[go: up one dir, main page]

JPS6199806A - groove depth measuring device - Google Patents

groove depth measuring device

Info

Publication number
JPS6199806A
JPS6199806A JP22055884A JP22055884A JPS6199806A JP S6199806 A JPS6199806 A JP S6199806A JP 22055884 A JP22055884 A JP 22055884A JP 22055884 A JP22055884 A JP 22055884A JP S6199806 A JPS6199806 A JP S6199806A
Authority
JP
Japan
Prior art keywords
light
groove
reflected
incident
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22055884A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Ito
嘉敏 伊藤
Tadasuke Munakata
忠輔 棟方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22055884A priority Critical patent/JPS6199806A/en
Publication of JPS6199806A publication Critical patent/JPS6199806A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、例えば半導体ウェハに加工された深い溝の深
さ測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a device for measuring the depth of a deep groove formed in, for example, a semiconductor wafer.

〔発明の背景〕[Background of the invention]

近年、半導体素子の高集積化に伴い、素子構造は2次元
的平面構造から3次元的立体構造に向って進歩している
。例えば近接した異なる素子間の電気的絶縁を保つため
、相隣り合う素子間に深溝を作ることが実用化されつつ
ある。これらの溝あるいは穴の形状や深さが素子特性に
大きく影響すため、何らかの手段で測定することが必要
になっている。これらの測定を行なう場合、汚染による
半導体素子の特性変化を避けるために、非接触による測
定手段が強く望まれている。
In recent years, as semiconductor devices have become highly integrated, device structures have progressed from two-dimensional planar structures to three-dimensional three-dimensional structures. For example, in order to maintain electrical insulation between adjacent different elements, it is becoming practical to create deep grooves between adjacent elements. Since the shape and depth of these grooves or holes greatly affect the device characteristics, it is necessary to measure them by some means. When performing these measurements, non-contact measurement means are strongly desired in order to avoid changes in the characteristics of semiconductor elements due to contamination.

従来、非接触で微小な高さや間隔を測定する方法あるい
は装置として、(a)静蹴容量式マイクロメータ、(b
)空気マイクロメータ、(Q)顕微鏡、(d)干渉計な
どがあった。しかしこれらの方法や装置は、段差やゆる
やかな凹凸を対象にするときには精度よく測定できるが
、例えば幅が約104.深さが幅の5〜10倍の溝の場
合には測定精度が悪くなり、事実−L計測ができなかっ
た。
Conventionally, methods and devices for measuring minute heights and intervals in a non-contact manner include (a) static kick capacitance micrometer, (b)
) air micrometer, (Q) microscope, and (d) interferometer. However, these methods and devices can accurately measure differences in level or gentle unevenness, but for example, when the width is about 104 mm. In the case of a groove whose depth is 5 to 10 times the width, the measurement accuracy deteriorates, and in fact, it was not possible to measure L.

〔発明の目的〕[Purpose of the invention]

本発明は、従来計測が困難であった微細な深溝の深さを
測定できる溝の深さ81す定装置を得ることを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a groove depth measuring device capable of measuring the depth of a minute deep groove, which has been difficult to measure in the past.

〔発明の概要〕[Summary of the invention]

