JPS6186466A - Spinel ceramics - Google Patents
Spinel ceramicsInfo
- Publication number
- JPS6186466A JPS6186466A JP59206397A JP20639784A JPS6186466A JP S6186466 A JPS6186466 A JP S6186466A JP 59206397 A JP59206397 A JP 59206397A JP 20639784 A JP20639784 A JP 20639784A JP S6186466 A JPS6186466 A JP S6186466A
- Authority
- JP
- Japan
- Prior art keywords
- spinel
- toughness
- ceramics
- strength
- tetragonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、高強度と高靭性とを兼ね備えたスピネル系セ
ラミックスに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to spinel ceramics that have both high strength and high toughness.
一般にスピネル系セラミックスは、アルミナ系セラミッ
クスと比較して優れた耐食性を有しているものの、強度
や靭性が劣るために現実には引張応力や衝撃力のあま9
加わらない分野で使用されているにすぎない。そこで、
もし上記スピネル系セラミックスの靭性を改善して強度
を向上させることができれば、各種ノズルやパルプなど
の耐食耐摩耗部品や、人工歯等の広範囲にわたる分野で
の使用が可能となる。In general, spinel ceramics have superior corrosion resistance compared to alumina ceramics, but due to their inferior strength and toughness, in reality they are susceptible to tensile stress and impact forces.
It's just being used in areas where it doesn't belong. Therefore,
If the toughness of the spinel ceramics can be improved to increase its strength, it will be possible to use it in a wide range of fields such as corrosion-resistant and wear-resistant parts such as various nozzles and pulps, and artificial teeth.
従来から、セラミックスのような脆性物体の強度及び靭
性改善の試みは、数多くの研究者によって行なわれてお
り、その一つに焼結助剤を添加することによりで粒成長
を抑制する方法がある。しかし、この方法では、満足す
る靭性改善効果は得られていない。次いで、焼結体中に
微粒子を分散させることによって、亀裂の伸長を抑制す
る方法があるが、焼結体中に微粒子を均一に分散させる
ことが困難でちゃ、これも十分な効果が得られていない
。Many researchers have attempted to improve the strength and toughness of brittle objects such as ceramics, and one of the methods is to suppress grain growth by adding sintering aids. . However, this method does not provide a satisfactory toughness improvement effect. Next, there is a method of suppressing the growth of cracks by dispersing fine particles in the sintered body, but if it is difficult to uniformly disperse the fine particles in the sintered body, this method will not be sufficiently effective. Not yet.
本発明者らは、上述のような観点から従来スピネル系セ
ラミックスのもつ問題点を解決し、もって高強度及び高
靭性を有するスピネル系セラミックスを得るべく鋭意研
究を行なった。From the above-mentioned viewpoints, the present inventors have conducted intensive research in order to solve the problems of conventional spinel-based ceramics and thereby obtain spinel-based ceramics that have high strength and high toughness.
その結果、スピネル系セラミックスをマトリックスとし
て、これに安定化剤としてY2O3を含む正方晶糸Zr
O□ を分散させることによって、特別に粒径制御を行
なうことなく、スピネル系セラミックスの強度及び靭性
を改善できることを見出し、かかる知見に基づいて本発
明を達成した。As a result, the tetragonal crystal thread Zr containing spinel-based ceramics as a matrix and containing Y2O3 as a stabilizer.
It has been discovered that the strength and toughness of spinel ceramics can be improved by dispersing O□ without special particle size control, and the present invention has been achieved based on this knowledge.
すなわち本発明は、A成分: MgO働nAJL203
(1励宮)で示されるスピネル20〜95体積チと、
B成分:Y2O3を2〜3.5 %/L/ %含む正方
晶系zro25〜801025ル80
ル系セラミックスである。That is, the present invention provides component A: MgO function nAJL203
Spinel 20 to 95 volumes represented by (1 excitation),
Component B: Tetragonal ceramic containing 2 to 3.5%/L/% of Y2O3.
本発明のスピネル系セラミックスにおける強度及び靭性
改善機構は、外部から力が加わる時、スピネル系セラミ
ックス中に準安定に存在する正方晶Zr0 2が、 亀
裂先端の応力によって単斜晶zro2に転移し、これに
よシ破壊エネルギーを吸収することで強度及び靭性を改
善するというものである。The mechanism for improving the strength and toughness of the spinel ceramics of the present invention is that when an external force is applied, the tetragonal Zr02, which exists metastably in the spinel ceramics, transforms into the monoclinic Zro2 due to the stress at the crack tip. This improves strength and toughness by absorbing fracture energy.
