[go: up one dir, main page]

JPS6133773A - Method for following up welding groove - Google Patents

Method for following up welding groove

Info

Publication number
JPS6133773A
JPS6133773A JP15493884A JP15493884A JPS6133773A JP S6133773 A JPS6133773 A JP S6133773A JP 15493884 A JP15493884 A JP 15493884A JP 15493884 A JP15493884 A JP 15493884A JP S6133773 A JPS6133773 A JP S6133773A
Authority
JP
Japan
Prior art keywords
oscillation
welding
width
period
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15493884A
Other languages
Japanese (ja)
Other versions
JPH0418944B2 (en
Inventor
Keiichi Hokaku
宝角 敬一
Hiroshi Kondo
弘 近藤
Masami Une
宇根 正美
Kenji Saeki
佐伯 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP15493884A priority Critical patent/JPS6133773A/en
Publication of JPS6133773A publication Critical patent/JPS6133773A/en
Publication of JPH0418944B2 publication Critical patent/JPH0418944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0216Seam profiling, e.g. weaving, multilayer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の利用分野) この発明は、消耗電極を供給する溶接トーチを開先幅方
向に揺動させながら行うアーク溶接において揺動中、溶
接電流を検出して積分し、この積分値を所望の期間につ
いて比較することによって溶接トーチを開先に追従させ
るようにした溶接開先追従方法の改良に関するものであ
る。
[Detailed Description of the Invention] (Field of Application of the Invention) This invention detects and integrates a welding current during arc welding, which is performed while swinging a welding torch supplying a consumable electrode in the groove width direction. The present invention relates to an improvement of a welding groove tracking method in which the welding torch is caused to follow the groove by comparing the integral values over a desired period.

(従来の技術) 消耗電極を供給する溶接トーチを開先幅方向に揺動させ
ながらアーク溶接を行う場合、ワークのできばえによっ
てはその開先幅は完全に一様で々く、殊に溶接の進行に
伴う熱によるワークの変形のため、たとえ仮付けなどに
よる強制があったとしても開先幅が変動し、一様でなく
なってくる。
(Prior art) When performing arc welding while swinging the welding torch that supplies the consumable electrode in the width direction of the groove, the width of the groove may be completely uniform depending on the workpiece finish. Due to the deformation of the workpiece due to heat as welding progresses, the groove width will fluctuate and become non-uniform even if forced by tacking or the like.

溶接トーチの開先幅方向の揺動中、溶接電流を検出し、
所望の揺動期間について比較し、溶接トーチを開先に追
従させるようにした溶接開先追従方法においても、前述
のような溶接の実態に対処することが必要であり、この
ような開先幅の変動に対して溶接トーチの揺動幅を制御
する技術が特開昭58−145371号公報、特開昭5
8−176076号公報、特開昭58−192681号
公報などによって公開されている。
The welding current is detected while the welding torch is swinging in the groove width direction,
Even in the welding groove tracking method, which compares the desired oscillation period and makes the welding torch follow the groove, it is necessary to deal with the actual conditions of welding as described above. A technique for controlling the oscillation width of the welding torch with respect to fluctuations in
It has been published in Publication No. 8-176076, Japanese Unexamined Patent Publication No. 192681/1981, and the like.

しかしながら、前述のような開先幅を含む開先方向進行
速度すなわち溶接速度をも制御する必要があり、溶接電
流検出器の出力とワイヤ(消耗型ti)送給速度検出器
の出力からワイヤ突出長さを演算してその変化パターン
から開先幅を検出し、この開先幅の変化に応じて揺動幅
および溶接速度を制御する装置発明が特開昭59−85
375号公報で公開されている。更に、このような揺動
幅および溶接速度を制御するに当り、溶接トーチのチッ
プとワークとの間の電工をも考慮したものが特開昭59
−85376号で公開されている。
However, it is also necessary to control the progressing speed in the groove direction, that is, the welding speed, including the groove width as described above, and it is necessary to control the wire protrusion from the output of the welding current detector and the output of the wire (consumable type Ti) feed speed detector. A device for calculating the length and detecting the groove width from its change pattern, and controlling the swing width and welding speed according to the change in the groove width was invented in JP-A-59-85.
It is published in Publication No. 375. Furthermore, when controlling the swing width and welding speed, the electrical work between the tip of the welding torch and the workpiece was also taken into consideration, as disclosed in Japanese Patent Laid-Open No. 59/1983.
-85376.