本発明で用いる溝の深さ測定原理について説明する。第
7図に溝の形状を示す。溝は試料表面に垂直に掘られて
おり、底面は溝の側面に対して直角になっているものと
する。この溝に平行光束を入射させる。入射角をOとす
ると試料表面に入射した光はその表面で反射され、反射
角θの方向に進む。一方、溝の開口部に入射した光は、
溝の側壁と底面とで繰返し反射したのち、再び溝の開口
部に達し溝の外へ出て行く。溝の幅をa、深さをdとし
、第8図に示すように光の入射角Oがθ= jan−”
 (−)          (] )の場合について
考える。この場合溝の内側に入射した光は最初溝の右側
の側面で反射されて溝の底面に向い、さらに底面で反射
された光は左側の側面に向って進む。つぎに左側の側面
で反射されたのち、溝の開口部に達して溝の外へ出て行
く。溝の内部から外へ出る光の方向は、この場合試料表
面で反射する反射光と同じ方向になる。一般に入射角θ
が θ、 = tan”” (−)   但しn:偶数・・
・(2)d の場合は内部から反射される光が、上記の場合と同様に
試料表面による反射光と同一方向に進行する。
The principle of measuring the groove depth used in the present invention will be explained. Figure 7 shows the shape of the groove. The groove is dug perpendicular to the sample surface, and the bottom surface is assumed to be perpendicular to the side surface of the groove. A parallel light beam is made incident on this groove. When the incident angle is O, the light incident on the sample surface is reflected by the surface and travels in the direction of the reflection angle θ. On the other hand, the light incident on the groove opening is
After being reflected repeatedly by the side walls and bottom of the groove, it reaches the opening of the groove again and exits the groove. Let the width of the groove be a and the depth be d, and as shown in Figure 8, the incident angle O of the light is θ = jan-''
Consider the case of (−) (] ). In this case, the light incident on the inside of the groove is first reflected from the right side surface of the groove and directed toward the bottom surface of the groove, and the light further reflected from the bottom surface proceeds toward the left side surface. After being reflected off the left side surface, it reaches the opening of the groove and exits the groove. The direction of the light exiting from the inside of the groove is in this case the same direction as the reflected light reflected from the sample surface. In general, the angle of incidence θ
is θ, = tan"" (-) where n: even number...
- In the case of (2) d, the light reflected from inside travels in the same direction as the light reflected by the sample surface, as in the above case.

つぎに入射角が θ= tan””()         (3)d の場合について考える。この場合は第9図に示すように
、溝の開口部中心から左側の部分に入射した光は初めに
直接底面に入射する。底面で反射した光は右側の側面に
向い、さらに右側側面で反射した光は入射光に逆行する
方向に進み溝から出て行く。この場合のように、溝の内
部□からの反射光が入射光と逆行するための条件は、溝
に入射する光の入射角かつぎの式で表わされることであ
る。
Next, consider the case where the angle of incidence is θ=tan""() (3)d. In this case, as shown in FIG. 9, the light incident on the left side from the center of the opening of the groove first directly enters the bottom surface. The light reflected from the bottom is directed toward the right side, and the light further reflected from the right side travels in the direction opposite to the incident light and exits from the groove. As in this case, the condition for the reflected light from the inside square of the groove to travel in the opposite direction to the incident light is that the incident angle of the light incident on the groove is expressed by the following equation.

8 、 = tan−” (−)   但しn:奇数−
(4)d 光の入射角が−に記がθ□およびθ2以外の場合には、
溝に入射した光は一部分が試料表面による反射光の方向
、残りは入射光に逆行する□方向へと2分されて溝の内
部から反射される。この2方向へ反射される光の光量は
入射角に依存しており、特に入射角が式(2)で表わさ
れる値のときは、溝の内部からの反射光がすべて試料表
面の反射光と同一の方向となり、入射光に逆行する反射
光は光量が零となる。したがって入射光に逆行する反射
光の光量が零となる場合の入射角θ、を測定し、その値
と溝の幅8を式(2)に代入することにより、溝の深さ
dを算出することができる。
8, = tan-” (-) where n: odd number-
(4) d If the incident angle of light is other than θ□ and θ2,
The light incident on the groove is divided into two parts, with a part going in the direction of the reflected light from the sample surface and the rest going in the direction opposite to the incident light, and is reflected from inside the groove. The amount of light reflected in these two directions depends on the angle of incidence, and especially when the angle of incidence is the value expressed by equation (2), all of the light reflected from inside the groove is reflected from the sample surface. The amount of reflected light that is in the same direction and goes opposite to the incident light is zero. Therefore, the depth d of the groove is calculated by measuring the angle of incidence θ, when the amount of reflected light going against the incident light is zero, and substituting that value and the groove width 8 into equation (2). be able to.

具体的には入射光に逆行する反射光の光量IRを測定し
ながら入射角θを変化させ、TRが零となる入射角θR
を測定する。入射角の値を0度から変化させると、式(
2)でnを2.4.6とした場合に対応してTRが零に
なる入射角ORがいくつか測定される。nが2に対応す
る入射角をORzとすると、θR2はつぎの式で表わさ
れる。
Specifically, the incident angle θ is changed while measuring the light intensity IR of reflected light that goes against the incident light, and the incident angle θR at which TR becomes zero is determined.
Measure. When the value of the incident angle is changed from 0 degrees, the formula (
In 2), several incident angles OR at which TR becomes zero are measured when n is set to 2.4.6. If the incident angle corresponding to n is 2 is ORz, θR2 is expressed by the following formula.

a θR1= jan−” (−) d したがって、この式を用いて溝の深さdをつぎのように
表わすことができる。
a θR1=jan-” (-) d Therefore, using this equation, the depth d of the groove can be expressed as follows.