更にAt203が過剰に固溶したスピネル系セラミック
スをマトリックスとして用い、これにY2O3 を固
溶した準安定な正方晶ZrO2 を分散させたものを
、スピネル固溶体生成温度よシも低い温度で熱処理を施
すと、スピネル系セラミックス中に微細善機構が加わシ
、よシ良好な強度及び靭性改善効果があることが分った
。Furthermore, if a spinel ceramic containing an excessive amount of At203 as a solid solution is used as a matrix, and metastable tetragonal ZrO2 containing Y2O3 as a solid solution is dispersed therein, heat treatment is performed at a temperature lower than the spinel solid solution formation temperature. It has been found that the addition of microscopic mechanisms to spinel-based ceramics has the effect of improving strength and toughness.
本発明において、前述の如く成分組成範囲を限定した理
由を以下に説明する。In the present invention, the reason why the component composition range is limited as described above will be explained below.
(a) スピネル(々0・咳20,)Zr02 は
一般に高温から、冷却中には約850℃の温度で正方晶
→単斜晶への転移が起こり、このとき約4−の体積膨張
を伴なう。本発明者等の研究によれば% ZrO2粒子
をZrO□とは反応しないマトリックス中に分散させて
焼結し、マトリックスによってZrO2転移時の体積膨
張を抑制すると、正方晶→単斜晶転移は起こらず、85
0℃以下の温度から室温まで正方晶ZrO2を準安定に
存在させることができる。(a) Spinel (Z0, cough 20,) Zr02 generally undergoes a transition from tetragonal to monoclinic at a temperature of about 850°C during cooling from a high temperature, accompanied by a volume expansion of about 4. Now. According to research by the present inventors, if ZrO2 particles are dispersed in a matrix that does not react with ZrO□ and sintered, and the matrix suppresses the volume expansion during ZrO2 transition, the tetragonal → monoclinic transition does not occur. zu, 85
Tetragonal ZrO2 can exist metastablely from temperatures below 0° C. to room temperature.
この場合、マトリックスとの熱膨張係数との差によって
、マトリックス中に準安定に存在する正方晶ZrO 粒
子は、圧縮応力状態や引張応力状態になっている。正方
晶Zr0zの相転移による良好な強度及び靭性改善効果
を得るには、マトリックス中に準安定に存在する正方晶
ZrO□粒子は引張応力状態であるのが望ましい。Zr
O□へ子の応力状態は、マトリックスと正方晶ZrO
粒子との熱膨張係数の差によって生じ、マ) IJフッ
クス熱膨張係数の方が小さい場合に正方晶ZrO□粒子
は引張応力状態になる。正方品ZrO2の熱膨張係数は
11 X 10′″6/℃であるが、スピネルの熱膨張
係数はs xto−)℃程度と小さく、スピネルマトリ
ックス中に存在する正方晶ZrO□粒子は引張応力状態
になってお夛、スピネルマトリックス中に準安定に正方
晶ZrO□を分散させた焼結体、すなわちスピネル系セ
ラミックスでは、良好な強度及び靭性改善効果が14t
られるものである。In this case, the tetragonal ZrO 2 particles existing metastably in the matrix are in a compressive stress state or a tensile stress state due to the difference in thermal expansion coefficient with the matrix. In order to obtain good strength and toughness improvement effects due to the phase transition of the tetragonal Zr0z, it is desirable that the tetragonal ZrO□ particles existing metastably in the matrix be in a tensile stress state. Zr
The stress state of O□heton is the matrix and tetragonal ZrO
This is caused by the difference in the coefficient of thermal expansion between the ZrO□ particles and the tetragonal ZrO□ particles when the IJ-Fuchs coefficient of thermal expansion is smaller. The coefficient of thermal expansion of tetragonal ZrO2 is 11 x 10'''6/℃, but the coefficient of thermal expansion of spinel is as small as s Nowadays, a sintered body in which tetragonal ZrO□ is metastably dispersed in a spinel matrix, that is, a spinel ceramic, has a good strength and toughness improvement effect of 14T.
It is something that can be done.