(解決しようとする問題点) ところで、前述のようなアーク溶接において、例えば、
開先の一端から他の一端までを溶接するに当り、通常こ
の間での溶接電流設定は一定であり、従ってワイヤ送給
速度も一定であることから、ワイヤ送給速度の検出は必
ずしも必要ではなくなる。そこで、ワイヤ送給速度の検
出を伴わないで、開先幅の変動に対応した揺動幅および
溶接速度の制御を行うことが望まれる。この発明は、こ
のような点に着目し、簡単な構成ですなわちワイヤ送給
速度の検出を伴うことなく、開先幅の変動に対応した溶
接トーチの揺動幅および溶接速度の制御ができるように
した溶接開先追従方法を提供しようとするものである。
(Problem to be solved) By the way, in the above-mentioned arc welding, for example,
When welding from one end of the groove to the other end, the welding current setting is usually constant during this time, and therefore the wire feed speed is also constant, so detection of the wire feed speed is not necessarily necessary. . Therefore, it is desirable to control the swing width and welding speed in response to fluctuations in the groove width without detecting the wire feeding speed. The present invention focuses on these points, and provides a simple configuration that allows the swing width of the welding torch and the welding speed to be controlled in response to fluctuations in the groove width, without detecting the wire feeding speed. The present invention aims to provide a welding groove tracking method based on the following methods.

(問題点を解決するだめの手段) この発明においては、溶接トーチの揺動の一端から揺動
中心までの1/4周期の溶接電流検出値の積分値と同じ
側の揺動の以前の1/4周期の溶接電流検出値の積分値
から、この積分値が増加か、)a 減小かを演算する。すなわち第2逆のようなアーク溶接
が、第3図のような開先形状と揺動経路をもって行われ
るとき、溶接電流検出値は第5図の通りであるとして、
そのN回目の揺動における1/4周期Naの溶接電流検
出値の積分値ANDと例えば以前の1/4周期(N−1
)dの溶接電流か11 動の揺動中心から他の一端までの溶接電流検出値の積分
値と同じ側の以前の1/4周期の溶接電流検出値の積分
値から、それが増加か、減少かを演算する。そして、そ
れぞれ増加するようであればその振幅を拡大するように
、減少する。ようであればその振幅を縮少するように演
算して次の揺動の揺動幅を求める。すなわち、第3図に
おける揺動幅lN+1を演算する。
(Means for Solving the Problem) In the present invention, the integrated value of the welding current detection value of the 1/4 period from one end of the welding torch to the center of the oscillation is equal to the previous 1 of the oscillation on the same side. From the integral value of the welding current detection value of /4 period, it is calculated whether this integral value increases or decreases. That is, when arc welding like the second reverse is performed with the groove shape and swing path as shown in FIG. 3, the welding current detection value is as shown in FIG. 5,
For example, the integral value AND of the welding current detection value of 1/4 period Na in the N-th oscillation and the previous 1/4 period (N-1
) d welding current 11 Is it an increase from the integral value of the welding current detected value from the center of oscillation to the other end of the motion and the integral value of the welding current detected value of the previous 1/4 cycle on the same side? Calculate whether there is a decrease. Then, if each increases, it decreases so as to expand its amplitude. If so, calculate the amplitude to reduce the amplitude to find the swing width of the next swing. That is, the swing width lN+1 in FIG. 3 is calculated.

次に、溶接を始めるに当り、溶接しようとするワークの
開先幅に応じた所定の揺動幅は教示またはプログラムに
より定められており、この所定の揺動幅と演算で求めた
揺動幅を比較して、演算で求めた揺動幅が小さいときは
溶接速度を増加させ、大きい々きは減少させるようにす
る演算によって次の揺動時の溶接速度を求める。
Next, when starting welding, a predetermined oscillation width according to the groove width of the workpiece to be welded is determined by instruction or a program, and the oscillation width is calculated by combining this predetermined oscillation width and the calculation. The welding speed at the next oscillation is calculated by comparing the values and increasing the welding speed when the oscillation width determined by the calculation is small, and decreasing it when the oscillation width is large.

