[go: up one dir, main page]

JPS6169844A - Crosslinked synthetic resin foam - Google Patents

Crosslinked synthetic resin foam

Info

Publication number
JPS6169844A
JPS6169844A JP19110784A JP19110784A JPS6169844A JP S6169844 A JPS6169844 A JP S6169844A JP 19110784 A JP19110784 A JP 19110784A JP 19110784 A JP19110784 A JP 19110784A JP S6169844 A JPS6169844 A JP S6169844A
Authority
JP
Japan
Prior art keywords
ethylene
propylene
weight
temperature
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19110784A
Other languages
Japanese (ja)
Other versions
JPH0454696B2 (en
Inventor
Michio Matsumura
道夫 松村
Yukinobu Matsumoto
松本 行伸
Takao Inoue
孝夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP19110784A priority Critical patent/JPS6169844A/en
Publication of JPS6169844A publication Critical patent/JPS6169844A/en
Publication of JPH0454696B2 publication Critical patent/JPH0454696B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a crosslinked synthetic resin foam having excellent resistance to heat and low-temperature impact and high-temperature processability and suitable for use as an automobile trim and a substrate for pressure-sensitive adhesive type, by crosslinking and expanding an expandable olefin resin compsn. CONSTITUTION:A propylene/ethylene random block copolymer having an ethylene component content of 16-70wt% as resin component, a block coefficient (absorbance ratio of absorptions at 720cm<-1> and 731cm<-1> assignable to ethylene component in an infrared absorption spectrum) of 0.8 or above, a degree of isotacticity of 40% or above, a melt flow rate of 0.1-30 and a high-temperature side m.p. of 130-165 deg.C is used (an appropriate amount of an olefin polymer such as low-density or high-density polyethylene may be used together). An expandable resin compsn. consisting of said copolymer, a blowing agent, a crosslinking agent and other additives are crosslinked and expanded by any of conventional methods to obtain the purpose crosslinked synthetic resin foam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、自動車内装材、粘着テープ基材、折板屋根
用断熱材その他の種々の分野に使用される、耐熱性、低
温衝撃性並びに高温加工性に優れた合成樹脂架橋発泡体
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides heat resistance, low-temperature impact resistance and This invention relates to a synthetic resin crosslinked foam with excellent high-temperature processability.

〔従来の技術〕[Conventional technology]

ポリオレフィン系樹脂発泡体は、そのクッション性、断
熱性等が優れていることから、種々の分野に利用されて
いる。このポリオレフィン系樹脂発泡体のうち、ポリプ
ロピレン発泡体は同族のポリエチレン発泡体と比べて、
耐熱性、引張強さ、曲げ強度、熱成形性に優れている。
Polyolefin resin foams are used in various fields because of their excellent cushioning properties, heat insulation properties, and the like. Among these polyolefin resin foams, polypropylene foam has the following characteristics compared to the same type of polyethylene foam:
Excellent heat resistance, tensile strength, bending strength, and thermoformability.

しかし、一般に結晶性ポリプロピレン樹脂は、融点が高
く、樹脂の溶融温度と架橋剤や発泡剤の分解温度が接近
しているため、これらを熱分解することなく樹脂を溶融
混練したりすることが困難で、そのため均一に架橋発泡
された良質の成形体を得ることができなかった。また、
結晶性ポリプロピレンの発泡体は常温でもろいことが大
きな欠点である。
However, crystalline polypropylene resin generally has a high melting point, and the melting temperature of the resin is close to the decomposition temperature of the crosslinking agent and foaming agent, so it is difficult to melt and knead the resin without thermally decomposing them. Therefore, it was not possible to obtain a uniformly crosslinked and foamed molded article of good quality. Also,
A major drawback of crystalline polypropylene foam is that it is brittle at room temperature.

このような欠点を改良するため、ポリエチレンを混合す
ること、或いは、基材樹脂として、結晶性プロピレン−
エチレンランダム共重合体(’−P P P P P 
−E −P P P P P −E −P P PPP
−E−の分子配列で示されるような、プロピレン連鎖(
PP−)中に共重合させたエチレン分子(E)がランダ
ムに分布したもの)を用いることが行われている(特公
昭46−38716号公報)。
In order to improve these drawbacks, it is possible to mix polyethylene or use crystalline propylene as a base resin.
Ethylene random copolymer ('-P P P P P
-E -P P P P P -E -P P PPP
A propylene chain (
PP-) in which copolymerized ethylene molecules (E) are randomly distributed has been used (Japanese Patent Publication No. 38716/1983).