あるいは隣り合ったθRの値、例えばORnとθRn+
aの値を用いて、つぎのように溝の深さdを求めること
ができる。
Or adjacent θR values, for example ORn and θRn+
Using the value of a, the depth d of the groove can be determined as follows.

上記例では入射光に逆行する光量が零になる入射角から
溝の深さを求めたが、反対に、入射光にjφ行する光量
が最大になる入射角からも同様にして溝の深さを求める
ことができる。すなわち、本発明による溝の深さ測定装
置は、平行な2面と、該2面に直交する平面を有する溝
に、平行光束の光を照射する手段と、上記溝から反射す
る光のうち、入射光に逆行する方向の反射光の量を測定
する手段とを備えたものである。
In the above example, the depth of the groove was determined from the angle of incidence at which the amount of light traveling in the direction opposite to the incident light was zero, but conversely, the depth of the groove was found in the same way from the angle of incidence at which the amount of light traveling in the jφ direction to the incident light was maximum. can be found. That is, the groove depth measuring device according to the present invention includes means for irradiating a parallel beam of light onto a groove having two parallel surfaces and a plane orthogonal to the two surfaces, and of the light reflected from the groove. and means for measuring the amount of reflected light in the direction opposite to the incident light.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による溝の深さ測定装置の第1実施例を
示す構成図、第2図は上記実施例の送受光ヘッドの断面
図、第3図は本発明の第2実施例を示す構成図、第4図
は上記実施例の送受光ヘッドの断面図、第5図は本発明
の第3実施例を示す構成図、第6図は上記実施例におい
て集光した光を溝に照射する状態を示す断面図である。
FIG. 1 is a block diagram showing a first embodiment of a groove depth measuring device according to the present invention, FIG. 2 is a sectional view of the light transmitting/receiving head of the above embodiment, and FIG. 3 is a diagram showing a second embodiment of the present invention. FIG. 4 is a cross-sectional view of the light transmitting and receiving head of the above embodiment, FIG. 5 is a block diagram showing the third embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view showing a state of irradiation.

第1図において、レーザ光源11から放射されたレーザ
光111はレンズ12で光ファイバ13の端面に集光さ
れ、送受光ヘッド14に導かれる。送受光ヘッド14の
構造は第2図に示すように、光ファイバ13によって送
られてきた光をレンズ15により平行光線に変換し、半
透明鏡プリズム16を透過させて深さを測定する溝があ
る試料17に照射する。なおレーザ光がレンズ15側か
ら半透明鏡プリズム16を透過する際に生じる反射光を
吸収するため、上記半透明鏡プリズム16の側面には光
吸収膜23が塗布しである。
In FIG. 1, laser light 111 emitted from a laser light source 11 is focused on the end face of an optical fiber 13 by a lens 12 and guided to a light transmitting/receiving head 14. As shown in FIG. 2, the structure of the light transmitting/receiving head 14 includes a groove that converts the light sent by the optical fiber 13 into parallel light beams using a lens 15, and transmits the light through a semi-transparent mirror prism 16 to measure the depth. A certain sample 17 is irradiated. In order to absorb the reflected light generated when the laser beam passes through the semi-transparent mirror prism 16 from the lens 15 side, a light-absorbing film 23 is coated on the side surface of the semi-transparent mirror prism 16.