そして、このようにして求めた揺動幅および溶接速度を
用いて溶接トーチを制御する。以」二の手順を図示する
と第1図の通りになる。
Then, the welding torch is controlled using the swing width and welding speed thus obtained. The following steps are illustrated in Figure 1.

(実施例) 第2図のような水平V開先GをもったワークWに対して
多関節のロボットRで溶接トーチTを揺動させながら、
揺動中心O8Cの両側における揺動の1/4周期の溶接
電流検出値の積分値を比較して、溶接トーチTを開先G
に追従させて溶接し、溶接ビードBdを形成させるよう
にした溶接開先追従方法での実施例について説明する。
(Example) While swinging the welding torch T by the articulated robot R on the workpiece W having a horizontal V-groove G as shown in Fig. 2,
By comparing the integral values of the welding current detection values for 1/4 period of the oscillation on both sides of the oscillation center O8C, the welding torch T groove G
An example of a welding groove tracking method will be described in which welding is performed following the welding groove Bd to form a weld bead Bd.

この実施例では、第3図に示すように、溶接トーメ臂2
.経□□5.1.I目(7) m 07(D、2゜目の
揺動■、3回目の揺動■・・・N回目の揺UJ■へと揺
動しながら、溶接速度VNで開先毎伺G Dに添って溶
接して行く。
In this embodiment, as shown in FIG.
.. Kei□□5.1. Ith (7) m 07 (D, 2° swing ■, 3rd swing ■... While swinging to Nth swing UJ■, welding speed VN every groove G D I will weld along with it.

ここで、N回目の揺動について、図上の左端から揺動中
心O8Cまでの1/4周期をNa1揺動中心O8Cから
図上右端までの1/4周期をNb。
Here, for the Nth swing, Na1 is the 1/4 period from the left end of the figure to the center of swing O8C, and Nb is the 1/4 cycle from the center of swing O8C to the right end of the figure.

右端から揺動中心O8Cまでの1/4周期をNO。NO for 1/4 cycle from the right end to the swing center O8C.

揺動中心O8Cから左端までの1/4周期をNdと呼ぶ
。同様に、N−1回目の揺動ΦEE)、 N +1N回
目揺動(EEEコ〕についても各1/4周期方向GDへ
の移動は、第4図のように最終腕先に溶接トーチTを取
り付けたロボットRの関節角α1〜α5を制御すること
によって行われる。溶接トーチTには、図示しないモー
ターによって駆動される消耗電極送給装置Rによって消
耗電極Eが送給され、消耗電極EKI−1:、溶接電源
1から、溶接トーチTの図示しないチップを通して溶接
電流■が供給される。
The 1/4 period from the swing center O8C to the left end is called Nd. Similarly, for the N-1st oscillation ΦEE) and the N+1Nth oscillation (EEE), each movement in the 1/4 period direction GD is performed by placing the welding torch T at the end of the final arm as shown in Fig. 4. This is done by controlling the joint angles α1 to α5 of the attached robot R.A consumable electrode E is fed to the welding torch T by a consumable electrode feeder R driven by a motor (not shown), and the consumable electrode EKI- 1: A welding current (2) is supplied from a welding power source 1 through a not-shown tip of a welding torch T.