前者のポリエチレンを混合する方法にあっては、低温衝
撃性が改良され、また、後者のような共重合体を用いる
場合は、プロピレンホモポリマーに比べ融点が低く、そ
の結果架橋剤や発泡剤の熱分解を起こすことがなく、樹
脂とこれらの架橋剤や発泡剤を溶融混合したり成形する
ことが可能となる。
The former method of mixing polyethylene improves low-temperature impact properties, and the latter method of using copolymers has a lower melting point than propylene homopolymers, resulting in less crosslinking and blowing agents. It becomes possible to melt mix and mold the resin and these crosslinking agents and foaming agents without causing thermal decomposition.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前者のポリプロピレンにポリエチレンを添加混合する方
法では、ポリプロピレンとポリエチレンとは相溶性がよ
くないため、得られた発泡体を真空成形等高温で加工を
行うと発泡体の独立気泡が破れて連続気泡化してしまい
、クッション性が無くなるなど発泡体の機能が撰なわる
といった問題が残る。
In the former method of adding and mixing polyethylene to polypropylene, polypropylene and polyethylene are not compatible, so if the resulting foam is processed at high temperatures such as vacuum forming, the closed cells of the foam will burst and become open cells. However, the problem remains that the functionality of the foam is altered, such as loss of cushioning properties.

また、後者のような結晶性プロピレン−エチレンランダ
ム共重合体を用いた架橋発泡体では、従来のポリプロレ
ン発泡体に比べ低温衝撃性が著しく低下し、寒冷地での
使用に問題を生じていた。
Furthermore, crosslinked foams using crystalline propylene-ethylene random copolymers such as the latter have significantly lower low-temperature impact resistance than conventional polyprolene foams, causing problems in use in cold regions.

この発明は、このような欠点を解消しようとするもので
、溶融混合、成形の際に架橋剤や発泡剤が熱分解を起こ
さず、均一に架橋発泡され、かつ低温衝撃性および高温
加工性に優れた良質の合成樹脂架橋発泡体を提供しよう
とするものである。
This invention aims to eliminate these drawbacks, and aims to ensure that the crosslinking agent and foaming agent do not undergo thermal decomposition during melt mixing and molding, are crosslinked and foamed uniformly, and have good low-temperature impact resistance and high-temperature processability. The purpose is to provide a synthetic resin crosslinked foam of excellent quality.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、エチレン成分が16〜70%、ブロック係
数(赤外吸収スペクトルにおいてエチレン成分に起因す
る720cm−’および731印−1の吸収の吸光度比
)が0.8以上、アイソタクチック度が40%以上、メ
ルトフローレイト(以下、MFRという)が0.1〜3
0、高温側融点が130−165℃であるプロピレン−
エチレンランダム・ブロック共重合体を樹脂成分とした
発泡性樹脂組成物を架橋発泡させることにより上記の問
題点を解決した合成樹脂架橋発泡体である。
This invention has an ethylene component of 16 to 70%, a blocking coefficient (absorbance ratio of absorption at 720 cm-' and 731 mark-1 caused by the ethylene component in an infrared absorption spectrum) of 0.8 or more, and an isotactic degree. 40% or more, melt flow rate (hereinafter referred to as MFR) 0.1 to 3
0. Propylene with a high temperature side melting point of 130-165℃
This synthetic resin crosslinked foam solves the above problems by crosslinking and foaming a foamable resin composition containing an ethylene random block copolymer as a resin component.

この発明において用いられるプロピレン−エチレンラン
ダム・ブロック共重合体は、チグラー・ナツタ型の触媒
を用いてエチレンとプロピレンの重合を同時に行い、分
子配列が・・−PPPPP−E−PPPPP−PPPP
P−EEEE−PPPPP−E−PPPPP−EEEE
−・・となるように、プロピレン連鎖中にエチレンを部
分的にランダム型とブロック型に分布させた構造を有し
ている。すなわち、結晶性プロピレン−エチレンランダ
ム共重合体と、結晶性プロピレンーエチレンプロソク共
重合体の中間型に属する共重合体である。
The propylene-ethylene random block copolymer used in this invention simultaneously polymerizes ethylene and propylene using a Ziegler-Natsuta type catalyst, and has a molecular arrangement of... -PPPPP-E-PPPPP-PPPP
P-EEEE-PPPPP-E-PPPPP-EEEE
- It has a structure in which ethylene is partially distributed in a random type and a block type in a propylene chain. That is, it is a copolymer that belongs to an intermediate type between a crystalline propylene-ethylene random copolymer and a crystalline propylene-ethylene prosodic copolymer.

そして、この共重合体のうち、エチレン含有率が16〜
70重量%で、含有エチレンのブロック度を示す尺度で
あるブロック係数(B)が0.8以上、アイソタクチッ
ク度が40%以上、MRRが0.1〜30、高温側融点
が130〜165℃のものが用いられる。
Of this copolymer, the ethylene content is from 16 to
At 70% by weight, the block coefficient (B), which is a measure of the blockiness of the contained ethylene, is 0.8 or more, the isotactic degree is 40% or more, the MRR is 0.1 to 30, and the high temperature side melting point is 130 to 165. ℃ is used.