一方、スピネルはAt203過剰領域でスピネル固溶体
を生成し、その生成温度よ。も低い温度でスピネル固溶
体の焼結体を熱処理すると、焼結体中KitaなAt2
o8粒子が均一に析出し、粒子分散による強度及び靭性
改善効果が得られる。このような析出AA203粒子分
散による強度及び靭性改善効果が認められるスピネル固
溶体組成範囲はAL20a/MgO≦4(モル比)であ
る。On the other hand, spinel forms a spinel solid solution in the At203-excess region, and its formation temperature is very low. When a sintered body of spinel solid solution is heat-treated at a low temperature, the Kita At2 in the sintered body is
O8 particles are uniformly precipitated, and the effect of improving strength and toughness due to particle dispersion is obtained. The spinel solid solution composition range in which the effect of improving strength and toughness due to such dispersion of precipitated AA203 particles is observed is AL20a/MgO≦4 (molar ratio).
上記理由によL本発明においてスピネルはMgO−咳4
o3(1≦n≦4)が適箔である。For the above reasons, in the present invention spinel is MgO-cough 4
o3 (1≦n≦4) is a suitable foil.
(b) Y,03
Zr02は、一般に高温型の立方晶から温度の降下に伴
い正方晶、単斜晶の変態相をとる。(b) Y,03 Zr02 generally takes a transformation phase from a high-temperature cubic crystal to a tetragonal crystal and a monoclinic crystal as the temperature decreases.
本発明者らの研究によれば、ZrO 2にY2O3を3
、5モルチを越えて添加すると、Zr0zは室温まで安
定に高温型の立方晶で存在する。この立方晶ZrO2粒
子を分散させたスピネル系セラミックス中に、外部から
カを加えてもセラミックス中の立方晶2102粒子は単
斜晶に転移を起こさないためにスピネル系セラミックス
の強度及び靭性改善効果は得られない。また、YO量が
2モルチ未満では、Zr02は単斜晶で存在するため、
これをスピネル系セラミックス中に分散させてもセラミ
ックスの強度及び靭性改善効果は得られない。すなわち
、Y2O3はZrO□に対して2〜3.5モル−の範囲
内の添加量で、ZrO□を正方晶で準安定に存在させる
ことができ、はじめてスピネル系セラミックスの強度及
び靭性改善効果を発揮するのである。According to the research of the present inventors, 3 Y2O3 was added to ZrO2.
, 5 molti, Zr0z stably exists in the form of a high-temperature cubic crystal up to room temperature. Even if external force is applied to the spinel ceramic in which the cubic ZrO2 particles are dispersed, the cubic 2102 particles in the ceramic do not transform into monoclinic, so the strength and toughness improvement effect of the spinel ceramic is not effective. I can't get it. In addition, when the amount of YO is less than 2 molt, Zr02 exists in a monoclinic form, so
Even if this is dispersed in spinel ceramics, the effect of improving the strength and toughness of the ceramics cannot be obtained. In other words, when Y2O3 is added in an amount within the range of 2 to 3.5 mol relative to ZrO□, ZrO□ can be made to exist metastablely in a tetragonal system, and for the first time, it has the effect of improving the strength and toughness of spinel ceramics. It shows itself.
(e) ZrO□
本発明におけるスピネル系セラミックスの主たる強度及
び靭性改善機構は、外部から力が加わる時の、スピネル
系セラミックス中に準安定に存在する正方晶ZrO2の
単斜晶Zr0zへの相転移による応力吸収に基づくもの
である。従って、よシ大きな強度及び靭性改善効果を得
るには、よシ多くの正方晶ZrO□ 粒子をスピネル系
セラミックス中に準安定に存在させることが必要である
。本発明者らの研究によれば% ZrO2量が5体積−
未満では、強度及び靭性改善効果がなく添加の意味がな
い。(e) ZrO□ The main strength and toughness improvement mechanism of spinel ceramics in the present invention is the phase transition of tetragonal ZrO2, which exists metastably in spinel ceramics, to monoclinic Zr0z when external force is applied. It is based on stress absorption by Therefore, in order to obtain a greater effect of improving strength and toughness, it is necessary to have a greater number of tetragonal ZrO□ particles present in a metastable manner in the spinel ceramic. According to the research conducted by the present inventors, the amount of ZrO2 is 5 vol.