送受光ヘッド14は試料17における入射光に逆行する
方向の反射光を受け、該反射光を一ヒ記半透明鏡プリズ
ム16で反射して光電変換素子18により電気信号に変
換する。変換された電気信号を電圧H119により測定
し、試料17からの反射光の有無を検出する。第4図に
おける20は光電変換素子18用の電源である。上記送
受光ヘッド14に取付けられたスライダ21は目盛を付
した円弧状のアーム22に沿って移動し、試料17に照
射する光の入射角を上記目盛によって読取ることができ
る。上記の装置を用きいて溝の深さを測定するには、試
料17にレーザ光を照射しながらアーム22に沿って送
受光ヘッド14をスライドさせ、同時に反射光強度を電
圧計19の指示電圧によって測定する。試料17への光
の入射角を0度付近から次第に増加させ、電圧計19の
指示が最も小さな値になったときの光の入射角をア−1
%22の目盛から読みとる。このときの光の入射角fl
Rと、別に顕微鏡等で測定した溝の開口部の幅aを前記
(1)式に代入し溝の深さdを算出することができる。
The light transmitting/receiving head 14 receives the reflected light in the direction opposite to the incident light on the sample 17, reflects the reflected light by the semi-transparent mirror prism 16, and converts it into an electrical signal by the photoelectric conversion element 18. The converted electrical signal is measured by the voltage H119, and the presence or absence of reflected light from the sample 17 is detected. 20 in FIG. 4 is a power source for the photoelectric conversion element 18. In FIG. The slider 21 attached to the light transmitting/receiving head 14 moves along an arc-shaped arm 22 with graduations, and the angle of incidence of the light irradiating the sample 17 can be read from the graduations. To measure the depth of the groove using the above device, the light transmitting/receiving head 14 is slid along the arm 22 while irradiating the sample 17 with laser light, and at the same time the intensity of the reflected light is measured at the voltage indicated by the voltmeter 19. Measured by The angle of incidence of light on the sample 17 is gradually increased from around 0 degrees, and the angle of incidence of light when the reading on the voltmeter 19 reaches the smallest value is set to A-1.
Read from the %22 scale. The incident angle fl of the light at this time
The depth d of the groove can be calculated by substituting R and the width a of the opening of the groove separately measured using a microscope or the like into the above equation (1).

本実施例では、完全な平行光線を得るために光源として
レーザ光源を用いており、試料表面による反射光と、溝
の内側から反射する入射光に逆行する反射光とは、光の
進行方向がそれぞれ異なるため効率よく分離でき、反射
光強度が零になる入射角θを容易に測定できるという特
徴がある。
In this example, a laser light source is used as the light source to obtain perfectly parallel light beams, and the light reflected from the sample surface and the reflected light that is reflected from the inside of the groove and that travels in the opposite direction to the incident light are in the direction of light propagation. Since they are different from each other, they can be efficiently separated, and the incident angle θ at which the reflected light intensity becomes zero can be easily measured.

また光源からの平行光束の照射に光ファイバを用いたた
め、光源と送受光ヘッドとの間の光路は物理的に固定さ
れることがなく、装置の構成が巨大化することを防ぎ、
かつ光軸調整のわずられしさを避け、装置全体をコンパ
クトにまとめて操作を容易にすることができる。
In addition, since an optical fiber is used to irradiate the parallel light beam from the light source, the optical path between the light source and the light transmitting/receiving head is not physically fixed, which prevents the configuration of the device from becoming too large.
Moreover, the trouble of adjusting the optical axis can be avoided, and the entire device can be made compact and easy to operate.