なお、ブロック係数(B)とは、室温で測定した共重合
体の赤外吸収スペクトルにおいて、エチレン成分に起因
する720(J−’及び731印1m−’の吸収の吸光
度(A)の比であり、B=720cm−’のA/ 73
1 ell−’のAによって示される値で、このうち7
20cm−’における吸収は、ブロック的に共重合した
エチレンに起因するものである。従って、ブロック係数
(B)の値が大きい程プロピレン連鎖中にブロック的に
共重合したエチレン鎖が多いことを示している。
In addition, the block coefficient (B) is the ratio of the absorbance (A) of the absorption at 720 (J-' and 731 marks 1 m-' caused by the ethylene component) in the infrared absorption spectrum of the copolymer measured at room temperature. Yes, A/73 of B=720cm-'
1 ell-' is the value indicated by A, of which 7
The absorption at 20 cm-' is due to block-copolymerized ethylene. Therefore, the larger the value of the block coefficient (B), the more ethylene chains copolymerized in a block manner in the propylene chain.

また、高温側融点は、走査熱量計(DSC法)または示
差熱分析(DTA法)による昇温速度10℃/min、
の場合の高温側の融点をいう。
In addition, the high temperature side melting point is determined by scanning calorimetry (DSC method) or differential thermal analysis (DTA method) at a heating rate of 10°C/min,
The melting point on the high temperature side in the case of

この発明における、プロピレン−エチレンランダム・ブ
ロック共重合体は、エチレン含有率16〜70重世%の
うち、15〜69重量%はブロック部分のエチレン含有
量であることが好ましい。また、ランダム部分のエチレ
ンは高温側融点をコントロールするものでありて、その
含有量は1〜15重量%であることが好ましい。このよ
うにブロック部分のエチレン含有量を多くすることによ
り、低温衝撃性がよくなり、また、プロピレン−エチレ
ンランダム共重合体にポリエチレンを混合したもののよ
うに高温加工の際独立気泡が川なねれることがない。
In the present invention, the propylene-ethylene random block copolymer preferably has an ethylene content of 16 to 70 weight %, with the ethylene content of the block portion being 15 to 69 weight %. Further, the random portion of ethylene controls the melting point on the high temperature side, and its content is preferably 1 to 15% by weight. Increasing the ethylene content in the block portion improves low-temperature impact resistance, and also prevents closed cells from flowing during high-temperature processing, such as when polyethylene is mixed with a propylene-ethylene random copolymer. Never.

エチレン含有量が16重量%より少ないと、高温側融点
が165℃より高くなったり、または低温の衝撃強度が
悪くなる。また、エチレン含有量が70重世%を越える
と、ポリプロピレンの性質がほとんどなくなり、機械強
度、高温での伸び率、耐熱性が著しく悪くなる。更に、
樹脂の重合段階での収率が低くなってコストが高くなる
If the ethylene content is less than 16% by weight, the high temperature side melting point will be higher than 165°C or the low temperature impact strength will be poor. Moreover, when the ethylene content exceeds 70% by weight, the properties of polypropylene are almost lost, and the mechanical strength, elongation rate at high temperatures, and heat resistance deteriorate significantly. Furthermore,
The yield in the resin polymerization step becomes low and the cost becomes high.

〔作用〕[Effect]

この発明において用いる前記した特性を有するプロピレ
ン−エチレンランダム・ブロック共重合体は、高温側融
点が、130〜165℃の範囲にあり、他のプロピレン
系樹脂の融点(ポリプロピレンホモポリマー;165〜
175℃、プロピレン−エチレンブロック共重合体;1
60−170℃)に比較して、熔融混合や成形時に架橋
剤、発泡剤などが熱分解せず、均一な微細気泡を有する
架橋発泡体を製造するに適した融点である。
The propylene-ethylene random block copolymer having the above-mentioned properties used in this invention has a high-temperature melting point in the range of 130 to 165°C, and the melting point of other propylene resins (polypropylene homopolymer; 165 to 165°C).
175°C, propylene-ethylene block copolymer; 1
60-170°C), the crosslinking agent, foaming agent, etc. do not thermally decompose during melt mixing or molding, and this melting point is suitable for producing a crosslinked foam having uniform fine cells.

なお、他のプロピレン系樹脂のうちプロピレン−エチレ
ンランダム共重合体も融点は125〜165℃であり、
架橋剤、発泡剤などが熱分解しないのに適しているが、
この樹脂では低温衝撃性が著しく低下する欠点があり好
ましくない。
In addition, among other propylene-based resins, propylene-ethylene random copolymers also have a melting point of 125 to 165°C,
Suitable for crosslinking agents, foaming agents, etc. that do not decompose thermally, but
This resin has the disadvantage that low-temperature impact resistance is significantly reduced, and is therefore undesirable.