If it is less than that, there is no effect of improving strength and toughness, and there is no point in adding it.
また、ZrO□量が80体積チを越えると、スピネル系
セラミックス中の正方晶ZrOO熱的安定性が著しく低
下し、熱力学的に単斜晶の安定温度領域(約850℃以
下)に長時間保持しておくと、スピネル系セラミックス
中の準安定な正方晶ZrO2の大部分が単斜晶に転移し
てしまい、強度及び靭性改善効果は得られなくなる。す
なわち、zro2添加量は5〜80体積−の範囲で強度
及び靭性改善効果を発揮する。In addition, when the amount of ZrO□ exceeds 80 vol. H, the thermal stability of the tetragonal ZrOO in the spinel ceramics decreases significantly, and the thermodynamically stable monoclinic temperature range (approximately 850 degrees Celsius or less) is maintained for a long time. If this is maintained, most of the metastable tetragonal ZrO2 in the spinel ceramic will transform to monoclinic, and the effect of improving strength and toughness will no longer be obtained. That is, the effect of improving strength and toughness is exhibited when the amount of ZRO2 added is in the range of 5 to 80 vol.
なお、本発明の高強度、高靭性のスピネル系セラミック
スを得るための製造方法は、通常の粉末冶金的手法に従
えばよいが、より 一層強度及び靭性改善効果を上げる
ために、ZrO□粒子を均一に分散させる必要があシ、
混合においては湿式ボールミル混合、あるいはアトライ
ター混合が望ましい。また、焼成は大気中あるいは真空
中、好ましくは減圧窒素雰囲気中、1400−1700
’Cの温度範囲に(9)分〜5時間保持することによ
って焼結でき、スピネル固溶体原料を用いる場合は、焼
結後冷却途中で1000〜1300℃の温度範囲で(至
)分〜2時間、熱処理を施してAt、03を析出せさる
必要がある。特に、高密度のセラミックスが必要な場合
には、熱間静水圧焼結処理や、ホットプレスすることに
よって高密度のセラミックスを得ることができる。The manufacturing method for obtaining the high-strength, high-toughness spinel-based ceramics of the present invention may be carried out by following the usual powder metallurgy method, but in order to further improve the strength and toughness, ZrO□ particles may be added. Must be evenly distributed,
For mixing, wet ball mill mixing or attritor mixing is preferable. Further, the firing is performed in the air or in vacuum, preferably in a reduced pressure nitrogen atmosphere, at a temperature of 1400-1700°C.
Sintering can be done by holding the temperature in the temperature range of 'C for (9) minutes to 5 hours, and when using spinel solid solution raw material, it can be sintered by holding it in the temperature range of 1,000 to 1,300 degrees Celsius for (to) minutes to 2 hours during cooling after sintering. , it is necessary to perform heat treatment to precipitate At, 03. In particular, when high-density ceramics are required, high-density ceramics can be obtained by hot isostatic sintering or hot pressing.
次に実施例によって本発明を更に具体的に説明する。 Next, the present invention will be explained in more detail with reference to Examples.
実施例1
原料粉末として、市販のMgo−At2o3粉末を用い
、まfcZrO&料ニツイテハ、Zr0Ct2’8)i
20 水溶液に、ZrO□に対してY2O3が1〜4モ
ルチとなるようにycz、・6H20水溶液を加え、こ
の混合溶液にアンモニア水を滴下し共沈させた後、濾過
乾燥し900℃で栽焼し製造したZrO2(−Y2O3
) 粉末を用いた。これら原料粉末を、それぞれ第1
表に示される配合組成に配合し、これに溶媒としてエチ
ルアルコールを加えて、ボールミルで15時間混合後乾
燥し、次いで、この混合粉末を1 toTV/cpR2
の圧力にて静水圧成形した後、この成形体を大気中、温
度1600℃ に2時間保持の条件で焼成することによ
らて、本発明セラミックス1〜4、比較セラミックス1
〜3を作製した。比較セラミックスは、本発明の範囲か
ら外れた組成を持つものである。Example 1 Commercially available Mgo-At2o3 powder was used as the raw material powder, and Zr0Ct2'8)i
20 Add ycz, 6H20 aqueous solution to the aqueous solution so that Y2O3 is 1 to 4 molt with respect to ZrO□, drop ammonia water to this mixed solution to co-precipitate, filter dry, and grow at 900 ° C. ZrO2(-Y2O3
) Powder was used. These raw material powders were
Blend the composition shown in the table, add ethyl alcohol as a solvent, mix in a ball mill for 15 hours, and then dry. Then, this mixed powder is 1toTV/cpR2
After isostatic pressing at a pressure of
-3 were produced. Comparative ceramics have compositions outside the scope of the present invention.