第3図に示す第2実施例は、レーザ光源11から出射さ
れたレーザ光111が半透明鏡プリズム24を透過した
のち、レンズ12により光ファイバ13に集光され、光
ファイバ13を透過して送受光ヘッド14′ に導かれ
る。送受光ヘッド14’では第4図に示すように、レン
ズ15によってレーザ光が平行光束に再び変換されて試
料17に照射される。試料17に設けられた溝から入射
光に逆行する方向に反射される光は送受光ヘッド14′
 に導かれ、さらに光ファイバ13を通ってレンズ12
に導かれる。この反射光はレンズ12で平行光束に変換
されたのち、半透明鏡プリズム24で反射されて光電変
換素子18に入射する。上記光電変換素子18の出力電
圧を電圧計19で測定する。図における20は光電変換
素子用の電源である。上記電圧計19によって測定する
電圧は、深さを測定する試料17の溝からの反射光強度
に対応する。アーム22に沿って送受光ヘッド14′ 
を移動させて溝に照射するレーザ光の入射角を0度から
増大させ、同時に電圧計19によって溝から送受光ヘッ
ド14′に反射される光の強度変化を測定する。そして
電圧計19の指示電圧が最低となったときの入射角θを
アームに付した目盛から読みとる。本実施例は試料17
から送受光ヘッド14′に反射される光のうち、照射光
に対して完全に;φ行する光だけが光ファイバ13に集
光されるため、溝の内部からの反射光だけを選択して検
出することができる。その結果、計測が容易に行われ、
精度よく溝の深さを測定できることが特徴である。
In the second embodiment shown in FIG. 3, a laser beam 111 emitted from a laser light source 11 passes through a semi-transparent mirror prism 24, is focused on an optical fiber 13 by a lens 12, and is transmitted through the optical fiber 13. The light is guided to a light transmitting/receiving head 14'. In the light transmitting/receiving head 14', as shown in FIG. 4, the laser beam is again converted into a parallel beam by the lens 15 and irradiated onto the sample 17. The light reflected from the groove provided in the sample 17 in the direction opposite to the incident light is transmitted to the light transmitting/receiving head 14'.
further passes through the optical fiber 13 to the lens 12
guided by. This reflected light is converted into a parallel light beam by the lens 12, then reflected by the semi-transparent mirror prism 24, and enters the photoelectric conversion element 18. The output voltage of the photoelectric conversion element 18 is measured with a voltmeter 19. 20 in the figure is a power source for the photoelectric conversion element. The voltage measured by the voltmeter 19 corresponds to the intensity of reflected light from the groove of the sample 17 whose depth is to be measured. Along the arm 22, a light transmitting/receiving head 14'
is moved to increase the angle of incidence of the laser beam irradiating the groove from 0 degrees, and at the same time, the voltmeter 19 measures changes in the intensity of the light reflected from the groove to the light transmitting/receiving head 14'. Then, the incident angle θ when the indicated voltage of the voltmeter 19 becomes the lowest is read from the scale attached to the arm. In this example, sample 17
Among the light reflected from the irradiating light to the light transmitting/receiving head 14', only the light that completely travels along the φ line with respect to the irradiated light is focused on the optical fiber 13. can be detected. As a result, measurements can be easily made;
It is characterized by being able to measure the depth of grooves with high precision.

第5図に示す第3実施例は、レーザ光源11より出射し
たレーザ光をレンズ12で集光して光ファイバ13に導
き、光ファイバ13で導かれたレーザ光はレンズ25に
よって平行光束に変換され、半透明鏡プリズム26に入
射する。半透明鏡プリズム26に入射したレーザ光の一
部はレンズ27の方に反射され、試料17の溝の開口部
に集光される。この場合、レンズ27と試料17との間
隔は、レンズ27に入射する’il1行光束が試料17
上の溝の開口部に入射するように、レンズ27の焦点距
離fに等しくする。上記レーザ光がレンズ27を透過す
る際に、レンズ27の少なくとも半分を覆った遮蔽板2
8によって上記レンズ27に入射するレーザ光の一部が
遮蔽される。したがって試料17の溝に入射する光の入
射の状態は第6図に示すようになり、レンズ27の開口
数をN、 A (Numerjcal  Apertu
re)とすると、入射角が0度から最大sin”’ (
N 、 A )度までの間の光が同時に入射することに
なる。溝に入射した光のうち入射角が式(2)に相当す
る光は全部第6図の反射光29に示すように、レンズ2
7の遮蔽板28で覆った部分に反射される。そのためレ
ンズ27の遮蔽板28で覆われていない部分に反射され
る光量は零になる。溝の入射角が式(2)の値以外の入
射光は、一部分がレンズ27の遮蔽板28で覆われてい
ない部分に反射される。この光は照射光と;φの方向に
レンズ27を透過し半透明鏡プリズム26に入射す。半
透明鏡プリズム26に入射した光は一部分が透過し、残
りの光は上記半透明鏡プリズム26により反射されてレ
ンズ25の方向に進む。半透明鏡プリズム26を透過し
た光は接眼レンズ29に入射し、。
In the third embodiment shown in FIG. 5, a laser beam emitted from a laser light source 11 is focused by a lens 12 and guided to an optical fiber 13, and the laser beam guided by the optical fiber 13 is converted into a parallel beam by a lens 25. and enters the semi-transparent mirror prism 26. A portion of the laser light incident on the semitransparent mirror prism 26 is reflected toward the lens 27 and focused on the opening of the groove of the sample 17. In this case, the distance between the lens 27 and the sample 17 is such that the 'il 1 line light beam incident on the lens 27 is
It is made equal to the focal length f of the lens 27 so that it enters the opening of the upper groove. A shielding plate 2 that covers at least half of the lens 27 when the laser beam passes through the lens 27
8 blocks a portion of the laser light incident on the lens 27. Therefore, the state of incidence of light entering the groove of the sample 17 is as shown in FIG. 6, and the numerical aperture of the lens 27 is N, A
re), the angle of incidence is from 0 degrees to the maximum sin''' (
Light of up to N, A) degrees will be incident at the same time. Of the light incident on the groove, all the light whose incident angle corresponds to equation (2) is reflected by the lens 2 as shown in reflected light 29 in FIG.
It is reflected by the portion covered by the shielding plate 28 of No. 7. Therefore, the amount of light reflected on the portion of the lens 27 that is not covered by the shielding plate 28 becomes zero. A portion of the incident light having an incident angle of the groove other than the value of equation (2) is reflected by the portion of the lens 27 that is not covered by the shielding plate 28. This light passes through the lens 27 in the direction of the irradiation light; and enters the semi-transparent mirror prism 26. Part of the light incident on the semi-transparent mirror prism 26 is transmitted, and the remaining light is reflected by the semi-transparent mirror prism 26 and travels toward the lens 25. The light transmitted through the semi-transparent mirror prism 26 enters the eyepiece 29.