また、融点は、ランダム部分のエチレン含有量の調整に
より可能であり、この発明のプロピレン−エチレンラン
ダム・ブロック共重合体においては、そのようなエチレ
ン含有量は16〜70重量%の範囲において適性な融点
の範囲が得られる。
In addition, the melting point can be adjusted by adjusting the ethylene content of the random portion, and in the propylene-ethylene random block copolymer of the present invention, the ethylene content is suitable in the range of 16 to 70% by weight. A range of melting points is obtained.

一方、プロピレン−エチレン共重合体からなる架橋発泡
体の低温における耐衝撃性は、共重合させたエチレンの
プロピレン連鎖中のブロック係数(B)に関係し、この
Bが0.8より小さいものでは、耐衝撃性が十分でなく
、結晶性プロピレン−エチレンランダム共重合体では耐
衝撃性は著しく低いものとなる。
On the other hand, the low-temperature impact resistance of a crosslinked foam made of a propylene-ethylene copolymer is related to the block coefficient (B) in the propylene chain of copolymerized ethylene; , the impact resistance is insufficient, and the impact resistance of crystalline propylene-ethylene random copolymers is extremely low.

なお、この発明のプロピレン−エチレンランダム・ブロ
ック共重合体において、アイソタクチック度およびMF
Rの好適範囲をアイソタクチック度が40%以上、MF
Rが0.1〜30と限定したのは、アイソタクチック度
が40%より低いとポリプロピレン発泡体の特性である
耐熱性や曲げ強さ等の機械的特性が低下し、また、MF
Rが0.1より小さいと溶融粘度が高すぎて成形性が劣
化し、逆に30を越えると発泡粘度の調整が困難となる
からである。
In addition, in the propylene-ethylene random block copolymer of this invention, the isotactic degree and MF
The preferred range of R is an isotactic degree of 40% or more, MF
The reason why R is limited to 0.1 to 30 is because if the isotactic degree is lower than 40%, the mechanical properties such as heat resistance and bending strength, which are characteristics of polypropylene foam, will deteriorate.
If R is less than 0.1, the melt viscosity will be too high and moldability will deteriorate, while if R exceeds 30, it will be difficult to adjust the foaming viscosity.

この発明の合成樹脂発泡体は、このようなプロピレン−
エチレンランダム・ブロック共重合体を用いるものであ
るが、その製造方法は架橋発泡体の製造方法として一般
に行われている方法により製造することができる。
The synthetic resin foam of this invention is made of such propylene-
Although an ethylene random block copolymer is used, it can be manufactured by a method generally used for manufacturing crosslinked foams.

すなわち、例えばプロピレン−エチレンランダム・プロ
・ツク共重合体、発泡剤、架橋促進剤等からなる発泡性
樹脂組成物を押出機に供給して、押出成形し、次いでこ
の成形物に電子線照射により架橋した後、発泡剤の分解
温度以上の温度に加熱して発泡させることにより製造す
ることができる。
That is, for example, a foamable resin composition consisting of a propylene-ethylene random protox copolymer, a blowing agent, a crosslinking accelerator, etc. is fed into an extruder, extrusion molded, and then this molded product is subjected to electron beam irradiation. After crosslinking, it can be produced by foaming by heating to a temperature higher than the decomposition temperature of the foaming agent.

この発明においては、上記発泡性樹脂組成物はプロピレ
ン−エチレンランダム・ブロック共重合体に他のオレフ
ィン系ポリマーを混合できる。すなわち、この発明のプ
ロピレン−エチレンランダム・ブロック共重合体は、ブ
ロック部分のエチレン含有量が非常に多いのでエチレン
含有量が15重■%以下のプロピレン−エチレンブロッ
ク共重合体およびプロピレンホモポエマーに比べ、ポリ
エチレンとの相溶性が非常によく、他のオレフィン系樹
脂を混合することも可能となり、改質が容易となり、軟
質から硬質の発泡体をつくることができ、高温で加工し
ても、独立気泡の損失が極めて少ない。
In the present invention, the foamable resin composition can be a propylene-ethylene random block copolymer mixed with other olefin polymers. That is, the propylene-ethylene random block copolymer of the present invention has a very high ethylene content in the block portion, so it has a much higher ethylene content than propylene-ethylene block copolymers and propylene homopomers with an ethylene content of 15% by weight or less. , has very good compatibility with polyethylene, making it possible to mix with other olefin resins, making it easy to modify, making it possible to create soft to hard foams, and even when processed at high temperatures, it remains independent. Very little loss of bubbles.

このようなオレフィン系ポリマーとしては、低密度ポリ
エチレン、高密度ポリエチレン、ポリプロピレン等ある
いはこれらの共重合体がある。これらの樹脂のブレンド
割合はその目的とする発泡体により適宜選択される。一
般に、全樹脂中プロピレン含を量が20%以上であるの
が、耐熱性、機械強度等の物性を維持できこの発明の主
旨から望ましい。
Examples of such olefin polymers include low density polyethylene, high density polyethylene, polypropylene, etc., and copolymers thereof. The blending ratio of these resins is appropriately selected depending on the intended foam. In general, it is desirable for the propylene content in the total resin to be 20% or more, since physical properties such as heat resistance and mechanical strength can be maintained, and from the perspective of the purpose of this invention.