この結果、得られた各セラミックスについて、態% 3
点曲げ強度及びノッチドビーム法による破壊靭性を測定
し、その結果を第1表に併せて示した。第1表に示され
るように、本発明セラミックス1〜4は、いずれも高強
度及び高靭性を併せもつものに対して、本発明範囲から
外れた組成を有する比較セラミックス1〜3は、強度及
び靭性共に劣っている。As a result, for each ceramic obtained, the state% 3
Point bending strength and fracture toughness were measured using the notched beam method, and the results are also shown in Table 1. As shown in Table 1, inventive ceramics 1 to 4 all have high strength and high toughness, whereas comparative ceramics 1 to 3, which have compositions outside the inventive range, have high strength and high toughness. Both toughness and toughness are inferior.
実施例2
原料粉末として、市販のMgQ・At2o3粉末と、安
定化剤として3モルチのY2O3を添加した市販のZr
O2(正方晶)粉末を、Zr02量がo〜90体積チと
なるように配合する。これら配合物にエチルアルコール
を加えてボールミルで15時間混合して乾燥し、得られ
た混合粉末を1.5 ton1cm’の圧力で静水圧成
形し、大気中、1500℃の温度に3時間保持の条件で
焼成を行なうことによって、セラミックスを作製し念。Example 2 Commercially available MgQ/At2o3 powder was used as raw material powder, and commercially available Zr was added with 3 molti Y2O3 as a stabilizer.
O2 (tetragonal) powder is blended so that the amount of Zr02 is from o to 90 vol. Ethyl alcohol was added to these formulations, mixed in a ball mill for 15 hours and dried, and the resulting mixed powder was isostatically pressed at a pressure of 1.5 tons/cm' and kept at a temperature of 1500°C for 3 hours in the air. Ceramics are created by firing under certain conditions.
得られた各セラミックスについて、室温における3点曲
げ強度及びノッチドビーム法による破壊靭性を測定し第
2表に示した。また、これらのセラミックスの熱的安定
性を調べるために、200℃に100時間保持した後の
単斜晶ZrO□の生成量と3点曲げ強度を測定し第3表
に示した。For each of the obtained ceramics, three-point bending strength at room temperature and fracture toughness by the notched beam method were measured and shown in Table 2. In addition, in order to investigate the thermal stability of these ceramics, the amount of monoclinic ZrO□ formed and the three-point bending strength after being maintained at 200° C. for 100 hours were measured and are shown in Table 3.
第2表に示すように、ZrO2量が80体積−を越える
と、ZrO2量が増加した分の強度の増大は得られなく
、更に第3表に示すように、ZrO2量80体積チを越
えたスピネル系セラミックスの熱的安定性は極めて、“
と(く、強度は著しく低下する。また第2表に見られる
ように、ZrO2量が5体積チ未満では強度及び靭性改
善の効果はほとんどみられない。As shown in Table 2, when the amount of ZrO2 exceeds 80 vol.-, the strength cannot be increased by the amount of ZrO2, and as shown in Table 3, when the amount of ZrO2 exceeds 80 vol. The thermal stability of spinel ceramics is extremely high.
Moreover, as shown in Table 2, when the amount of ZrO2 is less than 5 vol. h, there is almost no effect of improving the strength and toughness.
このように、添加するZrO2量が、本発明で規定する
5〜80体積−で熱的安定性も優れた、高強度、高靭性
のスピネル系セラミックスが得られる。In this way, a high-strength, high-toughness spinel-based ceramic can be obtained in which the amount of ZrO2 added is 5 to 80 vol. defined in the present invention and has excellent thermal stability.