溶接電源1から溶接トーチTへの電気配線上には電流セ
ンサ2が設けられており、電流センサ2ノ出カバ、ロー
パスフィルタ3、サンプルホールド回路4、A/Dコン
バータ5、ポート6を通してバス7に接続される。バス
7には図示しない公知のCPU、ROM、RAMからな
り、この溶接開先追従に関するプログラムを内蔵し、演
算を行い、かつそのデータを格納するコンピュータ8が
接続されている。また、バス7には、インターフェース
9を通じてロボツ)Rの各関節軸用サーボ回路10〜1
4が接続されている。このような電流センサ2〜サーボ
回路14で制御装置15が構成されている。そしてサー
ボ回路10〜14は、ロポツ)Rの各関節角α1〜α5
を制御するα1軸モータ16〜α5軸モータ20にそれ
ぞれ接続されている。
A current sensor 2 is provided on the electrical wiring from the welding power source 1 to the welding torch T, and is connected to the bus 7 through the output cover of the current sensor 2, a low-pass filter 3, a sample hold circuit 4, an A/D converter 5, and a port 6. connected to. Connected to the bus 7 is a computer 8 which is composed of a known CPU, ROM, and RAM (not shown), and which contains a program related to this welding groove tracking, performs calculations, and stores the data. In addition, the bus 7 is connected to the servo circuits 10 to 1 for each joint axis of the robot R through the interface 9.
4 is connected. The current sensor 2 to the servo circuit 14 constitute a control device 15. The servo circuits 10 to 14 are connected to each joint angle α1 to α5 of robot R.
are connected to the α1-axis motor 16 to α5-axis motor 20, which control the α1-axis motor 16 to α5-axis motor 20, respectively.

この制御装置15では、一つの揺動が始まり割込Iがか
かるさ、揺動中、揺動周期を適宜に分割した各期間(図
示せず)に溶接電流値を適宜回数サンプルして平均を取
り、その期間の溶接電流検出値Intとしてマイクロコ
ンピュータa込む。ところで、溶接トーチTが揺動の一
端に来たとき、例えば揺動の1/4周期Naと1/4周
期Nbが終り、それぞれについて時間tについて積分し
て得たA n &と13nbは第5図の通りである。そ
して、AnaからBnbを減算し、その差Cの関数とし
て、溶接トーチTの揺動中心の位置制御量を演算し、更
にこの結果によりロボン)ReI会(1! の各関節軸の駆動量を演算して出力し、割込jY−が終
る。そして、次の揺動が始まるが、この出力によりロポ
ツ)Rは溶接トーチTを揺動させなから開先Gに追従さ
せる。そして、この間、溶接を行い、前述の通りの溶接
電流検出を行う。この制御の手順は第6図の通りである
This control device 15 samples the welding current value an appropriate number of times during each period (not shown) in which the oscillation period is appropriately divided during the oscillation, and calculates the average value. and input it into the microcomputer a as the welding current detection value Int for that period. By the way, when the welding torch T comes to one end of the oscillation, for example, the 1/4 period Na and 1/4 period Nb of the oscillation have ended, and A n & and 13nb obtained by integrating each with respect to time t are As shown in Figure 5. Then, subtract Bnb from Ana, calculate the position control amount of the swing center of the welding torch T as a function of the difference C, and use this result to calculate the drive amount of each joint axis of Robon) ReI Kai (1! The calculation is performed and output, and the interruption jY- ends.Then, the next swing starts, but this output causes the welding torch T to follow the groove G instead of swinging. During this time, welding is performed and the welding current is detected as described above. The procedure for this control is shown in FIG.

ところで、N+1回目の揺動EEE)の揺動幅および溶
接速度を演算するに当り割込み■がかかると、第7図の
ようにマイクロコンピュータ8ば、N回目の揺動■の1
!4周期Naにおける溶接電流検出値の積分値ANaか
らN−1回目の揺動(EE)の1!4周期(N−1)(
]中の溶接電流検出値の積分値A(n−1)、dを減算
し、その差を求める。そして、その差が正のときは、こ
のA側の揺動振幅を一定量だけ拡大するように揺動振幅
を演算する。前述の差が負のときは、A側の振幅を一定
量だけ縮少するように振幅を演算する。
By the way, if an interrupt (2) occurs when calculating the oscillation width and welding speed of the N+1st oscillation EEE), as shown in FIG.
! 1!4 cycles (N-1) of the N-1st oscillation (EE) from the integral value ANa of the welding current detection value in the 4 cycles Na
], the integral values A(n-1) and d of the detected welding current values are subtracted to find the difference. When the difference is positive, the swing amplitude is calculated so as to expand the swing amplitude on the A side by a certain amount. When the above-mentioned difference is negative, the amplitude is calculated so as to reduce the amplitude on the A side by a certain amount.

