-12-07 上海通用汽车有限公司 Ultrasonic wave detecting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258355B2 (en) 2004-02-13 2007-08-21 Honda Motor Co., Ltd. Vehicular rear suspension system
JP2007263668A (en) * 2006-03-28 2007-10-11 Sekisui Chem Co Ltd Inspection method for buried pipes
CN106197331A (en) * 2015-05-07 2016-12-07 上海通用汽车有限公司 Ultrasonic wave detecting system

Also Published As

Publication number Publication date
JPH0338525B2 (en) 1991-06-11

Similar Documents

Publication Publication Date Title
Reibold et al. Light diffraction tomography applied to the investigation of ultrasonic fields. Part I: Continuous waves
WO2008007460A1 (en) Ultrasonic scanning device and method
JPH0352908B2 (en)
CN101490543A (en) Ultrasonic flaw detection device and method
JPS613008A (en) Measurement of width
JPH0454447A (en) Fatigue damage measurement method
JPH09138222A (en) Ultrasonic inspection of cast or rolled steel
JPH1194806A (en) Ultrasonic flaw detection method for steel material end surface or side surface
CN114487100A (en) A Spectrum Offset Compensation Method for Spectrum Testing of Ultrasonic Probes
Monchalin et al. Evaluation of ultrasonic inspection procedures by field mapping with an optical probe
Reibold Calibration of ultrasonic fields using optical holography
JP2816212B2 (en) Ultrasonic testing
JPS60181649A (en) Stress measuring method
Oravecz et al. Acoustic spectral interferometry: a new method for sonic velocity determination
JPH09113249A (en) Ultrasonic flaw detecting method
JPH02105055A (en) Hydrogen erosion evaluation method using ultrasound
JP2770634B2 (en) Measurement method of wall thickness change of jacketed tank
JPS6186649A (en) Ultrasonic flaw detection equipment
JPS61184455A (en) Method and apparatus for measuring flaw dimension by analysis of ultrasonic frequency
JPS62140010A (en) Method for measuring thickness of coated film and member to be coated by ultrasonic wave
JPS60247162A (en) Test piece for adjusting ultrasonic flaw detector
Nam Directivity analysis of ultrasonic waves on surface defects using a visualization method
JPH11337536A (en) Calibration auxiliary tool for reference specimen
CN120195268A (en) A nondestructive testing method for pipeline inner surface defect detection
JPS59230156A (en) How to measure crack depth