実施例3
原料粉末として、n = 1.2,3.4.5となるよ
うに製造したMgO−nAt203 で示されるスピ
ネル(固溶体)粉末と、安定化剤として3モルqbY2
03 を添加した市販zr02 (正方晶)粉末を、
ZrO□量が50体積チとなるように配合した。これを
アトライターミルで混合粉砕後、1 ton、4−の圧
力で静水圧成形し、大気中、 1650℃ の温度に1
時間保持する条件で焼成した後、冷却途中1200℃
の温度で2時間熱島理を施し、微細なAL203を析出
させ、その後文に冷却して、スピネル系セラミックスを
得た。Example 3 Spinel (solid solution) powder represented by MgO-nAt203 manufactured so that n = 1.2, 3.4.5 was used as raw material powder, and 3 mol qbY2 as a stabilizer.
Commercially available zr02 (tetragonal) powder added with
It was blended so that the amount of ZrO□ was 50 vol. This was mixed and pulverized using an attritor mill, then wasostatically molded at a pressure of 1 ton and 40°C, and then heated to a temperature of 1650°C in the atmosphere.
After firing under conditions of holding for a long time, 1200℃ during cooling.
Heat treatment was performed at a temperature of 2 hours to precipitate fine AL203, followed by cooling to obtain spinel ceramics.
得られたセラミックについて、対理論密度比率、3点曲
げ強度及びノッチドビーム法による破壊靭性を測定し第
4表に示した。The theoretical density ratio, three-point bending strength, and fracture toughness by notched beam method were measured for the obtained ceramics, and the results are shown in Table 4.
第4表に示すように、本発明範囲内におけるスピネル(
固溶体)粉末原料(1≦n≦4)を用いたスピネル系セ
ラミックスは、高強度及び高靭性を併せ持つが、本発明
範囲から外れたスピネル系セラミックスは、強度及び靭
性が著しく劣ることが分る。As shown in Table 4, spinel (
Spinel ceramics using powder raw materials (1≦n≦4) have both high strength and high toughness, but spinel ceramics outside the scope of the present invention are found to have significantly inferior strength and toughness.
第1表
第2表
*1)加熱前のZrO2相は99%以上、正方晶相であ
る。Table 1 Table 2 *1) 99% or more of the ZrO2 phase before heating is a tetragonal phase.
第 4 表
〔発明の効果〕
以上に説明したように、本発明のスピネル系セラミック
スは、本来布する優れた耐食性のほか、熱性安定性に優
れ、強度と靭性が著しく改善されているので、各褌ノズ
ルやバルブなどの耐食耐摩耗部品や人工歯などの広範囲
にわたる分野での使用が期待される。Table 4 [Effects of the Invention] As explained above, the spinel ceramics of the present invention have excellent corrosion resistance, excellent thermal stability, and significantly improved strength and toughness. It is expected to be used in a wide range of fields, including corrosion-resistant and wear-resistant parts such as loincloth nozzles and valves, and artificial teeth.
Claims (1)
を焼結してなる高強度、高靭性のスピネル系セラミック
ス。 A成分:MgO・nAl_2O_3(1≦n≦4)で示
されるスピネルB成分:Y_2O_3を2〜3.5モル
%含む正方晶系ZrO_2[Scope of Claims] A high-strength, high-toughness spinel ceramic made by sintering 20 to 95% by volume of component A and 5 to 80% by volume of component B. A component: spinel represented by MgO・nAl_2O_3 (1≦n≦4) B component: tetragonal ZrO_2 containing 2 to 3.5 mol% of Y_2O_3
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59206397A JPH0755855B2 (en) | 1984-10-03 | 1984-10-03 | Spinel ceramics |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59206397A JPH0755855B2 (en) | 1984-10-03 | 1984-10-03 | Spinel ceramics |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6186466A true JPS6186466A (en) | 1986-05-01 |
| JPH0755855B2 JPH0755855B2 (en) | 1995-06-14 |
Family
ID=16522674
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59206397A Expired - Lifetime JPH0755855B2 (en) | 1984-10-03 | 1984-10-03 | Spinel ceramics |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0755855B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011034136A1 (en) * | 2009-09-18 | 2011-03-24 | 住友電気工業株式会社 | Substrate, manufacturing method of substrate, saw device, and device |
| JP2011066818A (en) * | 2009-09-18 | 2011-03-31 | Sumitomo Electric Ind Ltd | Substrate, saw device and device |
| US8614535B2 (en) | 2010-09-07 | 2013-12-24 | Sumitomo Electric Industries, Ltd. | Substrate, manufacturing method of substrate and saw device |
| CN103767882A (en) * | 2014-02-10 | 2014-05-07 | 北京大学工学院包头研究院 | Ceramic powder for denture preparation and preparation method of ceramic powder |