肉眼による溝の[6に利用される。またレンズ25と半
透明鏡プリズム26との間に光ファイバアレー30の端
面を配置する。レンズ27と半透明鏡ブリズ=11− ム26との間隔Q1と、半透明鏡プリズム26とファイ
バアレー30の端面との間隔悲、どの和が、レンズ27
の焦点距離に等しくなるように上記ファイバアレー30
の端面を一致させる。一般にレンズの焦点面ではレンズ
に入射する光が入射角に応じてそれぞれ異なった点に集
光される。したがって溝からレンズ27に反射される反
射光は、ファイバアレー30の端面でレンズ27への反
射光の入射角刈に分離される。レンズ27への反射光の
入射角は、その反射光が溝に入射したときの入射角に等
しいから、ファイバアレー30の端面−lユに集光され
る光はそれぞれ溝への入射角ごとに分離される。例えば
ファイバアレー30の端面上で、光軸から垂直に距離m
だけ離れた点に集光する光は次式で示す入射角で溝に入
射した光である。
Used for visual groove [6]. Further, the end face of the optical fiber array 30 is arranged between the lens 25 and the semitransparent mirror prism 26. What is the sum of the distance Q1 between the lens 27 and the semi-transparent mirror prism 26 and the distance between the semi-transparent mirror prism 26 and the end face of the fiber array 30?
The fiber array 30
Match the end faces of. Generally, on the focal plane of a lens, light incident on the lens is focused at different points depending on the angle of incidence. Therefore, the reflected light reflected from the groove to the lens 27 is separated into angles of incidence of the reflected light to the lens 27 at the end face of the fiber array 30. Since the angle of incidence of the reflected light on the lens 27 is equal to the angle of incidence when the reflected light enters the groove, the light condensed on the end face -1 of the fiber array 30 is separated. For example, on the end face of the fiber array 30, a distance m perpendicular to the optical axis
The light that is condensed at a point that is far away is light that has entered the groove at an angle of incidence expressed by the following equation.

0 = tan−” (−)          (5
)ファイバアレー30の各光ファイバへの入射光をファ
イバアレー30の後端面に結合した光電変換素子アレー
31で電気信号に変換し、その電気信号を電圧計または
電流計32で測定し、ファイバアレ−30端面に反射さ
れてくる光量が零となる光ファイバを検出す。その光フ
ァイバの先端部と光軸との間隔をmをすると、反射光が
零となる照射光の入射角は式(5)で表わされる。式(
5)の値と式(2)とを用いて溝の深さdはつぎのよう
に求めることができる。
0 = tan-” (-) (5
) The light incident on each optical fiber of the fiber array 30 is converted into an electrical signal by the photoelectric conversion element array 31 coupled to the rear end face of the fiber array 30, and the electrical signal is measured by a voltmeter or ammeter 32, and -30 Detects an optical fiber in which the amount of light reflected from the end face is zero. When the distance between the tip of the optical fiber and the optical axis is m, the angle of incidence of the irradiated light at which the reflected light becomes zero is expressed by equation (5). formula(
Using the value of 5) and equation (2), the depth d of the groove can be determined as follows.