また、この発泡性樹脂組成物には、架橋や発泡の障害に
ならない限り、従来の発泡成形において用いられる熱安
定剤、抗酸化剤、増量剤、可塑剤、耐炎剤、着色剤、帯
電防止剤等の有機物、無機物を加えても差し支えない。
This foamable resin composition also contains heat stabilizers, antioxidants, fillers, plasticizers, flame retardants, colorants, and antistatic agents used in conventional foam molding, as long as they do not interfere with crosslinking or foaming. There is no problem in adding organic or inorganic substances such as

発泡剤には、常温で液体または固体の化合物で、基材樹
脂の溶融点以上に加熱された時に分解または気化するも
ので、成形や架橋を実質的に妨害しない限り適宜使用さ
れる。この発泡剤の分解温度は180〜270℃の範囲
のものが好ましく、例えばアゾジカルボンアミド、アゾ
ジカルボン酸金属塩等があり、これらの発泡剤はその種
類、発泡倍率によって適宜量混合される。
The blowing agent is a compound that is liquid or solid at room temperature and decomposes or vaporizes when heated above the melting point of the base resin, and is used as appropriate as long as it does not substantially interfere with molding or crosslinking. The decomposition temperature of this blowing agent is preferably in the range of 180 to 270 DEG C. Examples include azodicarbonamide, azodicarboxylic acid metal salts, etc. These blowing agents are mixed in appropriate amounts depending on the type and expansion ratio.

また、架橋促進剤には、トリメチロールプロパントリメ
タクリレート等の多価アルコールのポリメタクレート等
があり、これらを添加することにより電子線照射架橋を
スムース、かつ効率よく行うことができる。
In addition, crosslinking accelerators include polymethacrylates of polyhydric alcohols such as trimethylolpropane trimethacrylate, and by adding these, electron beam irradiation crosslinking can be carried out smoothly and efficiently.

〔実施例〕〔Example〕

実施例1 エチレン含有量が30重量%、ブロック係数(B)が1
.37、アイソタクチック度が85%、VFRが10.
0、高温側融点が157℃のプロピレン−エチレンラン
ダム・ブロック共重合体100重量部、トリメチロール
プロパントリメタクレート3重量部、熱安定剤1重量部
をミキサーで混合し、この混合物を120maΦ押出機
で樹脂温度185℃で幅5001m、厚さ163龍のシ
ートに押出した。このシートは発泡剤が均一に分散され
、発泡剤の分解のないものであった。
Example 1 Ethylene content is 30% by weight, block coefficient (B) is 1
.. 37, Isotactic degree is 85%, VFR is 10.
0. 100 parts by weight of a propylene-ethylene random block copolymer with a high temperature side melting point of 157°C, 3 parts by weight of trimethylolpropane trimethacrylate, and 1 part by weight of a heat stabilizer were mixed in a mixer, and this mixture was transferred to a 120 maΦ extruder. The resin was extruded into a sheet with a width of 5001 m and a thickness of 163 mm at a resin temperature of 185°C. In this sheet, the foaming agent was uniformly dispersed, and the foaming agent did not decompose.

次に、このシートに電子線加速機で2. OM rad
ずつ両面を照射した後、炉内温度260℃の熱風式発泡
装置で発泡させて発泡シートを製造した。得られた発泡
シートは均一な微細気泡を有し、白色で厚さ3.0韻、
見掛は密度0.032 g / cm :l、架橋度4
5%であった。
Next, this sheet is subjected to two steps using an electron beam accelerator. OM rad
After irradiating both sides, a foamed sheet was produced by foaming using a hot air foaming device with a furnace temperature of 260°C. The obtained foam sheet has uniform microbubbles, is white in color, and has a thickness of 3.0 mm.
Apparent density: 0.032 g/cm:l, degree of crosslinking: 4
It was 5%.

比較例I MFRが7.5、融点が165℃のプロピレンホモポリ
マー100重量部、アゾカルボンアミド12重量部、ト
リメチロールプロパントリメタクレート3重量部、熱安
定剤1重量部をミキサーで混合し、実施例1と同様に1
201■φ押出機で押出成形した。しかし、樹脂温度は
197℃より低下させることができず、押出機内で発泡
剤が分解し、良好なシートは得られなかった。
Comparative Example I 100 parts by weight of a propylene homopolymer with an MFR of 7.5 and a melting point of 165°C, 12 parts by weight of azocarbonamide, 3 parts by weight of trimethylolpropane trimethacrylate, and 1 part by weight of a heat stabilizer were mixed in a mixer, 1 as in Example 1
Extrusion molding was carried out using a 201 φ extruder. However, the resin temperature could not be lowered below 197°C, and the foaming agent decomposed within the extruder, making it impossible to obtain a good sheet.