| CN109796198A (en) * | 2019-03-26 | 2019-05-24 | 华南理工大学 | A kind of preparation method of cerium stabilizing zirconium oxide reinforced alumina ceramic material |
| CN111848184A (en) * | 2020-07-30 | 2020-10-30 | 武汉理工大学 | A kind of high aluminum content magnesium aluminum spinel transparent ceramic powder and preparation method thereof |
| CN117776684A (en) * | 2023-11-13 | 2024-03-29 | 王帅 | Ceramic composite material and preparation method thereof |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6126562A (en) * | 1984-07-18 | 1986-02-05 | 東ソー株式会社 | Zirconia sintered body |
-
1984
- 1984-10-03 JP JP59206397A patent/JPH0755855B2/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6126562A (en) * | 1984-07-18 | 1986-02-05 | 東ソー株式会社 | Zirconia sintered body |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011034136A1 (en) * | 2009-09-18 | 2011-03-24 | 住友電気工業株式会社 | Substrate, manufacturing method of substrate, saw device, and device |
| JP2011066818A (en) * | 2009-09-18 | 2011-03-31 | Sumitomo Electric Ind Ltd | Substrate, saw device and device |
| US8614535B2 (en) | 2010-09-07 | 2013-12-24 | Sumitomo Electric Industries, Ltd. | Substrate, manufacturing method of substrate and saw device |
| CN103767882A (en) * | 2014-02-10 | 2014-05-07 | 北京大学工学院包头研究院 | Ceramic powder for denture preparation and preparation method of ceramic powder |
| CN109796198A (en) * | 2019-03-26 | 2019-05-24 | 华南理工大学 | A kind of preparation method of cerium stabilizing zirconium oxide reinforced alumina ceramic material |
| CN109796198B (en) * | 2019-03-26 | 2020-07-28 | 华南理工大学 | Preparation method of cerium-stabilized zirconia-toughened alumina ceramic material |
| CN111848184A (en) * | 2020-07-30 | 2020-10-30 | 武汉理工大学 | A kind of high aluminum content magnesium aluminum spinel transparent ceramic powder and preparation method thereof |
| CN117776684A (en) * | 2023-11-13 | 2024-03-29 | 王帅 | Ceramic composite material and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0755855B2 (en) | 1995-06-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR910005053B1 (en) | High toughness zro2 sintered body and method of producing the same | |
| JPS63139050A (en) | zirconia ceramics | |
| JPS6186466A (en) | Spinel ceramics | |
| JP3007730B2 (en) | Rare earth oxide-alumina sintered body and method for producing the same | |
| JPS62256768A (en) | Silicon nitride sintered body | |
| JP2882877B2 (en) | Zirconia porcelain and method for producing the same | |
| JP2533336B2 (en) | Sintered compact made of partially stabilized zirconium oxide and method for producing the same | |
| JP3076682B2 (en) | Alumina-based sintered body and method for producing the same | |
| JPH0826815A (en) | Rare earth complex oxide-based sintered body and method for producing the same | |
| JP2645894B2 (en) | Method for producing zirconia ceramics | |
| JPH02500267A (en) | ceramic material | |
| JP3078430B2 (en) | High-strength alumina sintered body | |
| JPS6081062A (en) | High strength ceramic material | |
| JPS6212662A (en) | High toughness zirconia base sintered body | |
| JP3121996B2 (en) | Alumina sintered body | |
| JP2690571B2 (en) | Zirconia cutting tool and its manufacturing method | |
| JPH01290558A (en) | Zirconia sintered body | |
| JPS63139049A (en) | zirconia ceramics | |
| JPH06219831A (en) | High toughness zirconia-based sintered compact | |
| JPS63139044A (en) | Alumina-zirconia sintered body and its manufacturing method | |
| JP2925089B2 (en) | Ceramic composite sintered body and method of manufacturing the same | |
| JPS62275067A (en) | Manufacture of silicon nitride sintered body | |
| JPS63134551A (en) | Alumina base sintered body and manufacture | |
| JP3340025B2 (en) | Alumina sintered body and method for producing the same | |
| JPH04104944A (en) | Al2o3-sic-zro2 composite sinter |