次に、N回目の揺動■の1!4周期NOにおける溶接電
流検出値の積分値BNCから同じく1!4周期N T)
における溶接電流検出値の積分値BNbを減算して、差
をとり前述同様、B側の振幅を演算する。そして、これ
ら各片側の振幅から、一定量だけ増大または減小した次
回すなわちN+1回目の揺動EEEI)の揺動幅lN+
]を演算する。
Next, from the integral value BNC of the welding current detection value in the 1!4 cycles NO of the Nth oscillation ■, the same 1!4 cycles N T)
The integral value BNb of the welding current detection value at is subtracted, the difference is taken, and the amplitude on the B side is calculated as described above. Then, from the amplitude of each side, the next swing width lN+ is increased or decreased by a certain amount, that is, the N+1st swing EEEI)
] is calculated.

そして、このワ−りWに対する溶接をプログラムすると
きに決めた所定の揺IJ@浄と比較し、一方、同様、こ
の溶接をプログラムするときに決めた所定の溶接速度v
Oから、N+1回目の揺動N+1の場合の溶接速度VN
+1=VOX4N+]/lOを演算する。
Then, it is compared with the predetermined oscillation IJ @ cleaning determined when programming the welding for this workpiece W, and on the other hand, the predetermined welding speed V determined when programming the welding.
Welding speed VN in case of N+1 oscillation from O to N+1
+1=VOX4N+]/lO is calculated.

ソシテ、マイクロコンピュータ8はこれらの揺動幅lN
+1および溶接速度VN+1を指令値とし、これらの指
令値はマイクロコンピュータ8において、前述溶接トー
チTの揺動中心の位置制御量Cと合わせて、ロボットR
の各関節軸の駆uJ量−チTはN+1回目の揺動EEI
)に入り、ロボットRの各軸モーター16〜20が駆動
され、溶接トーチTは、開先Gの幅の変動を考慮した揺
動幅と溶接速度でかつ開先Gをならいながら移動してア
ーク溶接を行う、そして、これらの演算と制御の繰返し
により開先幅の変動があっても、一様な盛り高さの溶接
ビードBDが得られる。
The microcomputer 8 has these swing widths lN.
+1 and welding speed VN+1 as command values, these command values are used in the microcomputer 8 together with the position control amount C of the swing center of the welding torch T to control the robot R.
The drive uJ amount of each joint axis - ChiT is the N+1st swing EEI
), the motors 16 to 20 for each axis of the robot R are driven, and the welding torch T moves while following the groove G with a swing width and welding speed that takes into account variations in the width of the groove G, thereby creating an arc. By performing welding and repeating these calculations and controls, a weld bead BD with a uniform bulge height can be obtained even if the groove width varies.

(他の実施例) 他の実施例として、前述の揺動幅lN+1の演算に当り
、溶接電流検出値の積分値ANaまたはBNOと比較さ
れる以前の1!4周期の溶接電流検出値の積分値は、そ
れぞれA、 (n−1) (1,、Bn 1)に限るこ
々は々く、更に以前のものでもよく、以前のものの平均
値さすることもできる。
(Other Examples) As another example, in calculating the above-mentioned swing width lN+1, the integral of the welding current detection value of 1!4 cycles before being compared with the integral value ANa or BNO of the welding current detection value The values may be limited to A, (n-1) (1,, Bn 1), respectively, and may be even earlier values, or may be the average value of the previous values.

また、揺動幅lN+1の演算に当り、一定量増加させた
ものとして求めるだけでなく、前述Ana −A (n
 −1,)、dおよびBNc、−f3nbの関数上して
求めることができる。
In addition, when calculating the swing width lN+1, it is not only calculated by increasing it by a certain amount, but also the above-mentioned Ana −A (n
-1,), d, BNc, and -f3nb.