比較例2 エチレン含有量が2.5重量%、MFRが6.0、融点
が166℃のプロピレン−エチレンブロック共重合体1
00重量部、アゾジカルボンアミド12部、トリメチロ
ールプロパントリメタクリレート3重量部、熱安定剤1
重量部をミキサーで混合し、実施例1と同様に120龍
Φ押出機で押出成形した。しかし、樹脂温度は194℃
より低下させることができず、押出機内で発泡剤が分解
し、良好なシートは得られなかった。
Comparative Example 2 Propylene-ethylene block copolymer 1 with an ethylene content of 2.5% by weight, an MFR of 6.0, and a melting point of 166°C
00 parts by weight, 12 parts by weight of azodicarbonamide, 3 parts by weight of trimethylolpropane trimethacrylate, 1 part by weight of heat stabilizer
Parts by weight were mixed using a mixer and extrusion molded using a 120-diameter extruder in the same manner as in Example 1. However, the resin temperature is 194℃
The blowing agent could not be lowered further, and the blowing agent decomposed in the extruder, making it impossible to obtain a good sheet.

比較例3 エチレン含有量が2.6重量%、MFRが7.0、ブロ
ック係数(B)が0、アイソタクチック度が86%、融
点が154℃のプロピレン−エチレンランダム共重合体
100重量部、アブジカルボンアミド12部、トリメチ
ロールプロパントリメタクリレート3重量部、熱安定剤
1重量部をミキサーで混合し、実施例1と同様に120
0φ・押出機で樹脂温度180℃で幅500鶴、厚さ1
.3 vmのシートを成形した。
Comparative Example 3 100 parts by weight of a propylene-ethylene random copolymer with an ethylene content of 2.6% by weight, an MFR of 7.0, a block coefficient (B) of 0, an isotactic degree of 86%, and a melting point of 154°C , 12 parts of abdicarbonamide, 3 parts by weight of trimethylolpropane trimethacrylate, and 1 part by weight of a heat stabilizer were mixed in a mixer, and as in Example 1, 120 parts of
0φ extruder, resin temperature 180℃, width 500mm, thickness 1
.. A 3 vm sheet was molded.

次にこのシートに電子線加速機で2. OM r ad
ずつ両面照射した後、炉内温度260℃の熱風式発泡装
置で発泡させて発泡シートを製造した。この発泡シート
は厚さ3. On、見掛は密度0、033 g /cm
’ 、架橋度46%であった。
Next, this sheet is subjected to 2. OM r ad
After irradiating both sides, a foamed sheet was produced by foaming in a hot air foaming device with a furnace temperature of 260°C. This foam sheet has a thickness of 3. On, apparent density is 0,033 g/cm
', the degree of crosslinking was 46%.

実施例2 実施例1と同一のプロピレン−エチレンランダム・ブロ
ック共重合体70重量部、MFRが4.0、密度が0.
922 g/cm”の低密度ポリエチレン30重量部、
アゾジカルボンアミド8重量部、トリメチロールプロパ
ントリメタクレート3重量部、熱安定剤0.5重量部を
ミキサーで混合し、この混合物を120鶴Φ押出機によ
り樹脂温度180℃で幅soom、厚さ1.5 mのシ
ートに押出した。このシートは発泡剤が均一に分散され
、発泡剤の分解のない滑らかなものであった。
Example 2 70 parts by weight of the same propylene-ethylene random block copolymer as in Example 1, MFR 4.0, density 0.
30 parts by weight of low density polyethylene of 922 g/cm";
8 parts by weight of azodicarbonamide, 3 parts by weight of trimethylolpropane trimethacrylate, and 0.5 parts by weight of a heat stabilizer are mixed in a mixer, and this mixture is heated to a resin temperature of 180°C by a 120 Tsuru Φ extruder to a width soom and a thickness It was extruded into a 1.5 m sheet. The foaming agent was uniformly dispersed in this sheet, and the sheet was smooth with no decomposition of the foaming agent.

次に、このシートに電子線加速機で1.3 M rad
ずつ両面を照射した後、炉内温度260℃の熱風式発泡
装置で発泡させて発泡シートを製造した。得られた発泡
シートは均一な微細気泡を有し、白色で厚さ3. l 
va、見掛は密度0.0413g/cra”、架橋度4
7%であった。
Next, this sheet was heated to 1.3 M rad using an electron beam accelerator.
After irradiating both sides, a foamed sheet was produced by foaming using a hot air foaming device with a furnace temperature of 260°C. The obtained foam sheet has uniform fine cells, is white, and has a thickness of 3.5 mm. l
va, apparent density 0.0413g/cra", degree of crosslinking 4
It was 7%.