となる。本実施例は上記のように従来測定できなかった
溝の深さを容易に測定できるとともに、測定の対象とな
る溝を肉眼で観察することができる。
becomes. As described above, in this embodiment, the depth of the groove, which could not be measured conventionally, can be easily measured, and the groove to be measured can be observed with the naked eye.

上記各実施例はいずれも微細な溝の測定について記した
が、本発明は平行な側面と、該側面に直交する底面を有
する穴の深さ測定にも適用できることはいうまでもない
Although each of the above embodiments has been described with respect to the measurement of fine grooves, it goes without saying that the present invention can also be applied to the measurement of the depth of a hole having parallel side surfaces and a bottom surface perpendicular to the side surfaces.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による溝の深さ測定装置は、平行な
2面と、該2面に直交する平面を有する溝に、平行光束
の光を照射する手段と、」ユ配溝から反射する光のうち
、入射光に逆行する方向の反射光のμを測定する手段と
を備えたことにより、従来、測定が極めて困難であった
微細な溝の深さを、非接触、非破壊で容易に測定するこ
とができ、特に汚染が問題となる半導体ウェハの溝の深
さ測定に適している。
As described above, the groove depth measuring device according to the present invention includes means for irradiating a parallel beam of light onto a groove having two parallel surfaces and a plane perpendicular to the two surfaces, Equipped with a means to measure the μ of reflected light in the direction opposite to the incident light, it is now possible to easily measure the depth of minute grooves, which was previously extremely difficult to measure, in a non-contact and non-destructive manner. It is particularly suitable for measuring the depth of grooves in semiconductor wafers where contamination is a problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による溝の深さ測定装置の第1実施例を
示す構成図、第2図は」二記実施例の送受光ヘッドの断
面図、第3図は本発明の第2実施例を示す構成図、第4
図は上記実施例の送受光ヘッドの断面図、第5図は本発
明の第3実施例を示す構成図、第6図は一ヒ記実施例に
おいて集光した光を溝に照射する状態を示す断面図、第
7図は溝に照射した平行光束の反射状態を示す図、第8
図および第9図は溝に照射した平行光束の反射状態を示
す図である。 +1・・・レーザ光源 12.15.25.27・・・レンズ 13・・・光ファイバ 14.14’・・・送受光ヘッド 16.24.26・・・半透明鏡プリズム17・・・試
料       18・・・光電変換素子19・・・電
圧計      28・・・遮蔽板29・・・接眼レン
ズ    30・・・光ファイバアレー31・・・光電
変換素子アレー 32・・・電圧計または電流計
Fig. 1 is a block diagram showing a first embodiment of a groove depth measuring device according to the present invention, Fig. 2 is a sectional view of a light transmitting/receiving head of the second embodiment, and Fig. 3 is a diagram showing a second embodiment of the present invention. Block diagram showing an example, No. 4
The figure is a sectional view of the light transmitting/receiving head of the above embodiment, FIG. 5 is a configuration diagram showing the third embodiment of the present invention, and FIG. Fig. 7 is a cross-sectional view showing the state of reflection of the parallel light beam irradiated onto the groove;
This figure and FIG. 9 are diagrams showing the state of reflection of the parallel light beam irradiated onto the groove. +1...Laser light source 12.15.25.27...Lens 13...Optical fiber 14.14'...Light transmitting/receiving head 16.24.26...Semi-transparent mirror prism 17...Sample 18... Photoelectric conversion element 19... Voltmeter 28... Shielding plate 29... Eyepiece 30... Optical fiber array 31... Photoelectric conversion element array 32... Voltmeter or ammeter

Claims (5)