また)AnaをA(n−11dで、BNc4−Bnbで
除し、これらの比が1以上のとき一定量振幅を増大し、
1以下のと一定量減少することや、(]4) これらの比の関数として揺動幅を演算することもできる
Also) divide Ana by A(n-11d, BNc4-Bnb, and when these ratios are 1 or more, increase the amplitude by a certain amount,
It is also possible to calculate the oscillation width as a function of these ratios.

また、溶接速度VN+1の演算に当り、IN+1/lO
の関数として求めることもできる。
In addition, when calculating the welding speed VN+1, IN+1/lO
It can also be found as a function of

また、揺動中心の両側の1!4周期の溶接電流検出値の
積分値を比較して開先追従を行うような方法に限ること
なく、揺動の各半周期の溶接電流検出値の積分値を比較
するようにした開先追従方法能の開先に対する開先追従
などに広く行うことができる。
In addition, groove tracking is not limited to the method of performing groove tracking by comparing the integral values of the welding current detection values of 1!4 periods on both sides of the center of oscillation. The groove tracking method that compares values can be widely used for groove tracking of grooves.

また、多層盛りのアーク溶接の場合、初層の溶層盛り時
の演算に利用することもでき、この結果、多層盛りにお
ける最終のビードを一様な高さにすることが容易になる
In addition, in the case of multi-layer arc welding, it can also be used for calculations during the welding of the first layer, and as a result, it becomes easy to make the final bead in the multi-layer welding a uniform height.

(発明の効果) 以上の通り、この発明は、消耗電極を供給する溶接トー
チを開先幅方向に揺動させながらアニク溶接を行い、そ
の揺動中に溶接電流を検出して積分し、所望の期間につ
いてこれらの積分値を比較することによって溶接トーチ
を溶接開先に追従させるようにしだ方法において、溶接
開先の開先幅の変動に対し、簡単な構成で溶接トーチの
揺動幅および溶接速度を制御し、一様な高さの溶接ビー
ドが得られると言う顕著な効果を有するものである。
(Effects of the Invention) As described above, the present invention performs animate welding while swinging the welding torch that supplies the consumable electrode in the width direction of the groove, detects and integrates the welding current during the swing, and calculates the desired value by detecting and integrating the welding current. In this method, the welding torch is made to follow the welding groove by comparing these integral values for the period of This has the remarkable effect of controlling the welding speed and producing a weld bead of uniform height.

【図面の簡単な説明】 図面は、この発明の実施例を示すものであって第1図は
概略フロー図、第2図は概略図、第3図は模式図、第4
図はブロック図、第5図は模式図、第6図および第7図
はフロー図である。 これらの図面において、Eは消耗電極、Tは溶接トーチ
、Gは開先、Wはワーク、O8は揺動方向、lN+1は
揺動幅、VN+1は溶接速度である。また、S1〜S3
2は、ステップNoである。
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings show an embodiment of the present invention, in which Fig. 1 is a schematic flow diagram, Fig. 2 is a schematic diagram, Fig. 3 is a schematic diagram, and Fig. 4 is a schematic diagram.
The figure is a block diagram, FIG. 5 is a schematic diagram, and FIGS. 6 and 7 are flow diagrams. In these drawings, E is a consumable electrode, T is a welding torch, G is a groove, W is a workpiece, O8 is a swing direction, IN+1 is a swing width, and VN+1 is a welding speed. Also, S1 to S3
2 is the step number.

Claims (7)

【特許請求の範囲】[Claims] (1)消耗電極を供給する溶接トーチを開先幅方向に揺
動させながらアーク溶接を行い、前記揺動中の溶接電流
を検出して積分し、所望の期間についてこれらの積分値
を比較することによつて前記溶接トーチを前記開先に追
従させるようにした溶接開先追従方法において、 前記揺動の一端から前記揺動中心までの1/4周期の溶
接電流検出値の積分値と前記揺動中心から前記一端への
側の揺動について以前に行なつた1/4周期の揺動の溶
接電流検出値の積分値から次の揺動についてこの1/4
周期の揺動と同じ側への揺動の振幅を演算し、 前記揺動の揺動中心から他の一端までの1/4周期の揺
動の溶接電流検出値の積分値と前記揺動中心から前記他
の一端への側の揺動について以前に行なつた1/4周期
の揺動の溶接電流検出値の積分値から、次の揺動につい
てこの1/4周期の揺動と同じ側への揺動の振幅を演算
して、前記溶接トーチの揺動幅を演算すると共に前記揺
動幅と所定の揺動幅を比較して、次の揺動時の溶接速度
を演算し、前記トーチの開先幅方向への揺動幅および溶
接速度を制御するべくした前記溶接開先追従方法。
(1) Arc welding is performed while the welding torch that supplies the consumable electrode is oscillated in the width direction of the groove, the welding current during the oscillation is detected and integrated, and these integrated values are compared for a desired period. In the welding groove tracking method, the welding torch is caused to follow the groove by, From the integral value of the welding current detection value of the previous 1/4 period of the oscillation from the oscillation center to the one end, this 1/4 is calculated for the next oscillation.
Calculate the amplitude of the oscillation to the same side as the oscillation of the period, and calculate the integral value of the welding current detection value of the 1/4 period oscillation from the oscillation center of the oscillation to the other end and the oscillation center. From the integral value of the welding current detection value of the previous 1/4 period of the oscillation on the side from The amplitude of the oscillation is calculated to calculate the oscillation width of the welding torch, and the oscillation width is compared with a predetermined oscillation width to calculate the welding speed at the next oscillation. The welding groove tracking method described above is intended to control the swing width of the torch in the groove width direction and the welding speed.
(2)前記揺動幅の演算は、それぞれ前記1/4周期の
揺動の溶接電流検出値の積分値から、前記以前に行なつ
た1/4周期の揺動の溶接電流検出値の積分値を減算し
、それぞれその差が正のときは前記揺動の前記振幅を一
定量増大し、またそれぞれその差が負のときは前記揺動
の前記振幅を一定量減少するべく行うようにした特許請
求の範囲第1項記載の溶接開先追従方法。
(2) The oscillation width is calculated from the integral value of the welding current detection value of the 1/4 period of oscillation, and the integral of the welding current detection value of the previously performed 1/4 period of oscillation. When the difference is positive, the amplitude of the oscillation is increased by a certain amount, and when the difference is negative, the amplitude of the oscillation is decreased by a certain amount. A welding groove tracking method according to claim 1.
(3)前記揺動幅の演算は、それぞれ前記1/4周期の
揺動の溶接電流検出値の積分値から、前記以前に行なつ
た1/4周期の揺動の溶接電流検出値の積分値を減算し
、それぞれその差の関数の演算として行うべくした特許
請求の範囲第1項記載の溶接開先追従方法。
(3) The oscillation width is calculated from the integral value of the welding current detection value of the 1/4 period of oscillation, which was performed previously, from the integral of the welding current detection value of the 1/4 period of oscillation. 2. The welding groove tracking method according to claim 1, wherein the welding groove tracking method is performed by subtracting values and calculating a function of the difference.
(4)前記揺動幅の演算は、それぞれ前記1/4周期の
揺動の溶接電流検出値の積分値を、前記以前に行なつた
1/4周期の揺動の溶接電流検出値の積分値で除算し、
それぞれその比が1より大なるとき前記揺動の前記振幅
を一定量増大し、またそれぞれその差が1より小なると
き前記揺動の前記振幅を一定量減小するべく行うように
した特許請求の範囲第1項記載の溶接開先追従方法。
(4) The calculation of the oscillation width is performed by integrating the welding current detection value of the 1/4 period oscillation and the previously performed welding current detection value of the 1/4 period oscillation. divide by the value,
A patent claim in which the amplitude of the oscillation is increased by a certain amount when the ratio is greater than 1, and the amplitude of the oscillation is decreased by a certain amount when the difference is less than 1. The welding groove tracking method according to item 1.
(5)前記揺動幅の演算は、それぞれ前記1/4周期の
揺動の溶接電流検出値の積分値を、前記以前に行なつた
1/4周期の揺動の溶接電流検出値の積分値で除算し、
それぞれその比の関数の演算として行うべくした特許請
求の範囲第1項記載の溶接開先追従方法。
(5) The calculation of the oscillation width is performed by integrating the welding current detection value of the 1/4 period oscillation and the previously performed welding current detection value of the 1/4 period oscillation. divide by the value,
The welding groove tracking method according to claim 1, wherein the welding groove tracking method is performed as a function of each ratio.
(6)前記溶接速度の演算は、前記演算した揺動幅を前
記所定の揺動幅で除算し、所定の溶接速度を乗算するべ
くした特許請求の範囲第1項記載の溶接開先追従方法。
(6) The welding groove tracking method according to claim 1, wherein the welding speed is calculated by dividing the calculated swing width by the predetermined swing width and multiplying by a predetermined welding speed. .
(7)前記溶接速度の演算は、前記演算した揺動幅を前
記所定の揺動幅で除算し、その比の関数と所定の溶接速
度を乗算するべくした特許請求の範囲第1項記載の溶接
開先追従方法。
(7) The welding speed is calculated by dividing the calculated oscillation width by the predetermined oscillation width and multiplying a function of the ratio by the predetermined welding speed. Welding groove tracking method.
JP15493884A 1984-07-24 1984-07-24 Method for following up welding groove Granted JPS6133773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15493884A JPS6133773A (en) 1984-07-24 1984-07-24 Method for following up welding groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15493884A JPS6133773A (en) 1984-07-24 1984-07-24 Method for following up welding groove