比較例4 エチレン含有量が4.0重量%、MFRが8.0、融点
が162℃の結晶性プロピレン−エチレンブロック共重
合体50重量部、MFRが4.0、密度が0.922 
g/am3の低密度ポリエチレン50重量部、アゾジカ
ルボンアミド8部、トリメチロールプロパントリメタク
リレート3重量部、熱安定剤0.5重量部をミキサーで
混合し、実施例2と同様に120mΦ押出機で押出成形
した。しかし、樹脂温度は192 ”Cより下げること
ができず、押出機内で発泡剤が分解し、良好なシートは
得られなかった。
Comparative Example 4 50 parts by weight of a crystalline propylene-ethylene block copolymer with an ethylene content of 4.0% by weight, an MFR of 8.0, and a melting point of 162°C, an MFR of 4.0, and a density of 0.922.
50 parts by weight of low-density polyethylene of g/am3, 8 parts by weight of azodicarbonamide, 3 parts by weight of trimethylolpropane trimethacrylate, and 0.5 parts by weight of a heat stabilizer were mixed in a mixer, and the mixture was mixed in a 120 mΦ extruder in the same manner as in Example 2. Extruded. However, the resin temperature could not be lowered below 192''C, and the blowing agent decomposed in the extruder, making it impossible to obtain a good sheet.

比較例5 エチレン含有量が4.5重量%、MFRが8.0、ブロ
ック係数(B)が0.3、アイソタクチック度が75%
、融点が140℃の結晶性プロピレン−エチレンランダ
ム共重合体50重量部、MFRが4.0、密度が0.9
22 g/am’の低密度ポリえ粉末50重量部、アゾ
ジカルボンアミド8部、トリメチロールプロパントリメ
タクリレート3重量部、熱安定剤0.5重量部をミキサ
ーで混合し、実施例2と同様にして、厚さ3.0順、見
掛は密度0.051 g/cm’ 、架橋度46%の発
泡シートを得た。
Comparative Example 5 Ethylene content: 4.5% by weight, MFR: 8.0, block coefficient (B): 0.3, isotactic degree: 75%
, 50 parts by weight of a crystalline propylene-ethylene random copolymer with a melting point of 140°C, an MFR of 4.0, and a density of 0.9.
50 parts by weight of low-density polyurethane powder of 22 g/am', 8 parts by weight of azodicarbonamide, 3 parts by weight of trimethylolpropane trimethacrylate, and 0.5 parts by weight of a heat stabilizer were mixed in a mixer, and the mixture was prepared in the same manner as in Example 2. A foamed sheet having a thickness of 3.0 mm, an apparent density of 0.051 g/cm', and a degree of crosslinking of 46% was obtained.

次に実施例1および2、比較例3および5で得られた発
泡シートの各物性を測定した。その結果は第1表のとお
りであった。
Next, the physical properties of the foamed sheets obtained in Examples 1 and 2 and Comparative Examples 3 and 5 were measured. The results are shown in Table 1.

次に、実施例1および2、比較例3及び5で得られた発
泡シートを真空成形し、真空成形最大絞り比及び成形前
および成形後の発泡シートの独立気泡率の変化を測定し
た結果、第2表に示すとおりであった。(以下余白) 第1表 注)引張強度及び伸び率の測定;試験片をダンベル1号
で打ち抜き、その長手方向に500m/分の引取速度に
よる測定。
Next, the foamed sheets obtained in Examples 1 and 2 and Comparative Examples 3 and 5 were vacuum formed, and the maximum drawing ratio of vacuum forming and the change in the closed cell ratio of the foamed sheets before and after forming were measured. It was as shown in Table 2. (Margins below) Table 1 Note) Measurement of tensile strength and elongation; Measurement was performed by punching out a test piece with a No. 1 dumbbell and pulling it in the longitudinal direction at a speed of 500 m/min.

耐衝撃性試験 ;エレメンドルフ法による。Impact resistance test: Based on the Elmendorf method.

第2表 注1)真空成形最大絞り比(L/D)の測定は、真空成
形型の深さを可変にし、成形部が破れる最大深さくL)
を測定し、成形部の直径(D)の比(L/D)で表した
Table 2 Note 1) The maximum drawing ratio (L/D) for vacuum forming is measured by varying the depth of the vacuum forming mold and measuring the maximum depth at which the molded part breaks (L).
was measured and expressed as the ratio (L/D) of the diameter (D) of the molded part.

2)独立気泡率;空気比較式密度試験機を用いて測定。2) Closed cell ratio: Measured using an air comparison density tester.

なお、成形前において、実施例1および2の発泡シート
の独立気泡率がそれぞれ92%、90%であったものが
成形後はそれぞれ88%、84%と独立気泡率の低下は
僅かであり、成形前と変わらず良好な反発性を示した。
In addition, before molding, the closed cell ratio of the foamed sheets of Examples 1 and 2 was 92% and 90%, respectively, but after molding, it was 88% and 84%, respectively, and the decrease in the closed cell ratio was slight. It showed the same good resilience as before molding.