【特許請求の範囲】[Claims] (1)平行な2面と、該2面に直交する平面を有する溝
に、平行光束の光を照射する手段と、上記溝から反射す
る光のうち、入射光に逆行する方向の反射光の量を測定
する手段とを備えてなる溝の深さ測定装置。
(1) A means for irradiating a parallel beam of light onto a groove having two parallel surfaces and a plane orthogonal to the two surfaces; A groove depth measuring device comprising means for measuring the depth of a groove.
(2)上記平行光束の光を照射する手段は、上記平行光
束の光を2分する手段を備え、反射光を測定する手段は
、上記反射光の一部を用いて溝を観察する手段を備えて
いることを特徴とする特許請求の範囲第1項に記載した
溝の深さ測定装置。
(2) The means for irradiating the parallel light flux includes means for dividing the parallel light flux into two, and the means for measuring the reflected light includes means for observing the groove using a part of the reflected light. A groove depth measuring device as set forth in claim 1.
(3)上記反射光の量を測定する手段は、光ファイバア
レーであることを特徴とする特許請求の範囲第2項に記
載した溝の深さ測定装置。
(3) The groove depth measuring device according to claim 2, wherein the means for measuring the amount of reflected light is an optical fiber array.
(4)上記平行光束の光は、レーザ光であることを特徴
とする特許請求の範囲第1項乃至第3項のいずれかに記
載した溝の深さ測定装置。
(4) The groove depth measuring device according to any one of claims 1 to 3, wherein the parallel light beam is a laser beam.
(5)上記平行光束の光を照射する手段は、光ファイバ
を用いたものであることを特徴とする特許請求の範囲第
1項乃至第4項のいずれかに記載した溝の深さ測定装置
(5) The groove depth measuring device according to any one of claims 1 to 4, wherein the means for irradiating the parallel beam of light uses an optical fiber. .
JP22055884A 1984-10-22 1984-10-22 groove depth measuring device Pending JPS6199806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22055884A JPS6199806A (en) 1984-10-22 1984-10-22 groove depth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22055884A JPS6199806A (en) 1984-10-22 1984-10-22 groove depth measuring device

Publications (1)

Publication Number Publication Date
JPS6199806A true JPS6199806A (en) 1986-05-17

Family

ID=16752872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22055884A Pending JPS6199806A (en) 1984-10-22 1984-10-22 groove depth measuring device

Country Status (1)

Country Link
JP (1) JPS6199806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497497A (en) * 1990-08-16 1992-03-30 Nec Yamagata Ltd Automatic character recognizing device
GB2363195A (en) * 2000-01-20 2001-12-12 Nec Corp Apparatus and method for measuring trench depth
JP2008129313A (en) * 2006-11-21 2008-06-05 Toshiba Corp Optical connector and optical fiber connection method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497497A (en) * 1990-08-16 1992-03-30 Nec Yamagata Ltd Automatic character recognizing device
GB2363195A (en) * 2000-01-20 2001-12-12 Nec Corp Apparatus and method for measuring trench depth
US6646751B2 (en) 2000-01-20 2003-11-11 Nec Electronics Corporation Apparatus and method for measuring trench depth
JP2008129313A (en) * 2006-11-21 2008-06-05 Toshiba Corp Optical connector and optical fiber connection method using the same

Similar Documents

Publication Publication Date Title
US5943134A (en) Method of measuring thickness and refractive indices of component layers of laminated structure and measuring apparatus for carrying out the same
US4355904A (en) Optical inspection device for measuring depthwise variations from a focal plane
JP3450388B2 (en) Optical shape measuring device
US3885875A (en) Noncontact surface profilometer
JPS6379004A (en) Light probe for measuring shape
GB2144537A (en) Profile measuring instrument
JPS63500119A (en) Instruments for measuring surface morphology
CN105092585B (en) Sub-surface measurement apparatus and method based on total internal reflection and optical coherence tomography
JPH0652171B2 (en) Optical non-contact position measuring device
US7724375B1 (en) Method and apparatus for increasing metrology or inspection tool throughput
JPS5862507A (en) A method to determine the shape of a surface by interference of light
GB2158228A (en) Astigmatic non-contact optical probe
CN111307075B (en) Roughness measuring device capable of identifying texture direction
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JP2746446B2 (en) Optical measuring device
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
JP2533514B2 (en) Depth / thickness measuring device
JPS6199806A (en) groove depth measuring device
US4425041A (en) Measuring apparatus
CN111964580A (en) Device and method for detecting position and angle of film based on optical lever
CN115682952B (en) A precision measurement device and method for geometric quantities based on the principle of spectral confocal
JPS60200108A (en) Optical type thickness measuring method and apparatus thereof
JPH11344313A (en) Apparatus and method for measuring medium
JP3967058B2 (en) Method and apparatus for measuring surface shape and thickness of plate-like workpiece
US4579454A (en) Optical profilometer for steep surface contours with significant surface tilt