Publications (2)

Publication Number Publication Date
JPS6133773A true JPS6133773A (en) 1986-02-17
JPH0418944B2 JPH0418944B2 (en) 1992-03-30

Family

ID=15595213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15493884A Granted JPS6133773A (en) 1984-07-24 1984-07-24 Method for following up welding groove

Country Status (1)

Country Link
JP (1) JPS6133773A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626164A (en) * 1995-08-02 1997-05-06 Vesuvius Crucible Company Crack resistant valve plate assembly for a molten metal slide gate valve
CN1057090C (en) * 1996-07-18 2000-10-04 莱雅公司 Novel derivative of kojic acid and its use as depigmenting agent
JP2010013051A (en) * 2008-07-07 2010-01-21 Honda Motor Co Ltd Vehicle body floor structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626164A (en) * 1995-08-02 1997-05-06 Vesuvius Crucible Company Crack resistant valve plate assembly for a molten metal slide gate valve
CN1057090C (en) * 1996-07-18 2000-10-04 莱雅公司 Novel derivative of kojic acid and its use as depigmenting agent
JP2010013051A (en) * 2008-07-07 2010-01-21 Honda Motor Co Ltd Vehicle body floor structure

Also Published As

Publication number Publication date
JPH0418944B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
JPS6133773A (en) Method for following up welding groove
JP3668325B2 (en) Pressurization control method for welding gun
EP0338078A1 (en) Weaving welding with welding robot
US5063281A (en) Weaving welding method
JPH04256552A (en) Tracer control unit
JPH02179373A (en) Nc controller for laser beam machine
JPH064194B2 (en) Welding method by arc welding robot
JPS6096369A (en) Method for automatically controlling torch in arc welding
JPH0724645A (en) Wire electric discharge machine
JP2703099B2 (en) Conveyor tracking method for industrial robots
KR0137686B1 (en) Welding line tracking and control method for multi-layer welding for variable improvement width
JP2652977B2 (en) Numerical control unit
JP2655898B2 (en) Control method of memory and regeneration type arc welding robot
JPH0420711B2 (en)
JPH03133578A (en) Method for detecting burn through at time of welding
JP2632950B2 (en) Adaptive control device for electric discharge machine
JP3913614B2 (en) Automatic welding method and automatic welding robot controller
JPH0413066B2 (en)
JPS6160275A (en) Controlling method of blasting robot
JP3269149B2 (en) Tack welding method
JPS5992173A (en) Weaving profile-welding method
JPH0418945B2 (en)
JPH0366548A (en) Software table limit device for nc machine tool
JPS60130471A (en) Welding line tracking method and device
JPS62142076A (en) Multilayer buildup welding robot device