これに反し、比較例5の発泡シートは、成形前89%の
独立気泡率が43%と著しく低下し、圧縮復元性が非常
に悪く、かつ反発性がなかった。
On the other hand, the foamed sheet of Comparative Example 5 had a closed cell ratio of 43%, which was 89% before molding, and had very poor compression recovery properties and no resilience.

Claims (1)

【特許請求の範囲】 1、エチレン成分が16〜70重量%、ブロック係数(
赤外吸収スペクトルにおいてエチレン成分に起因する7
20cm^−^1および731cm^−^1の吸収の吸
光度比)が0.8以上、アイソタクチック度が40%以
上、メルトフローレイト(MFR)が0.1〜30、高
温側融点が130〜165℃であるプロピレン−エチレ
ンランダム・ブロック共重合体を主体とするオレフィン
系樹脂発泡性組成物を架橋発泡させてなることを特徴と
する合成樹脂架橋発泡体。 2、オレフィン系樹脂発泡性組成物が、前記プロピレン
−エチレンランダム・ブロック共重合体と他のオレフィ
ン系ポリマーとの混合物からなる特許請求の範囲第1項
記載の合成樹脂架橋発泡体。
[Claims] 1. Ethylene component is 16 to 70% by weight, block coefficient (
7 caused by the ethylene component in the infrared absorption spectrum
Absorbance ratio of absorption at 20 cm^-^1 and 731 cm^-^1) is 0.8 or more, isotactic degree is 40% or more, melt flow rate (MFR) is 0.1 to 30, and high temperature side melting point is 130. A synthetic resin crosslinked foam, characterized in that it is formed by crosslinking and foaming an olefin resin foamable composition mainly composed of a propylene-ethylene random block copolymer at a temperature of ~165°C. 2. The synthetic resin crosslinked foam according to claim 1, wherein the olefin resin foamable composition comprises a mixture of the propylene-ethylene random block copolymer and another olefin polymer.
JP19110784A 1984-09-12 1984-09-12 Crosslinked synthetic resin foam Granted JPS6169844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19110784A JPS6169844A (en) 1984-09-12 1984-09-12 Crosslinked synthetic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19110784A JPS6169844A (en) 1984-09-12 1984-09-12 Crosslinked synthetic resin foam

Publications (2)

Publication Number Publication Date
JPS6169844A true JPS6169844A (en) 1986-04-10
JPH0454696B2 JPH0454696B2 (en) 1992-09-01

Family

ID=16268966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19110784A Granted JPS6169844A (en) 1984-09-12 1984-09-12 Crosslinked synthetic resin foam

Country Status (1)

Country Link
JP (1) JPS6169844A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142917A (en) * 1982-02-18 1983-08-25 Hitachi Chem Co Ltd Production of crosslinked polyolefin foam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142917A (en) * 1982-02-18 1983-08-25 Hitachi Chem Co Ltd Production of crosslinked polyolefin foam

Also Published As

Publication number Publication date
JPH0454696B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
EP1188785B1 (en) Polyolefin foam and polyolefin resin composition
US6649666B1 (en) Propylene polymer coupling and foams
JP3548632B2 (en) Polypropylene resin composition, foam and production method thereof
JPH0238100B2 (en)
KR100580802B1 (en) Process for producing foam products having good low temperature toughness from high melt strength propylene polymer materials
JPS59215329A (en) Crosslinked synthetic resin foam
JPH10259268A (en) Crosslinked polyethylene resin foam and its production
JPS6169844A (en) Crosslinked synthetic resin foam
JPH05214144A (en) Polypropylene-based resin crosslinked foam
JP2001240693A (en) Method for producing expanded polyolefin resin
JP2003105117A (en) Crosslinked polyolefinic resin foam
JPH04248847A (en) Foaming polyolefin-based rein composition
JP3535259B2 (en) Method for producing polypropylene resin foam
JPH0257576B2 (en)
JPH03143932A (en) Crosslinked high-density polyethylene foam
JPH03139535A (en) Composition for crosslinked polyolefin foam
JP2000351865A (en) Polyolefin resin composition for crosslinking and foaming, and crosslinked foam prepared therefrom
JP2000007814A (en) Crosslinkable polypropylene-based foamed resin composition for production of its foam
JPH0218224B2 (en)
JPH08109277A (en) Cross-linked polyolefin resin foam
JPH02175227A (en) Sheetlike foam
JP2004149665A (en) Crosslinked olefin resin foam
JPS5962643A (en) Crosslinked foam of synthetic resin
JP2025099188A (en) Method for producing surface-treated foam and cross-linked polyolefin resin foam
JP2025014978A (en) Polyethylene-based resin composition and extrusion molded foam

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees